1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
|
(* Js_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
* Copyright (C) 2010 Jérôme Vouillon
* Laboratoire PPS - CNRS Université Paris Diderot
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
open Code
open Instr
let debug_parser = Debug.find "parser"
let debug_sourcemap = Debug.find "sourcemap"
let times = Debug.find "times"
type bytecode = string
let predefined_exceptions =
Runtimedef.builtin_exceptions |> Array.to_list |> List.mapi ~f:(fun i name -> i, name)
let new_closure_repr = Ocaml_version.compare Ocaml_version.current [ 4; 12 ] >= 0
(* Read and manipulate debug section *)
module Debug : sig
type t
type position =
| Before
| After
val names : t -> bool
val enabled : t -> bool
val is_empty : t -> bool
val dbg_section_needed : t -> bool
val propagate : Code.Var.t list -> Code.Var.t list -> unit
val find : t -> Code.Addr.t -> (int * Ident.t) list * Env.summary
val find_rec : t -> Code.Addr.t -> (int * Ident.t) list
val find_loc : t -> position:position -> Code.Addr.t -> Parse_info.t option
val find_locs : t -> int -> (string option * Instruct.debug_event) list
val event_location :
position:position
-> source:string option
-> event:Instruct.debug_event
-> Parse_info.t
val read_event :
paths:string list
-> crcs:(string, string option) Hashtbl.t
-> orig:int
-> t
-> Instruct.debug_event
-> unit
val read :
t -> crcs:(string * string option) list -> includes:string list -> in_channel -> unit
val read_event_list :
t
-> crcs:(string * string option) list
-> includes:string list
-> orig:int
-> in_channel
-> unit
val create : include_cmis:bool -> bool -> t
val paths : t -> units:StringSet.t -> StringSet.t
end = struct
open Instruct
type path = string
type ml_unit =
{ module_name : string
; crc : string option
; paths : string list
; source : path option
}
[@@ocaml.warning "-unused-field"]
type event_and_source =
{ event : debug_event
; source : path option
}
module Int_table = Hashtbl.Make (Int)
type t =
{ events_by_pc : event_and_source Int_table.t
; units : (string * string option, ml_unit) Hashtbl.t
; names : bool
; enabled : bool
; include_cmis : bool
}
type position =
| Before
| After
let names t = t.names
let enabled t = t.enabled
let dbg_section_needed t = t.names || t.enabled || t.include_cmis
let relocate_event orig ev = ev.ev_pos <- (orig + ev.ev_pos) / 4
let create ~include_cmis enabled =
let names = enabled || Config.Flag.pretty () in
{ events_by_pc = Int_table.create 17
; units = Hashtbl.create 17
; names
; enabled
; include_cmis
}
let is_empty t = Int_table.length t.events_by_pc = 0
let find_ml_in_paths paths name =
let uname = String.uncapitalize_ascii name in
match Fs.find_in_path paths (uname ^ ".ml") with
| Some _ as x -> x
| None -> Fs.find_in_path paths (name ^ ".ml")
let read_event
~paths
~crcs
~orig
{ events_by_pc; units; names; enabled; include_cmis = _ }
ev =
let pos_fname =
match ev.ev_loc.Location.loc_start.Lexing.pos_fname with
| "_none_" -> None
| x -> Some x
in
let ev_module = ev.ev_module in
let unit =
try Hashtbl.find units (ev_module, pos_fname)
with Not_found ->
let crc = try Hashtbl.find crcs ev_module with Not_found -> None in
let source : path option =
(* First search the source based on [pos_fname] because the
filename of the source might be unreleased to the
module name. (e.g. pos_fname = list.ml, module = Stdlib__list) *)
let from_pos_fname =
match pos_fname with
| None -> None
| Some pos_fname -> (
match Fs.find_in_path paths pos_fname with
| Some _ as x -> x
| None -> Fs.find_in_path paths (Filename.basename pos_fname))
in
match from_pos_fname with
| None -> find_ml_in_paths paths ev_module
| Some _ as x -> x
in
let source =
match source with
| None -> None
| Some source -> Some (Fs.absolute_path source)
in
if debug_sourcemap ()
then
Format.eprintf
"module:%s - source:%s - name:%s\n%!"
ev_module
(match source with
| None -> "NONE"
| Some x -> x)
(match pos_fname with
| None -> "NONE"
| Some x -> x);
let u = { module_name = ev_module; crc; source; paths } in
Hashtbl.add units (ev_module, pos_fname) u;
u
in
relocate_event orig ev;
if enabled || names
then Int_table.add events_by_pc ev.ev_pos { event = ev; source = unit.source };
()
let read_event_list =
let rewrite_path path =
if Filename.is_relative path
then path
else
match Build_path_prefix_map.get_build_path_prefix_map () with
| Some map -> Build_path_prefix_map.rewrite (Build_path_prefix_map.flip map) path
| None -> path
in
let read_paths ic : string list = List.map (input_value ic) ~f:rewrite_path in
fun debug ~crcs ~includes ~orig ic ->
let crcs =
let t = Hashtbl.create 17 in
List.iter crcs ~f:(fun (m, crc) -> Hashtbl.add t m crc);
t
in
let evl : debug_event list = input_value ic in
let paths = read_paths ic @ includes in
List.iter evl ~f:(read_event ~paths ~crcs ~orig debug)
let read t ~crcs ~includes ic =
let len = input_binary_int ic in
for _i = 0 to len - 1 do
let orig = input_binary_int ic in
read_event_list t ~crcs ~includes ~orig ic
done
let find { events_by_pc; _ } pc =
try
let { event; _ } = Int_table.find events_by_pc pc in
let l =
Ident.fold_name
(fun ident i acc -> (event.ev_stacksize - i, ident) :: acc)
event.ev_compenv.ce_stack
[]
|> List.sort ~cmp:(fun (i, _) (j, _) -> compare i j)
in
l, event.ev_typenv
with Not_found -> [], Env.Env_empty
let find_rec { events_by_pc; _ } pc =
try
let { event; _ } = Int_table.find events_by_pc pc in
let env = event.ev_compenv in
let names =
Ident.fold_name
(fun ident i acc -> ((if new_closure_repr then i / 3 else i / 2), ident) :: acc)
env.ce_rec
[]
in
List.sort names ~cmp:(fun (i, _) (j, _) -> compare i j)
with Not_found -> []
[@@if ocaml_version < (5, 2, 0)]
let find_rec { events_by_pc; _ } pc =
try
let { event; _ } = Int_table.find events_by_pc pc in
let env = event.ev_compenv in
let names =
match env.ce_closure with
| Not_in_closure -> raise Not_found
| In_closure { entries; _ } ->
Ident.fold_name
(fun ident ent acc ->
match ent with
| Function i -> (i / 3, ident) :: acc
| Free_variable _ -> acc)
entries
[]
in
List.sort names ~cmp:(fun (i, _) (j, _) -> compare i j)
with Not_found -> []
[@@if ocaml_version >= (5, 2, 0)]
let dummy_location (loc : Location.t) =
loc.loc_start.pos_cnum = -1 || loc.loc_end.pos_cnum = -1
(* We can have several events at the same location when a function
application is followed by a branch target, typically due to some
code like [if ... then f(); ...] : the event after the function
application, and the event at the beginning of the continuation.
Both events are interesting. They are returned by this function
in the expected order: first after the function call, then before
the continuation. *)
let find_locs { events_by_pc; _ } pc =
List.filter_map (Int_table.find_all events_by_pc pc) ~f:(fun { event; source } ->
if dummy_location event.ev_loc then None else Some (source, event))
let event_location ~position ~source ~event =
let pos =
match position with
| After -> event.ev_loc.Location.loc_end
| Before -> event.ev_loc.Location.loc_start
in
Parse_info.t_of_position ~src:source pos
let find_loc t ~position pc =
match find_locs t pc with
| [] -> None
| (source, event) :: _ -> Some (event_location ~position ~source ~event)
let rec propagate l1 l2 =
match l1, l2 with
| v1 :: r1, v2 :: r2 ->
Var.propagate_name v1 v2;
propagate r1 r2
| [], [] -> ()
| _ -> assert false
let paths t ~units =
let paths =
Hashtbl.fold
(fun _ u acc -> if StringSet.mem u.module_name units then u.paths :: acc else acc)
t.units
[]
in
StringSet.of_list (List.concat paths)
end
(* Block analysis *)
(* Detect each block *)
module Blocks : sig
type t
val analyse : bytecode -> t
val next : t -> int -> int
val is_empty : t -> bool
end = struct
type t = int array
let add blocks pc = Addr.Set.add pc blocks
let rec scan blocks code pc len =
if pc < len
then
match (get_instr_exn code pc).kind with
| KNullary -> scan blocks code (pc + 1) len
| KUnary -> scan blocks code (pc + 2) len
| KBinary -> scan blocks code (pc + 3) len
| KNullaryCall -> scan blocks code (pc + 1) len
| KUnaryCall -> scan blocks code (pc + 2) len
| KBinaryCall -> scan blocks code (pc + 3) len
| KJump ->
let offset = gets code (pc + 1) in
let blocks = Addr.Set.add (pc + offset + 1) blocks in
scan blocks code (pc + 2) len
| KCond_jump ->
let offset = gets code (pc + 1) in
let blocks = Addr.Set.add (pc + offset + 1) blocks in
scan blocks code (pc + 2) len
| KCmp_jump ->
let offset = gets code (pc + 2) in
let blocks = Addr.Set.add (pc + offset + 2) blocks in
scan blocks code (pc + 3) len
| KSwitch ->
let sz = getu code (pc + 1) in
let blocks = ref blocks in
for i = 0 to (sz land 0xffff) + (sz lsr 16) - 1 do
let offset = gets code (pc + 2 + i) in
blocks := Addr.Set.add (pc + offset + 2) !blocks
done;
scan !blocks code (pc + 2 + (sz land 0xffff) + (sz lsr 16)) len
| KClosurerec ->
let nfuncs = getu code (pc + 1) in
scan blocks code (pc + nfuncs + 3) len
| KClosure -> scan blocks code (pc + 3) len
| KStop n -> scan blocks code (pc + n + 1) len
| K_will_not_happen -> assert false
else (
assert (pc = len);
blocks)
(* invariant: a.(i) <= x < a.(j) *)
let rec find a i j x =
assert (i < j);
if i + 1 = j
then a.(j)
else
let k = (i + j) / 2 in
if a.(k) <= x then find a k j x else find a i k x
let next blocks pc = find blocks 0 (Array.length blocks - 1) pc
let is_empty x = Array.length x <= 1
let analyse code =
let blocks = Addr.Set.empty in
let len = String.length code / 4 in
let blocks = add blocks 0 in
let blocks = add blocks len in
let blocks = scan blocks code 0 len in
Array.of_list (Addr.Set.elements blocks)
end
(* Parse constants *)
module Constants : sig
val parse : Obj.t -> Code.constant
val inlined : Code.constant -> bool
end = struct
(* In order to check that two custom objects share the same kind, we
compare their identifier. The identifier is currently extracted
from the marshaled value. *)
let ident_of_custom x =
(* Make sure tags are equal to custom_tag.
Note that in javascript [0l] and [0n] are not encoded as custom blocks. *)
if Obj.tag x <> Obj.custom_tag
then None
else
try
let bin = Marshal.to_string x [] in
match Char.code bin.[20] with
| 0x12 | 0x18 | 0x19 ->
let last = String.index_from bin 21 '\000' in
let name = String.sub bin ~pos:21 ~len:(last - 21) in
Some name
| _ -> assert false
with _ -> assert false
let same_ident x y =
match y with
| Some y -> String.equal x y
| None -> false
let ident_32 = ident_of_custom (Obj.repr 0l)
let ident_64 = ident_of_custom (Obj.repr 0L)
let ident_native = ident_of_custom (Obj.repr 0n)
let rec parse x =
if Obj.is_block x
then
let tag = Obj.tag x in
if tag = Obj.string_tag
then String (Obj.magic x : string)
else if tag = Obj.double_tag
then Float (Obj.magic x : float)
else if tag = Obj.double_array_tag
then Float_array (Array.init (Obj.size x) ~f:(fun i -> Obj.double_field x i))
else if tag = Obj.custom_tag
then
match ident_of_custom x with
| Some name when same_ident name ident_32 -> (
let i : int32 = Obj.magic x in
match Config.target () with
| `JavaScript -> Int (Targetint.of_int32_warning_on_overflow i)
| `Wasm -> Int32 i)
| Some name when same_ident name ident_native -> (
let i : nativeint = Obj.magic x in
match Config.target () with
| `JavaScript -> Int (Targetint.of_nativeint_warning_on_overflow i)
| `Wasm -> NativeInt (Int32.of_nativeint_warning_on_overflow i))
| Some name when same_ident name ident_64 -> Int64 (Obj.magic x : int64)
| Some name ->
failwith
(Printf.sprintf
"parse_bytecode: Don't know what to do with custom block (%s)"
name)
| None -> assert false
else if tag < Obj.no_scan_tag
then
Tuple (tag, Array.init (Obj.size x) ~f:(fun i -> parse (Obj.field x i)), Unknown)
else assert false
else
let i : int = Obj.magic x in
Int (Targetint.of_int_warning_on_overflow i)
let inlined = function
| String _ | NativeString _ -> false
| Float _ -> true
| Float_array _ -> false
| Int64 _ -> false
| Tuple _ -> false
| Int _ -> true
| Int32 _ | NativeInt _ -> false
end
let const32 i = Constant (Int (Targetint.of_int32_exn i))
let const i = Constant (Int (Targetint.of_int_exn i))
(* Globals *)
type globals =
{ mutable vars : Var.t option array
; mutable is_const : bool array
; mutable is_exported : bool array
; mutable named_value : string option array
; mutable override : (Var.t -> Code.instr list -> Var.t * Code.instr list) option array
; constants : Code.constant array
; primitives : string array
}
let make_globals size constants primitives =
{ vars = Array.make size None
; is_const = Array.make size false
; is_exported = Array.make size false
; named_value = Array.make size None
; override = Array.make size None
; constants
; primitives
}
let resize_array a len def =
let b = Array.make len def in
Array.blit ~src:a ~src_pos:0 ~dst:b ~dst_pos:0 ~len:(Array.length a);
b
let resize_globals g size =
g.vars <- resize_array g.vars size None;
g.is_const <- resize_array g.is_const size false;
g.is_exported <- resize_array g.is_exported size true;
g.named_value <- resize_array g.named_value size None;
g.override <- resize_array g.override size None
(* State of the VM *)
module State = struct
type elt =
| Var of Var.t
| Dummy of string
| Unset
let elt_to_var e =
match e with
| Var x -> x
| _ -> assert false
let print_elt f v =
match v with
| Var x -> Format.fprintf f "%a" Var.print x
| Dummy _ -> Format.fprintf f "Ù"
| Unset -> Format.fprintf f "∅"
type handler = { stack : elt list }
type t =
{ accu : elt
; stack : elt list
; env : elt array
; env_offset : int
; handlers : handler list
; globals : globals
}
let fresh_var state =
let x = Var.fresh () in
x, { state with accu = Var x }
let globals st = st.globals
let size_globals st size =
if size > Array.length st.globals.vars then resize_globals st.globals size
let rec list_start n l =
if n = 0
then []
else
match l with
| [] -> assert false
| v :: r -> v :: list_start (n - 1) r
let rec st_pop n st =
if n = 0
then st
else
match st with
| [] -> assert false
| _ :: r -> st_pop (n - 1) r
let push st = { st with stack = st.accu :: st.stack }
let pop n st = { st with stack = st_pop n st.stack }
let acc n st = { st with accu = List.nth st.stack n }
let env_acc n st = { st with accu = st.env.(st.env_offset + n) }
let accu st = elt_to_var st.accu
let stack_vars st =
List.fold_left (st.accu :: st.stack) ~init:[] ~f:(fun l e ->
match e with
| Var x -> x :: l
| Dummy _ | Unset -> l)
let set_accu st x = { st with accu = Var x }
let clear_accu st = { st with accu = Unset }
let peek n st = elt_to_var (List.nth st.stack n)
let grab n st = List.map (list_start n st.stack) ~f:elt_to_var, pop n st
let rec st_assign s n x =
match s with
| [] -> assert false
| y :: rem -> if n = 0 then x :: rem else y :: st_assign rem (n - 1) x
let assign st n = { st with stack = st_assign st.stack n st.accu }
let start_function state env offset =
{ state with accu = Unset; stack = []; env; env_offset = offset; handlers = [] }
let start_block _current_pc state =
let stack =
List.fold_right state.stack ~init:[] ~f:(fun e stack ->
match e with
| Dummy x -> Dummy x :: stack
| Unset -> Unset :: stack
| Var x ->
let y = Var.fork x in
Var y :: stack)
in
let state = { state with stack } in
match state.accu with
| Dummy _ | Unset -> state
| Var x ->
let y, state = fresh_var state in
Var.propagate_name x y;
state
let push_handler state =
{ state with handlers = { stack = state.stack } :: state.handlers }
let pop_handler state = { state with handlers = List.tl state.handlers }
let initial g =
{ accu = Unset; stack = []; env = [||]; env_offset = 0; handlers = []; globals = g }
let rec print_stack f l =
match l with
| [] -> ()
| v :: r -> Format.fprintf f "%a %a" print_elt v print_stack r
let print_env f e =
Array.iteri e ~f:(fun i v ->
if i > 0 then Format.fprintf f " ";
Format.fprintf f "%a" print_elt v)
let print st =
Format.eprintf
"{ %a | %a | (%d) %a }@."
print_elt
st.accu
print_stack
st.stack
st.env_offset
print_env
st.env
let rec name_rec debug i l s summary =
match l, s with
| [], _ -> ()
| (j, ident) :: lrem, Var v :: srem when i = j ->
Var.name v (Ident.name ident);
name_rec debug (i + 1) lrem srem summary
| (j, _) :: _, _ :: srem when i < j -> name_rec debug (i + 1) l srem summary
| _ -> assert false
let name_vars st debug pc =
if Debug.names debug
then
let l, summary = Debug.find debug pc in
name_rec debug 0 l st.stack summary
let rec make_stack i state =
if i = 0
then [], state
else
let x, state = fresh_var state in
let params, state = make_stack (pred i) (push state) in
if debug_parser () then if i > 1 then Format.printf ", ";
if debug_parser () then Format.printf "%a" Var.print x;
x :: params, state
end
let primitive_name state i =
let g = State.globals state in
assert (i >= 0 && i <= Array.length g.primitives);
let prim = g.primitives.(i) in
Primitive.add_external prim;
prim
let access_global g i =
match g.vars.(i) with
| Some x -> x
| None ->
g.is_const.(i) <- true;
let x = Var.fresh () in
g.vars.(i) <- Some x;
x
let register_global ?(force = false) g i rem =
match g.is_exported.(i), force, Config.target () with
| true, _, `Wasm ->
(* Register a compilation unit (Wasm) *)
assert (not force);
let name =
match g.named_value.(i) with
| None -> assert false
| Some name -> name
in
Code.Var.name (access_global g i) name;
Let
( Var.fresh ()
, Prim (Extern "caml_set_global", [ Pc (String name); Pv (access_global g i) ]) )
:: rem
| true, _, (`JavaScript as target) | false, true, ((`Wasm | `JavaScript) as target) ->
(* Register an exception (if force = true), or a compilation unit
(Javascript) *)
let args =
match g.named_value.(i) with
| None -> []
| Some name ->
Code.Var.name (access_global g i) name;
[ Pc
(match target with
| `JavaScript -> NativeString (Native_string.of_string name)
| `Wasm -> String name)
]
in
Let
( Var.fresh ()
, Prim
( Extern "caml_register_global"
, Pc (Int (Targetint.of_int_exn i)) :: Pv (access_global g i) :: args ) )
:: rem
| false, false, (`JavaScript | `Wasm) -> rem
let get_global state instrs i =
State.size_globals state (i + 1);
let g = State.globals state in
match g.vars.(i) with
| Some x ->
(* Registered global *)
if debug_parser () then Format.printf "(global access %a)@." Var.print x;
x, State.set_accu state x, instrs
| None -> (
if i < Array.length g.constants && Constants.inlined g.constants.(i)
then
(* Inlined constant *)
let x, state = State.fresh_var state in
let cst = g.constants.(i) in
x, state, Let (x, Constant cst) :: instrs
else
match i < Array.length g.constants, Config.target () with
| true, _ | false, `JavaScript ->
(* Non-inlined constant, and reference to another compilation
units in case of separate compilation (JavaScript).
Some code is generated in a prelude to store the relevant
module in variable [x]. *)
g.is_const.(i) <- true;
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = CONST(%d)@." Var.print x i;
g.vars.(i) <- Some x;
x, state, instrs
| false, `Wasm -> (
(* Reference to another compilation units in case of separate
compilation (Wasm).
The toplevel module is available in an imported global
variables. *)
match g.named_value.(i) with
| None -> assert false
| Some name ->
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = get_global(%s)@." Var.print x name;
( x
, state
, Let (x, Prim (Extern "caml_get_global", [ Pc (String name) ])) :: instrs
)))
let tagged_blocks = ref Addr.Map.empty
let compiled_blocks : (_ * instr list * last) Addr.Map.t ref = ref Addr.Map.empty
let method_cache_id = ref 1
let clo_offset_3 = if new_closure_repr then 3 else 2
type compile_info =
{ blocks : Blocks.t
; code : string
; limit : int
; debug : Debug.t
}
let string_of_addr debug_data addr =
List.map
(Debug.find_locs debug_data addr)
~f:(fun (src, { Instruct.ev_loc = loc; ev_kind = kind; _ }) ->
let pos (p : Lexing.position) =
Printf.sprintf "%d:%d" p.pos_lnum (p.pos_cnum - p.pos_bol)
in
let file =
match src with
| None -> "<unknown>"
| Some file -> file
in
let kind =
match kind with
| Event_before -> "(before)"
| Event_after _ -> "(after)"
| Event_pseudo -> "(pseudo)"
in
Printf.sprintf "%s:%s-%s %s" file (pos loc.loc_start) (pos loc.loc_end) kind)
let rec compile_block blocks debug_data code pc state : unit =
match Addr.Map.find_opt pc !tagged_blocks with
| Some old_state -> (
(* Check that the shape of the stack is compatible with the one used to compile the block *)
let rec check (xs : State.elt list) (ys : State.elt list) =
match xs, ys with
| Var _ :: xs, Var _ :: ys -> check xs ys
| Dummy _ :: xs, Dummy _ :: ys -> check xs ys
| Unset :: _, _ -> assert false
| _, Unset :: _ -> assert false
| [], [] -> ()
| Var _ :: _, Dummy _ :: _ -> assert false
| Dummy _ :: _, Var _ :: _ -> assert false
| _ :: _, [] -> assert false
| [], _ :: _ -> assert false
in
check old_state.State.stack state.State.stack;
match old_state.State.accu, state.State.accu with
| Dummy _, Dummy _ -> ()
| Var _, Var _ -> ()
| Unset, Unset -> ()
| Var _, Dummy _ -> assert false
| Dummy _, Var _ -> assert false
| Unset, _ -> assert false
| _, Unset -> assert false)
| None -> (
let limit = Blocks.next blocks pc in
assert (limit > pc);
if debug_parser () then Format.eprintf "Compiling from %d to %d@." pc (limit - 1);
let state = State.start_block pc state in
tagged_blocks := Addr.Map.add pc state !tagged_blocks;
let instr, last, state' =
compile { blocks; code; limit; debug = debug_data } pc state []
in
assert (not (Addr.Map.mem pc !compiled_blocks));
(* When jumping to a block that was already visited and the
[accu] was [Unset] for that block, we make the current accu
[Unset] *)
let adjust_state pc =
match state', Addr.Map.find_opt pc !tagged_blocks with
| _, None -> state'
| { State.accu = Var _; _ }, Some { State.accu = Unset; _ } ->
State.clear_accu state'
| _, _ -> state'
in
let mk_cont pc =
let state = adjust_state pc in
pc, State.stack_vars state
in
let last =
match last with
| Branch (pc, _) -> Branch (mk_cont pc)
| Cond (x, (pc1, _), (pc2, _)) -> Cond (x, mk_cont pc1, mk_cont pc2)
| Poptrap (pc, _) -> Poptrap (mk_cont pc)
| Switch (x, a) -> Switch (x, Array.map a ~f:(fun (pc, _) -> mk_cont pc))
| Raise _ | Return _ | Stop -> last
| Pushtrap _ -> assert false
in
compiled_blocks := Addr.Map.add pc (state, List.rev instr, last) !compiled_blocks;
match last with
| Branch (pc', _) -> compile_block blocks debug_data code pc' (adjust_state pc')
| Cond (_, (pc1, _), (pc2, _)) ->
compile_block blocks debug_data code pc1 (adjust_state pc1);
compile_block blocks debug_data code pc2 (adjust_state pc2)
| Poptrap (_, _) -> ()
| Switch (_, _) -> ()
| Raise _ | Return _ | Stop -> ()
| Pushtrap _ -> assert false)
and compile infos pc state (instrs : instr list) =
if debug_parser () then State.print state;
assert (pc <= infos.limit);
if debug_parser ()
then
List.iter (string_of_addr infos.debug pc) ~f:(fun s ->
Format.eprintf "@@@@ %s @@@@@." s);
let instrs =
let push_event position source event instrs =
match instrs with
| Event _ :: instrs | instrs ->
Event (Debug.event_location ~position ~source ~event) :: instrs
in
List.fold_left
(Debug.find_locs infos.debug pc)
~init:instrs
~f:(fun instrs (source, event) ->
match event, instrs with
| { Instruct.ev_kind = Event_pseudo; ev_info = Event_other; _ }, _ ->
(* Ignore allocation events (not very interesting) *)
if debug_parser () then Format.eprintf "Ignored allocation event@.";
instrs
| ( { ev_kind = Event_pseudo | Event_after _; ev_info = Event_return _; _ }
, (Let (_, (Apply _ | Prim _)) as i) :: rem ) ->
(* Event after a call. If it is followed by another event,
it may have been weaken to a pseudo-event but was kept
for stack traces *)
if debug_parser () then Format.eprintf "Added event across call@.";
push_event After source event (i :: push_event Before source event rem)
| { ev_kind = Event_pseudo; ev_info = Event_function; _ }, [] ->
(* At beginning of function *)
if debug_parser () then Format.eprintf "Added event at function start@.";
push_event Before source event instrs
| { ev_kind = Event_after _ | Event_pseudo; ev_info = Event_return _; _ }, _ ->
if debug_parser ()
then
Format.eprintf "Ignored useless event (beginning of a block after a call)@.";
instrs
| { ev_kind = Event_after _; ev_info = Event_other; _ }, _ ->
if debug_parser ()
then Format.eprintf "Ignored useless event (before a raise)@.";
(* We already have an event for the exception. The
compiler add these events for stack traces. *)
instrs
| { ev_kind = Event_before; ev_info = Event_other; _ }, _
| { ev_kind = Event_before | Event_pseudo; ev_info = Event_function; _ }, _ ->
if debug_parser () then Format.eprintf "added event@.";
push_event Before source event instrs
| { ev_kind = Event_after _; ev_info = Event_function; _ }, _
| { ev_kind = Event_before; ev_info = Event_return _; _ }, _ ->
(* Nonsensical events *)
assert false)
in
if pc = infos.limit
then
if (* stop if we reach end_of_code (ie when compiling cmo) *)
pc = String.length infos.code / 4
then (
if debug_parser () then Format.eprintf "Stop@.";
instrs, Stop, state)
else (
State.name_vars state infos.debug pc;
if debug_parser ()
then Format.eprintf "Branch %d (%a) @." pc Print.var_list (State.stack_vars state);
instrs, Branch (pc, []), state)
else (
if debug_parser () then Format.eprintf "%4d " pc;
State.name_vars state infos.debug pc;
let code = infos.code in
let instr = get_instr_exn code pc in
if debug_parser () then Format.eprintf "%08x %s@." instr.opcode instr.name;
match instr.Instr.code with
| ACC0 -> compile infos (pc + 1) (State.acc 0 state) instrs
| ACC1 -> compile infos (pc + 1) (State.acc 1 state) instrs
| ACC2 -> compile infos (pc + 1) (State.acc 2 state) instrs
| ACC3 -> compile infos (pc + 1) (State.acc 3 state) instrs
| ACC4 -> compile infos (pc + 1) (State.acc 4 state) instrs
| ACC5 -> compile infos (pc + 1) (State.acc 5 state) instrs
| ACC6 -> compile infos (pc + 1) (State.acc 6 state) instrs
| ACC7 -> compile infos (pc + 1) (State.acc 7 state) instrs
| ACC ->
let n = getu code (pc + 1) in
compile infos (pc + 2) (State.acc n state) instrs
| PUSH -> compile infos (pc + 1) (State.push state) instrs
| PUSHACC0 -> compile infos (pc + 1) (State.acc 0 (State.push state)) instrs
| PUSHACC1 -> compile infos (pc + 1) (State.acc 1 (State.push state)) instrs
| PUSHACC2 -> compile infos (pc + 1) (State.acc 2 (State.push state)) instrs
| PUSHACC3 -> compile infos (pc + 1) (State.acc 3 (State.push state)) instrs
| PUSHACC4 -> compile infos (pc + 1) (State.acc 4 (State.push state)) instrs
| PUSHACC5 -> compile infos (pc + 1) (State.acc 5 (State.push state)) instrs
| PUSHACC6 -> compile infos (pc + 1) (State.acc 6 (State.push state)) instrs
| PUSHACC7 -> compile infos (pc + 1) (State.acc 7 (State.push state)) instrs
| PUSHACC ->
let n = getu code (pc + 1) in
compile infos (pc + 2) (State.acc n (State.push state)) instrs
| POP ->
let n = getu code (pc + 1) in
compile infos (pc + 2) (State.pop n state) instrs
| ASSIGN ->
let n = getu code (pc + 1) in
let accu = State.accu state in
let state = State.assign state n in
let stack_size = List.length state.stack in
let x, state = State.fresh_var state in
let instrs =
(* If the assigned variable is used in an exception handler,
we register that from now on the parameter [dest] should
be bound to the value of [accu] when entering the
exception handler.
For the optimization phases, [Assign (dest, acccu)] is
interpreted as: [accu] is a possible value for parameter
[dest]. For code generation, this is implemented as an
assignment.
For this to make sense, the intermediate code generated
for [PUSHTRAP] is such that [dest] is in scope at this
point but is only used in the exception handler.
*)
List.fold_left
state.handlers
~init:(Let (x, const 0) :: instrs)
~f:(fun acc (handler : State.handler) ->
let handler_stack_size = List.length handler.stack in
let diff = stack_size - handler_stack_size in
if n >= diff
then
let dest = State.elt_to_var (List.nth handler.stack (n - diff)) in
Assign (dest, accu) :: acc
else acc)
in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile infos (pc + 2) state instrs
| ENVACC1 -> compile infos (pc + 1) (State.env_acc 1 state) instrs
| ENVACC2 -> compile infos (pc + 1) (State.env_acc 2 state) instrs
| ENVACC3 -> compile infos (pc + 1) (State.env_acc 3 state) instrs
| ENVACC4 -> compile infos (pc + 1) (State.env_acc 4 state) instrs
| ENVACC ->
let n = getu code (pc + 1) in
compile infos (pc + 2) (State.env_acc n state) instrs
| PUSHENVACC1 -> compile infos (pc + 1) (State.env_acc 1 (State.push state)) instrs
| PUSHENVACC2 -> compile infos (pc + 1) (State.env_acc 2 (State.push state)) instrs
| PUSHENVACC3 -> compile infos (pc + 1) (State.env_acc 3 (State.push state)) instrs
| PUSHENVACC4 -> compile infos (pc + 1) (State.env_acc 4 (State.push state)) instrs
| PUSHENVACC ->
let n = getu code (pc + 1) in
compile infos (pc + 2) (State.env_acc n (State.push state)) instrs
| PUSH_RETADDR ->
compile
infos
(pc + 2)
{ state with
State.stack =
(* See interp.c *)
State.Dummy "push_retaddr(retaddr)"
:: State.Dummy "push_retaddr(env)"
:: State.Dummy "push_retaddr(extra_args)"
:: state.State.stack
}
instrs
| APPLY ->
let n = getu code (pc + 1) in
let f = State.accu state in
let x, state = State.fresh_var state in
let args, state = State.grab n state in
if debug_parser ()
then (
Format.printf "%a = %a(" Var.print x Var.print f;
for i = 0 to n - 1 do
if i > 0 then Format.printf ", ";
Format.printf "%a" Var.print (List.nth args i)
done;
Format.printf ")@.");
compile
infos
(pc + 2)
(State.pop 3 state)
(Let (x, Apply { f; args; exact = false }) :: instrs)
| APPLY1 ->
let f = State.accu state in
let x, state = State.fresh_var state in
let y = State.peek 0 state in
if debug_parser ()
then Format.printf "%a = %a(%a)@." Var.print x Var.print f Var.print y;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Apply { f; args = [ y ]; exact = false }) :: instrs)
| APPLY2 ->
let f = State.accu state in
let x, state = State.fresh_var state in
let y = State.peek 0 state in
let z = State.peek 1 state in
if debug_parser ()
then
Format.printf
"%a = %a(%a, %a)@."
Var.print
x
Var.print
f
Var.print
y
Var.print
z;
compile
infos
(pc + 1)
(State.pop 2 state)
(Let (x, Apply { f; args = [ y; z ]; exact = false }) :: instrs)
| APPLY3 ->
let f = State.accu state in
let x, state = State.fresh_var state in
let y = State.peek 0 state in
let z = State.peek 1 state in
let t = State.peek 2 state in
if debug_parser ()
then
Format.printf
"%a = %a(%a, %a, %a)@."
Var.print
x
Var.print
f
Var.print
y
Var.print
z
Var.print
t;
compile
infos
(pc + 1)
(State.pop 3 state)
(Let (x, Apply { f; args = [ y; z; t ]; exact = false }) :: instrs)
| APPTERM ->
let n = getu code (pc + 1) in
let f = State.accu state in
let l, state = State.grab n state in
if debug_parser ()
then (
Format.printf "return %a(" Var.print f;
for i = 0 to n - 1 do
if i > 0 then Format.printf ", ";
Format.printf "%a" Var.print (List.nth l i)
done;
Format.printf ")@.");
let x, state = State.fresh_var state in
Let (x, Apply { f; args = l; exact = false }) :: instrs, Return x, state
| APPTERM1 ->
let f = State.accu state in
let x = State.peek 0 state in
if debug_parser () then Format.printf "return %a(%a)@." Var.print f Var.print x;
let y, state = State.fresh_var state in
Let (y, Apply { f; args = [ x ]; exact = false }) :: instrs, Return y, state
| APPTERM2 ->
let f = State.accu state in
let x = State.peek 0 state in
let y = State.peek 1 state in
if debug_parser ()
then Format.printf "return %a(%a, %a)@." Var.print f Var.print x Var.print y;
let z, state = State.fresh_var state in
Let (z, Apply { f; args = [ x; y ]; exact = false }) :: instrs, Return z, state
| APPTERM3 ->
let f = State.accu state in
let x = State.peek 0 state in
let y = State.peek 1 state in
let z = State.peek 2 state in
if debug_parser ()
then
Format.printf
"return %a(%a, %a, %a)@."
Var.print
f
Var.print
x
Var.print
y
Var.print
z;
let t, state = State.fresh_var state in
Let (t, Apply { f; args = [ x; y; z ]; exact = false }) :: instrs, Return t, state
| RETURN ->
let x = State.accu state in
if debug_parser () then Format.printf "return %a@." Var.print x;
instrs, Return x, state
| RESTART -> assert false
| GRAB -> assert false
| CLOSURE ->
let nvars = getu code (pc + 1) in
let addr = pc + gets code (pc + 2) + 2 in
let state = if nvars > 0 then State.push state else state in
let vals, state = State.grab nvars state in
let x, state = State.fresh_var state in
let env = List.map vals ~f:(fun x -> State.Var x) in
let env =
let code = State.Dummy "closure(code)" in
let closure_info = State.Dummy "closure(info)" in
if new_closure_repr then code :: closure_info :: env else code :: env
in
let env = Array.of_list env in
if debug_parser () then Format.printf "fun %a (" Var.print x;
let nparams, addr =
match (get_instr_exn code addr).Instr.code with
| GRAB -> getu code (addr + 1) + 1, addr + 2
| _ -> 1, addr
in
let state' = State.start_function state env 0 in
let params, state' = State.make_stack nparams state' in
if debug_parser () then Format.printf ") {@.";
let state' = State.clear_accu state' in
compile_block infos.blocks infos.debug code addr state';
if debug_parser () then Format.printf "}@.";
let args = State.stack_vars state' in
let state'', _, _ = Addr.Map.find addr !compiled_blocks in
Debug.propagate (State.stack_vars state'') args;
compile
infos
(pc + 3)
state
(Let (x, Closure (List.rev params, (addr, args))) :: instrs)
| CLOSUREREC ->
let nfuncs = getu code (pc + 1) in
let nvars = getu code (pc + 2) in
let state = if nvars > 0 then State.push state else state in
let vals, state = State.grab nvars state in
let state = ref state in
let vars = ref [] in
let rec_names = ref (Debug.find_rec infos.debug (pc + 3 + gets code (pc + 3))) in
for i = 0 to nfuncs - 1 do
let x, st = State.fresh_var !state in
(match !rec_names with
| (j, ident) :: rest ->
assert (j = i);
Var.name x (Ident.name ident);
rec_names := rest
| [] -> ());
vars := (i, x) :: !vars;
state := State.push st
done;
let env = ref (List.map vals ~f:(fun x -> State.Var x)) in
List.iter !vars ~f:(fun (i, x) ->
let code = State.Var x in
let closure_info = State.Dummy "closurerec(info)" in
if new_closure_repr
then env := code :: closure_info :: !env
else env := code :: !env;
if i > 0
then
let infix_tag = State.Dummy "closurerec(infix_tag)" in
env := infix_tag :: !env);
let env = Array.of_list !env in
let state = !state in
let instrs =
List.fold_left (List.rev !vars) ~init:instrs ~f:(fun instr (i, x) ->
let addr = pc + 3 + gets code (pc + 3 + i) in
if debug_parser () then Format.printf "fun %a (" Var.print x;
let nparams, addr =
match (get_instr_exn code addr).Instr.code with
| GRAB -> getu code (addr + 1) + 1, addr + 2
| _ -> 1, addr
in
let offset = i * clo_offset_3 in
let state' = State.start_function state env offset in
let params, state' = State.make_stack nparams state' in
if debug_parser () then Format.printf ") {@.";
let state' = State.clear_accu state' in
compile_block infos.blocks infos.debug code addr state';
if debug_parser () then Format.printf "}@.";
let args = State.stack_vars state' in
let state'', _, _ = Addr.Map.find addr !compiled_blocks in
Debug.propagate (State.stack_vars state'') args;
Let (x, Closure (List.rev params, (addr, args))) :: instr)
in
compile infos (pc + 3 + nfuncs) (State.acc (nfuncs - 1) state) instrs
| OFFSETCLOSUREM3 ->
compile infos (pc + 1) (State.env_acc (-clo_offset_3) state) instrs
| OFFSETCLOSURE0 -> compile infos (pc + 1) (State.env_acc 0 state) instrs
| OFFSETCLOSURE3 -> compile infos (pc + 1) (State.env_acc clo_offset_3 state) instrs
| OFFSETCLOSURE ->
let n = gets code (pc + 1) in
compile infos (pc + 2) (State.env_acc n state) instrs
| PUSHOFFSETCLOSUREM3 ->
let state = State.push state in
compile infos (pc + 1) (State.env_acc (-clo_offset_3) state) instrs
| PUSHOFFSETCLOSURE0 ->
let state = State.push state in
compile infos (pc + 1) (State.env_acc 0 state) instrs
| PUSHOFFSETCLOSURE3 ->
let state = State.push state in
compile infos (pc + 1) (State.env_acc clo_offset_3 state) instrs
| PUSHOFFSETCLOSURE ->
let state = State.push state in
let n = gets code (pc + 1) in
compile infos (pc + 2) (State.env_acc n state) instrs
| GETGLOBAL ->
let i = getu code (pc + 1) in
let _, state, instrs = get_global state instrs i in
compile infos (pc + 2) state instrs
| PUSHGETGLOBAL ->
let state = State.push state in
let i = getu code (pc + 1) in
let _, state, instrs = get_global state instrs i in
compile infos (pc + 2) state instrs
| GETGLOBALFIELD ->
let i = getu code (pc + 1) in
let x, state, instrs = get_global state instrs i in
let j = getu code (pc + 2) in
let y, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a[%d]@." Var.print y Var.print x j;
compile infos (pc + 3) state (Let (y, Field (x, j, Non_float)) :: instrs)
| PUSHGETGLOBALFIELD ->
let state = State.push state in
let i = getu code (pc + 1) in
let x, state, instrs = get_global state instrs i in
let j = getu code (pc + 2) in
let y, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a[%d]@." Var.print y Var.print x j;
compile infos (pc + 3) state (Let (y, Field (x, j, Non_float)) :: instrs)
| SETGLOBAL ->
let i = getu code (pc + 1) in
State.size_globals state (i + 1);
let y = State.accu state in
let g = State.globals state in
assert (Option.is_none g.vars.(i));
if debug_parser () then Format.printf "(global %d) = %a@." i Var.print y;
let instrs =
match g.override.(i) with
| Some f ->
let v, instrs = f y instrs in
g.vars.(i) <- Some v;
instrs
| None ->
g.vars.(i) <- Some y;
instrs
in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
let instrs = register_global g i instrs in
compile infos (pc + 2) state (Let (x, const 0) :: instrs)
| ATOM0 ->
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = ATOM(0)@." Var.print x;
compile
infos
(pc + 1)
state
(Let (x, Block (0, [||], Unknown, Maybe_mutable)) :: instrs)
| ATOM ->
let i = getu code (pc + 1) in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = ATOM(%d)@." Var.print x i;
compile
infos
(pc + 2)
state
(Let (x, Block (i, [||], Unknown, Maybe_mutable)) :: instrs)
| PUSHATOM0 ->
let state = State.push state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = ATOM(0)@." Var.print x;
compile
infos
(pc + 1)
state
(Let (x, Block (0, [||], Unknown, Maybe_mutable)) :: instrs)
| PUSHATOM ->
let state = State.push state in
let i = getu code (pc + 1) in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = ATOM(%d)@." Var.print x i;
compile
infos
(pc + 2)
state
(Let (x, Block (i, [||], Unknown, Maybe_mutable)) :: instrs)
| MAKEBLOCK ->
let size = getu code (pc + 1) in
let tag = getu code (pc + 2) in
let state = State.push state in
let x, state = State.fresh_var state in
let contents, state = State.grab size state in
if debug_parser ()
then (
Format.printf "%a = { " Var.print x;
for i = 0 to size - 1 do
Format.printf "%d = %a; " i Var.print (List.nth contents i)
done;
Format.printf "}@.");
compile
infos
(pc + 3)
state
(Let (x, Block (tag, Array.of_list contents, Unknown, Maybe_mutable)) :: instrs)
| MAKEBLOCK1 ->
let tag = getu code (pc + 1) in
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = { 0 = %a; }@." Var.print x Var.print y;
compile
infos
(pc + 2)
state
(Let (x, Block (tag, [| y |], Unknown, Maybe_mutable)) :: instrs)
| MAKEBLOCK2 ->
let tag = getu code (pc + 1) in
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf "%a = { 0 = %a; 1 = %a; }@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 2)
(State.pop 1 state)
(Let (x, Block (tag, [| y; z |], Unknown, Maybe_mutable)) :: instrs)
| MAKEBLOCK3 ->
let tag = getu code (pc + 1) in
let y = State.accu state in
let z = State.peek 0 state in
let t = State.peek 1 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"%a = { 0 = %a; 1 = %a; 2 = %a }@."
Var.print
x
Var.print
y
Var.print
z
Var.print
t;
compile
infos
(pc + 2)
(State.pop 2 state)
(Let (x, Block (tag, [| y; z; t |], Unknown, Maybe_mutable)) :: instrs)
| MAKEFLOATBLOCK ->
let size = getu code (pc + 1) in
let state = State.push state in
let x, state = State.fresh_var state in
let contents, state = State.grab size state in
if debug_parser ()
then (
Format.printf "%a = { " Var.print x;
for i = 0 to size - 1 do
Format.printf "%d = %a; " i Var.print (List.nth contents i)
done;
Format.printf "}@.");
compile
infos
(pc + 2)
state
(Let (x, Block (254, Array.of_list contents, Unknown, Maybe_mutable)) :: instrs)
| GETFIELD0 ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a[0]@." Var.print x Var.print y;
compile infos (pc + 1) state (Let (x, Field (y, 0, Non_float)) :: instrs)
| GETFIELD1 ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a[1]@." Var.print x Var.print y;
compile infos (pc + 1) state (Let (x, Field (y, 1, Non_float)) :: instrs)
| GETFIELD2 ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a[2]@." Var.print x Var.print y;
compile infos (pc + 1) state (Let (x, Field (y, 2, Non_float)) :: instrs)
| GETFIELD3 ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a[3]@." Var.print x Var.print y;
compile infos (pc + 1) state (Let (x, Field (y, 3, Non_float)) :: instrs)
| GETFIELD ->
let y = State.accu state in
let n = getu code (pc + 1) in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a[%d]@." Var.print x Var.print y n;
compile infos (pc + 2) state (Let (x, Field (y, n, Non_float)) :: instrs)
| GETFLOATFIELD ->
let y = State.accu state in
let n = getu code (pc + 1) in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = FLOAT{%a[%d]}@." Var.print x Var.print y n;
compile infos (pc + 2) state (Let (x, Field (y, n, Float)) :: instrs)
| SETFIELD0 ->
let y = State.accu state in
let z = State.peek 0 state in
if debug_parser () then Format.printf "%a[0] = %a@." Var.print y Var.print z;
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, const 0) :: Set_field (y, 0, Non_float, z) :: instrs)
| SETFIELD1 ->
let y = State.accu state in
let z = State.peek 0 state in
if debug_parser () then Format.printf "%a[1] = %a@." Var.print y Var.print z;
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, const 0) :: Set_field (y, 1, Non_float, z) :: instrs)
| SETFIELD2 ->
let y = State.accu state in
let z = State.peek 0 state in
if debug_parser () then Format.printf "%a[2] = %a@." Var.print y Var.print z;
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, const 0) :: Set_field (y, 2, Non_float, z) :: instrs)
| SETFIELD3 ->
let y = State.accu state in
let z = State.peek 0 state in
if debug_parser () then Format.printf "%a[3] = %a@." Var.print y Var.print z;
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, const 0) :: Set_field (y, 3, Non_float, z) :: instrs)
| SETFIELD ->
let y = State.accu state in
let z = State.peek 0 state in
let n = getu code (pc + 1) in
if debug_parser () then Format.printf "%a[%d] = %a@." Var.print y n Var.print z;
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile
infos
(pc + 2)
(State.pop 1 state)
(Let (x, const 0) :: Set_field (y, n, Non_float, z) :: instrs)
| SETFLOATFIELD ->
let y = State.accu state in
let z = State.peek 0 state in
let n = getu code (pc + 1) in
if debug_parser ()
then Format.printf "FLOAT{%a[%d]} = %a@." Var.print y n Var.print z;
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile
infos
(pc + 2)
(State.pop 1 state)
(Let (x, const 0) :: Set_field (y, n, Float, z) :: instrs)
| VECTLENGTH ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a.length@." Var.print x Var.print y;
compile infos (pc + 1) state (Let (x, Prim (Vectlength, [ Pv y ])) :: instrs)
| GETVECTITEM ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a[%a]@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Array_get, [ Pv y; Pv z ])) :: instrs)
| SETVECTITEM ->
if debug_parser ()
then
Format.printf
"%a[%a] = %a@."
Var.print
(State.accu state)
Var.print
(State.peek 0 state)
Var.print
(State.peek 1 state);
let instrs =
Array_set (State.accu state, State.peek 0 state, State.peek 1 state) :: instrs
in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile infos (pc + 1) (State.pop 2 state) (Let (x, const 0) :: instrs)
| GETSTRINGCHAR ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a[%a]@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "caml_string_unsafe_get", [ Pv y; Pv z ])) :: instrs)
| GETBYTESCHAR ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a[%a]@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "caml_bytes_unsafe_get", [ Pv y; Pv z ])) :: instrs)
| SETBYTESCHAR ->
if debug_parser ()
then
Format.printf
"%a[%a] = %a@."
Var.print
(State.accu state)
Var.print
(State.peek 0 state)
Var.print
(State.peek 1 state);
let x = State.accu state in
let y = State.peek 0 state in
let z = State.peek 1 state in
let t, state = State.fresh_var state in
let instrs =
Let (t, Prim (Extern "caml_bytes_unsafe_set", [ Pv x; Pv y; Pv z ])) :: instrs
in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = 0@." Var.print x;
compile infos (pc + 1) (State.pop 2 state) (Let (x, const 0) :: instrs)
| BRANCH ->
let offset = gets code (pc + 1) in
if debug_parser () then Format.printf "... (branch)@.";
instrs, Branch (pc + offset + 1, []), state
| BRANCHIF ->
let offset = gets code (pc + 1) in
let x = State.accu state in
instrs, Cond (x, (pc + offset + 1, []), (pc + 2, [])), state
| BRANCHIFNOT ->
let offset = gets code (pc + 1) in
let x = State.accu state in
instrs, Cond (x, (pc + 2, []), (pc + offset + 1, [])), state
| SWITCH -> (
if debug_parser () then Format.printf "switch ...@.";
let sz = getu code (pc + 1) in
let x = State.accu state in
let isize = sz land 0XFFFF in
let bsize = sz lsr 16 in
let base = pc + 2 in
let it = Array.init isize ~f:(fun i -> base + gets code (base + i)) in
let bt = Array.init bsize ~f:(fun i -> base + gets code (base + isize + i)) in
Array.iter it ~f:(fun pc' ->
compile_block infos.blocks infos.debug code pc' state);
Array.iter bt ~f:(fun pc' ->
compile_block infos.blocks infos.debug code pc' state);
match isize, bsize with
| _, 0 -> instrs, Switch (x, Array.map it ~f:(fun pc -> pc, [])), state
| 0, _ ->
let x_tag = Var.fresh () in
let instrs =
Let (x_tag, Prim (Extern "%direct_obj_tag", [ Pv x ])) :: instrs
in
instrs, Switch (x_tag, Array.map bt ~f:(fun pc -> pc, [])), state
| _, _ ->
let isint_branch = pc + 1 in
let isblock_branch = pc + 2 in
let () =
tagged_blocks := Addr.Map.add isint_branch state !tagged_blocks;
let i_state = State.start_block isint_branch state in
let i_args = State.stack_vars i_state in
compiled_blocks :=
Addr.Map.add
isint_branch
(i_state, [], Switch (x, Array.map it ~f:(fun pc -> pc, i_args)))
!compiled_blocks
in
let () =
tagged_blocks := Addr.Map.add isblock_branch state !tagged_blocks;
let x_tag = Var.fresh () in
let b_state = State.start_block isblock_branch state in
let b_args = State.stack_vars b_state in
let instrs = [ Let (x_tag, Prim (Extern "%direct_obj_tag", [ Pv x ])) ] in
compiled_blocks :=
Addr.Map.add
isblock_branch
(b_state, instrs, Switch (x_tag, Array.map bt ~f:(fun pc -> pc, b_args)))
!compiled_blocks
in
let isint_var = Var.fresh () in
let instrs = Let (isint_var, Prim (IsInt, [ Pv x ])) :: instrs in
instrs, Cond (isint_var, (isint_branch, []), (isblock_branch, [])), state)
| BOOLNOT ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = !%a@." Var.print x Var.print y;
compile infos (pc + 1) state (Let (x, Prim (Not, [ Pv y ])) :: instrs)
| PUSHTRAP ->
(* We insert an intermediate block that binds the handler's
context, so that it is also in the scope of the body. Then,
when a mutable variable is assigned in the body, we can
update this context. *)
let interm_addr = pc + 1 in
let handler_ctx_state = State.start_block interm_addr state in
let body_addr = pc + 2 in
let handler_addr = pc + 1 + gets code (pc + 1) in
let x, handler_state = State.fresh_var handler_ctx_state in
tagged_blocks := Addr.Map.add interm_addr state !tagged_blocks;
compiled_blocks :=
Addr.Map.add
interm_addr
( handler_ctx_state
, []
, Pushtrap
( (body_addr, State.stack_vars state)
, x
, (handler_addr, State.stack_vars handler_state) ) )
!compiled_blocks;
compile_block infos.blocks infos.debug code handler_addr handler_state;
compile_block
infos.blocks
infos.debug
code
body_addr
{ (State.push_handler handler_ctx_state) with
State.stack =
(* See interp.c *)
State.Dummy "pushtrap(pc)"
:: State.Dummy "pushtrap(sp_off)"
:: State.Dummy "pushtrap(env)"
:: State.Dummy "pushtrap(extra_args)"
:: state.State.stack
};
instrs, Branch (interm_addr, []), state
| POPTRAP ->
let addr = pc + 1 in
compile_block
infos.blocks
infos.debug
code
addr
(State.pop 4 (State.pop_handler state));
instrs, Poptrap (addr, []), state
| RERAISE | RAISE_NOTRACE | RAISE ->
let kind =
match instr.Instr.code with
| RERAISE -> `Reraise
| RAISE_NOTRACE -> `Notrace
| RAISE -> `Normal
| _ -> assert false
in
if debug_parser () then Format.printf "throw(%a)@." Var.print (State.accu state);
instrs, Raise (State.accu state, kind), state
| CHECK_SIGNALS -> compile infos (pc + 1) state instrs
| C_CALL1 ->
let prim = primitive_name state (getu code (pc + 1)) in
if String.equal (Primitive.resolve prim) "%identity"
then (* This is a no-op *)
compile infos (pc + 2) state instrs
else
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = ccall \"%s\" (%a)@." Var.print x prim Var.print y;
compile infos (pc + 2) state (Let (x, Prim (Extern prim, [ Pv y ])) :: instrs)
| C_CALL2 ->
let prim = primitive_name state (getu code (pc + 1)) in
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"%a = ccall \"%s\" (%a, %a)@."
Var.print
x
prim
Var.print
y
Var.print
z;
compile
infos
(pc + 2)
(State.pop 1 state)
(Let (x, Prim (Extern prim, [ Pv y; Pv z ])) :: instrs)
| C_CALL3 ->
let prim = primitive_name state (getu code (pc + 1)) in
let y = State.accu state in
let z = State.peek 0 state in
let t = State.peek 1 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"%a = ccall \"%s\" (%a, %a, %a)@."
Var.print
x
prim
Var.print
y
Var.print
z
Var.print
t;
compile
infos
(pc + 2)
(State.pop 2 state)
(Let (x, Prim (Extern prim, [ Pv y; Pv z; Pv t ])) :: instrs)
| C_CALL4 ->
let nargs = 4 in
let prim = primitive_name state (getu code (pc + 1)) in
let state = State.push state in
let x, state = State.fresh_var state in
let args, state = State.grab nargs state in
if debug_parser ()
then (
Format.printf "%a = ccall \"%s\" (" Var.print x prim;
for i = 0 to nargs - 1 do
if i > 0 then Format.printf ", ";
Format.printf "%a" Var.print (List.nth args i)
done;
Format.printf ")@.");
compile
infos
(pc + 2)
state
(Let (x, Prim (Extern prim, List.map args ~f:(fun x -> Pv x))) :: instrs)
| C_CALL5 ->
let nargs = 5 in
let prim = primitive_name state (getu code (pc + 1)) in
let state = State.push state in
let x, state = State.fresh_var state in
let args, state = State.grab nargs state in
if debug_parser ()
then (
Format.printf "%a = ccall \"%s\" (" Var.print x prim;
for i = 0 to nargs - 1 do
if i > 0 then Format.printf ", ";
Format.printf "%a" Var.print (List.nth args i)
done;
Format.printf ")@.");
compile
infos
(pc + 2)
state
(Let (x, Prim (Extern prim, List.map args ~f:(fun x -> Pv x))) :: instrs)
| C_CALLN ->
let nargs = getu code (pc + 1) in
let prim = primitive_name state (getu code (pc + 2)) in
let state = State.push state in
let x, state = State.fresh_var state in
let args, state = State.grab nargs state in
if debug_parser ()
then (
Format.printf "%a = ccall \"%s\" (" Var.print x prim;
for i = 0 to nargs - 1 do
if i > 0 then Format.printf ", ";
Format.printf "%a" Var.print (List.nth args i)
done;
Format.printf ")@.");
compile
infos
(pc + 3)
state
(Let (x, Prim (Extern prim, List.map args ~f:(fun x -> Pv x))) :: instrs)
| (CONST0 | CONST1 | CONST2 | CONST3) as cc ->
let x, state = State.fresh_var state in
let n =
match cc with
| CONST0 -> 0
| CONST1 -> 1
| CONST2 -> 2
| CONST3 -> 3
| _ -> assert false
in
if debug_parser () then Format.printf "%a = %d@." Var.print x n;
compile infos (pc + 1) state (Let (x, const n) :: instrs)
| CONSTINT ->
let n = gets32 code (pc + 1) in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %ld@." Var.print x n;
compile infos (pc + 2) state (Let (x, const32 n) :: instrs)
| (PUSHCONST0 | PUSHCONST1 | PUSHCONST2 | PUSHCONST3) as cc ->
let state = State.push state in
let x, state = State.fresh_var state in
let n =
match cc with
| PUSHCONST0 -> 0
| PUSHCONST1 -> 1
| PUSHCONST2 -> 2
| PUSHCONST3 -> 3
| _ -> assert false
in
if debug_parser () then Format.printf "%a = %d@." Var.print x n;
compile infos (pc + 1) state (Let (x, const n) :: instrs)
| PUSHCONSTINT ->
let state = State.push state in
let n = gets32 code (pc + 1) in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %ld@." Var.print x n;
compile infos (pc + 2) state (Let (x, const32 n) :: instrs)
| NEGINT ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = -%a@." Var.print x Var.print y;
compile
infos
(pc + 1)
state
(Let (x, Prim (Extern "%int_neg", [ Pv y ])) :: instrs)
| ADDINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a + %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_add", [ Pv y; Pv z ])) :: instrs)
| SUBINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a - %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_sub", [ Pv y; Pv z ])) :: instrs)
| MULINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a * %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_mul", [ Pv y; Pv z ])) :: instrs)
| DIVINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a / %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_div", [ Pv y; Pv z ])) :: instrs)
| MODINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a %% %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_mod", [ Pv y; Pv z ])) :: instrs)
| ANDINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a & %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_and", [ Pv y; Pv z ])) :: instrs)
| ORINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a | %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_or", [ Pv y; Pv z ])) :: instrs)
| XORINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a ^ %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_xor", [ Pv y; Pv z ])) :: instrs)
| LSLINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a << %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_lsl", [ Pv y; Pv z ])) :: instrs)
| LSRINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a >>> %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_lsr", [ Pv y; Pv z ])) :: instrs)
| ASRINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = %a >> %a@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Extern "%int_asr", [ Pv y; Pv z ])) :: instrs)
| EQ ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = mk_bool(%a == %a)@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Eq, [ Pv y; Pv z ])) :: instrs)
| NEQ ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = mk_bool(%a != %a)@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Neq, [ Pv y; Pv z ])) :: instrs)
| LTINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"%a = mk_bool(%a < %a)@."
Var.print
x
Var.print
y
Var.print
(State.peek 0 state);
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Lt, [ Pv y; Pv z ])) :: instrs)
| LEINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = mk_bool(%a <= %a)@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Le, [ Pv y; Pv z ])) :: instrs)
| GTINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = mk_bool(%a > %a)@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Lt, [ Pv z; Pv y ])) :: instrs)
| GEINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = mk_bool(%a >= %a)@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Le, [ Pv z; Pv y ])) :: instrs)
| OFFSETINT ->
let n = gets32 code (pc + 1) in
let y = State.accu state in
let z, state = State.fresh_var state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %a + %ld@." Var.print x Var.print y n;
compile
infos
(pc + 2)
state
(Let (x, Prim (Extern "%int_add", [ Pv y; Pv z ]))
:: Let (z, const32 n)
:: instrs)
| OFFSETREF ->
let n = gets code (pc + 1) in
let x = State.accu state in
if debug_parser () then Format.printf "%a += %d@." Var.print x n;
let instrs = Offset_ref (x, n) :: instrs in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "x = 0@.";
compile infos (pc + 2) state (Let (x, const 0) :: instrs)
| ISINT ->
let y = State.accu state in
let x, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = !%a@." Var.print x Var.print y;
compile infos (pc + 1) state (Let (x, Prim (IsInt, [ Pv y ])) :: instrs)
| BEQ ->
let n = gets32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Eq, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + offset + 2, []), (pc + 3, []))
, state )
| BNEQ ->
let n = gets32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Eq, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + 3, []), (pc + offset + 2, []))
, state )
| BLTINT ->
let n = gets32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Lt, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + offset + 2, []), (pc + 3, []))
, state )
| BLEINT ->
let n = gets32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Le, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + offset + 2, []), (pc + 3, []))
, state )
| BGTINT ->
let n = gets32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Le, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + 3, []), (pc + offset + 2, []))
, state )
| BGEINT ->
let n = gets32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Lt, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + 3, []), (pc + offset + 2, []))
, state )
| BULTINT ->
let n = getu32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Ult, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + offset + 2, []), (pc + 3, []))
, state )
| BUGEINT ->
let n = getu32 code (pc + 1) in
let offset = gets code (pc + 2) in
let x = State.accu state in
let y = Var.fresh () in
( Let (y, Prim (Ult, [ Pc (Int (Targetint.of_int32_exn n)); Pv x ])) :: instrs
, Cond (y, (pc + 3, []), (pc + offset + 2, []))
, state )
| ULTINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"%a = mk_bool(%a <= %a) (unsigned)@."
Var.print
x
Var.print
y
Var.print
z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Ult, [ Pv y; Pv z ])) :: instrs)
| UGEINT ->
let y = State.accu state in
let z = State.peek 0 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = mk_bool(%a >= %a)@." Var.print x Var.print y Var.print z;
compile
infos
(pc + 1)
(State.pop 1 state)
(Let (x, Prim (Ult, [ Pv z; Pv y ])) :: instrs)
| GETPUBMET ->
let n = gets32 code (pc + 1) in
let cache = !method_cache_id in
incr method_cache_id;
let obj = State.accu state in
let state = State.push state in
let tag, state = State.fresh_var state in
let m, state = State.fresh_var state in
if debug_parser () then Format.printf "%a = %ld@." Var.print tag n;
if debug_parser ()
then
Format.printf
"%a = caml_get_public_method(%a, %a)@."
Var.print
m
Var.print
obj
Var.print
tag;
compile
infos
(pc + 3)
state
(Let
( m
, Prim
( Extern "caml_get_public_method"
, [ Pv obj; Pv tag; Pc (Int (Targetint.of_int_exn cache)) ] ) )
:: Let (tag, const32 n)
:: instrs)
| GETDYNMET ->
let tag = State.accu state in
let obj = State.peek 0 state in
let m, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"%a = caml_get_public_method(%a, %a)@."
Var.print
m
Var.print
obj
Var.print
tag;
compile
infos
(pc + 1)
state
(Let
( m
, Prim
( Extern "caml_get_public_method"
, [ Pv obj; Pv tag; Pc (Int Targetint.zero) ] ) )
:: instrs)
| GETMETHOD ->
let lab = State.accu state in
let obj = State.peek 0 state in
let meths, state = State.fresh_var state in
let m, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = lookup(%a, %a)@." Var.print m Var.print obj Var.print lab;
compile
infos
(pc + 1)
state
(Let (m, Prim (Array_get, [ Pv meths; Pv lab ]))
:: Let (meths, Field (obj, 0, Non_float))
:: instrs)
| STOP -> instrs, Stop, state
| RESUME ->
let stack = State.accu state in
let func = State.peek 0 state in
let arg = State.peek 1 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"%a = resume(%a, %a, %a)@."
Var.print
x
Var.print
stack
Var.print
func
Var.print
arg;
let state =
match Ocaml_version.compare Ocaml_version.current [ 5; 2 ] < 0 with
| true -> State.pop 2 state
| false -> State.pop 3 state
in
compile
infos
(pc + 1)
state
(Let (x, Prim (Extern "%resume", [ Pv stack; Pv func; Pv arg ])) :: instrs)
| RESUMETERM ->
let stack = State.accu state in
let func = State.peek 0 state in
let arg = State.peek 1 state in
let x, state = State.fresh_var state in
if debug_parser ()
then
Format.printf
"return resume(%a, %a, %a)@."
Var.print
stack
Var.print
func
Var.print
arg;
( Let (x, Prim (Extern "%resume", [ Pv stack; Pv func; Pv arg ])) :: instrs
, Return x
, state )
| PERFORM ->
let eff = State.accu state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "%a = perform(%a)@." Var.print x Var.print eff;
compile
infos
(pc + 1)
state
(Let (x, Prim (Extern "%perform", [ Pv eff ])) :: instrs)
| REPERFORMTERM ->
let eff = State.accu state in
let stack = State.peek 0 state in
(* We don't need [State.peek 1 state] *)
let state = State.pop 2 state in
let x, state = State.fresh_var state in
if debug_parser ()
then Format.printf "return reperform(%a, %a)@." Var.print eff Var.print stack;
( Let (x, Prim (Extern "%reperform", [ Pv eff; Pv stack ])) :: instrs
, Return x
, state )
| EVENT | BREAK | FIRST_UNIMPLEMENTED_OP -> assert false)
(****)
type one =
{ code : Code.program
; cmis : StringSet.t
; debug : Debug.t
}
let parse_bytecode code globals debug_data =
let state = State.initial globals in
Code.Var.reset ();
let blocks' = Blocks.analyse code in
let p =
if not (Blocks.is_empty blocks')
then (
let start = 0 in
compile_block blocks' debug_data code start state;
let blocks =
Addr.Map.mapi
(fun _ (state, instr, last) ->
{ params = State.stack_vars state; body = instr; branch = last })
!compiled_blocks
in
let free_pc = String.length code / 4 in
{ start; blocks; free_pc })
else Code.empty
in
compiled_blocks := Addr.Map.empty;
tagged_blocks := Addr.Map.empty;
p
(* HACK - override module *)
let override_global =
match Ocaml_version.compare Ocaml_version.current [ 4; 13 ] >= 0 with
| true -> []
| false ->
[ ( "CamlinternalMod"
, fun _orig instrs ->
let x = Var.fresh_n "internalMod" in
let init_mod = Var.fresh_n "init_mod" in
let update_mod = Var.fresh_n "update_mod" in
( x
, Let (x, Block (0, [| init_mod; update_mod |], NotArray, Immutable))
:: Let (init_mod, Special (Alias_prim "caml_CamlinternalMod_init_mod"))
:: Let (update_mod, Special (Alias_prim "caml_CamlinternalMod_update_mod"))
:: instrs ) )
]
(* HACK END *)
module Toc : sig
type t
val read : in_channel -> t
val seek_section : t -> in_channel -> string -> int
val read_code : t -> in_channel -> string
val read_data : t -> in_channel -> Obj.t array
val read_crcs : t -> in_channel -> (string * Digest.t option) list
val read_prim : t -> in_channel -> string
val read_symb : t -> in_channel -> Ocaml_compiler.Symtable.GlobalMap.t
end = struct
type t = (string * int) list
let seek_section toc ic name =
let rec seek_sec curr_ofs = function
| [] -> raise Not_found
| (n, len) :: rem ->
if String.equal n name
then (
seek_in ic (curr_ofs - len);
len)
else seek_sec (curr_ofs - len) rem
in
seek_sec (in_channel_length ic - 16 - (8 * List.length toc)) toc
let read ic =
let pos_trailer = in_channel_length ic - 16 in
seek_in ic pos_trailer;
let num_sections = input_binary_int ic in
seek_in ic (pos_trailer - (8 * num_sections));
let section_table = ref [] in
for _i = 1 to num_sections do
let name = really_input_string ic 4 in
let len = input_binary_int ic in
section_table := (name, len) :: !section_table
done;
!section_table
let read_code toc ic =
let code_size = seek_section toc ic "CODE" in
really_input_string ic code_size
let read_data toc ic =
ignore (seek_section toc ic "DATA");
let init_data : Obj.t array = input_value ic in
init_data
let read_symb toc ic =
ignore (seek_section toc ic "SYMB");
let orig_symbols : Ocaml_compiler.Symtable.GlobalMap.t = input_value ic in
orig_symbols
let read_crcs toc ic =
ignore (seek_section toc ic "CRCS");
let orig_crcs : (string * Digest.t option) list = input_value ic in
orig_crcs
let read_prim toc ic =
let prim_size = seek_section toc ic "PRIM" in
let prim = really_input_string ic prim_size in
prim
end
let read_primitives toc ic =
let prim = Toc.read_prim toc ic in
assert (Char.equal (String.get prim (String.length prim - 1)) '\000');
String.split_char ~sep:'\000' (String.sub prim ~pos:0 ~len:(String.length prim - 1))
type bytesections =
{ symb : Ocaml_compiler.Symtable.GlobalMap.t
; crcs : (string * Digest.t option) list
; prim : string list
; dlpt : string list
}
[@@ocaml.warning "-unused-field"]
let from_exe
?(includes = [])
~linkall
~link_info
~include_cmis
?exported_unit
?(debug = false)
ic =
let debug_data = Debug.create ~include_cmis debug in
let toc = Toc.read ic in
let primitives = read_primitives toc ic in
let primitive_table = Array.of_list primitives in
let code = Toc.read_code toc ic in
let init_data = Toc.read_data toc ic in
let init_data = Array.map ~f:Constants.parse init_data in
let orig_symbols = Toc.read_symb toc ic in
let orig_crcs = Toc.read_crcs toc ic in
let keeps =
let t = Hashtbl.create 17 in
List.iter ~f:(fun (_, s) -> Hashtbl.add t s ()) predefined_exceptions;
List.iter ~f:(fun s -> Hashtbl.add t s ()) [ "Outcometree"; "Topdirs"; "Toploop" ];
t
in
let keep s =
try
Hashtbl.find keeps s;
true
with Not_found -> (
match exported_unit with
| Some l -> List.mem s ~set:l
| None -> true)
in
let crcs = List.filter ~f:(fun (unit, _crc) -> keep unit) orig_crcs in
let symbols =
Ocaml_compiler.Symtable.GlobalMap.filter
(function
| Glob_predef _ -> true
| Glob_compunit name -> keep name)
orig_symbols
in
let t = Timer.make () in
(if Debug.dbg_section_needed debug_data
then
try
ignore (Toc.seek_section toc ic "DBUG");
Debug.read debug_data ~crcs ~includes ic
with Not_found ->
if Debug.enabled debug_data || include_cmis
then
warn
"Warning: Program not linked with -g, original variable names and locations \
not available.@.");
if times () then Format.eprintf " read debug events: %a@." Timer.print t;
let globals = make_globals (Array.length init_data) init_data primitive_table in
(* Initialize module override mechanism *)
List.iter override_global ~f:(fun (name, v) ->
try
let nn = Ocaml_compiler.Symtable.Global.Glob_compunit name in
let i = Ocaml_compiler.Symtable.GlobalMap.find nn orig_symbols in
globals.override.(i) <- Some v;
if debug_parser () then Format.eprintf "overriding global %s@." name
with Not_found -> ());
if linkall
then
(* export globals *)
Ocaml_compiler.Symtable.GlobalMap.iter symbols ~f:(fun id n ->
globals.named_value.(n) <- Some (Ocaml_compiler.Symtable.Global.name id);
globals.is_exported.(n) <- true);
let p = parse_bytecode code globals debug_data in
(* register predefined exception *)
let body =
List.fold_left predefined_exceptions ~init:[] ~f:(fun body (i, name) ->
globals.named_value.(i) <- Some name;
let body = register_global ~force:true globals i body in
globals.is_exported.(i) <- false;
body)
in
let body =
Array.fold_right_i globals.constants ~init:body ~f:(fun i _ l ->
match globals.vars.(i) with
| Some x when globals.is_const.(i) ->
let l = register_global globals i l in
Let (x, Constant globals.constants.(i)) :: l
| _ -> l)
in
let body =
if link_info
then
let symbols_array =
Ocaml_compiler.Symtable.GlobalMap.fold
(fun i p acc -> (Ocaml_compiler.Symtable.Global.name i, p) :: acc)
symbols
[]
|> Array.of_list
in
(* Include linking information *)
let sections = { symb = symbols; crcs; prim = primitives; dlpt = [] } in
let gdata = Var.fresh () in
let need_gdata = ref false in
let infos =
[ "sections", Constants.parse (Obj.repr sections)
; "symbols", Constants.parse (Obj.repr symbols_array)
; "prim_count", Int (Targetint.of_int_exn (Array.length globals.primitives))
]
in
let body =
List.fold_left infos ~init:body ~f:(fun rem (name, const) ->
assert (String.is_valid_utf_8 name);
need_gdata := true;
let c = Var.fresh () in
Let (c, Constant const)
:: Let
( Var.fresh ()
, Prim
( Extern "caml_js_set"
, [ Pv gdata
; Pc (NativeString (Code.Native_string.of_string name))
; Pv c
] ) )
:: rem)
in
if !need_gdata
then Let (gdata, Prim (Extern "caml_get_global_data", [])) :: body
else body
else body
in
(* List interface files *)
let is_module =
let is_ident_char = function
| 'A' .. 'Z' | 'a' .. 'z' | '_' | '\'' | '0' .. '9' -> true
| _ -> false
in
let is_uppercase = function
| 'A' .. 'Z' -> true
| _ -> false
in
fun name ->
try
if String.length name = 0 then raise Exit;
if not (is_uppercase name.[0]) then raise Exit;
for i = 1 to String.length name - 1 do
if not (is_ident_char name.[i]) then raise Exit
done;
true
with Exit -> false
in
let cmis =
if include_cmis
then
Ocaml_compiler.Symtable.GlobalMap.fold
(fun id _num acc ->
match id with
| Ocaml_compiler.Symtable.Global.Glob_compunit name ->
if is_module name then StringSet.add name acc else acc
| Glob_predef _ -> acc)
symbols
StringSet.empty
else StringSet.empty
in
let cmis =
match exported_unit with
| None -> cmis
| Some l ->
if include_cmis
then List.fold_left l ~init:cmis ~f:(fun acc s -> StringSet.add s acc)
else cmis
in
let code = prepend p body in
Code.invariant code;
{ code; cmis; debug = debug_data }
(* As input: list of primitives + size of global table *)
let from_bytes ~prims ~debug (code : bytecode) =
let debug_data = Debug.create ~include_cmis:false true in
let t = Timer.make () in
if Debug.names debug_data
then
Array.iter debug ~f:(fun l ->
List.iter l ~f:(fun ev ->
Debug.read_event ~paths:[] ~crcs:(Hashtbl.create 17) ~orig:0 debug_data ev));
if times () then Format.eprintf " read debug events: %a@." Timer.print t;
let ident_table =
let t = Hashtbl.create 17 in
if Debug.names debug_data
then
Ocaml_compiler.Symtable.GlobalMap.iter
(Ocaml_compiler.Symtable.current_state ())
~f:(fun id pos' -> Hashtbl.add t pos' id);
t
in
let globals = make_globals 0 [||] prims in
let p = parse_bytecode code globals debug_data in
let gdata = Var.fresh_n "global_data" in
let need_gdata = ref false in
let find_name i =
let value = (Meta.global_data ()).(i) in
let tag = Obj.tag value in
if tag = Obj.string_tag
then Some ("cst_" ^ Obj.magic value : string)
else
match Hashtbl.find ident_table i with
| exception Not_found -> None
| glob -> Some (Ocaml_compiler.Symtable.Global.name glob)
in
let body =
Array.fold_right_i globals.vars ~init:[] ~f:(fun i var l ->
match var with
| Some x when globals.is_const.(i) ->
(if Debug.names debug_data
then
match find_name i with
| None -> ()
| Some name -> Code.Var.name x name);
need_gdata := true;
Let (x, Field (gdata, i, Non_float)) :: l
| _ -> l)
in
let body =
if !need_gdata
then Let (gdata, Prim (Extern "caml_get_global_data", [])) :: body
else body
in
prepend p body, debug_data
let from_string ~prims ~debug (code : string) = from_bytes ~prims ~debug code
module Reloc = struct
let gen_patch_int buff pos n =
Bytes.set buff (pos + 0) (Char.unsafe_chr n);
Bytes.set buff (pos + 1) (Char.unsafe_chr (n asr 8));
Bytes.set buff (pos + 2) (Char.unsafe_chr (n asr 16));
Bytes.set buff (pos + 3) (Char.unsafe_chr (n asr 24))
type t =
{ mutable pos : int
; mutable constants : Code.constant list
; mutable step2_started : bool
; names : (string, int) Hashtbl.t
; primitives : (string, int) Hashtbl.t
}
let create () =
let constants = [] in
{ pos = List.length constants
; constants
; step2_started = false
; names = Hashtbl.create 17
; primitives = Hashtbl.create 17
}
let constant_of_const x = Ocaml_compiler.constant_of_const x
[@@if ocaml_version < (5, 1, 0)]
let constant_of_const x = Constants.parse x [@@if ocaml_version >= (5, 1, 0)]
(* We currently rely on constants to be relocated before globals. *)
let step1 t compunit code =
if t.step2_started then assert false;
let open Cmo_format in
List.iter compunit.cu_primitives ~f:(fun name ->
Hashtbl.add t.primitives name (Hashtbl.length t.primitives));
let slot_for_literal sc =
t.constants <- constant_of_const sc :: t.constants;
let pos = t.pos in
t.pos <- succ t.pos;
pos
in
let num_of_prim name =
try Hashtbl.find t.primitives name
with Not_found ->
let i = Hashtbl.length t.primitives in
Hashtbl.add t.primitives name i;
i
in
List.iter compunit.cu_reloc ~f:(function
| Reloc_literal sc, pos -> gen_patch_int code pos (slot_for_literal sc)
| Reloc_primitive name, pos -> gen_patch_int code pos (num_of_prim name)
| _ -> ())
let step2 t compunit code =
t.step2_started <- true;
let open Cmo_format in
let next name =
try Hashtbl.find t.names name
with Not_found ->
let pos = t.pos in
t.pos <- succ t.pos;
Hashtbl.add t.names name pos;
pos
in
let slot_for_global id = next id in
List.iter compunit.cu_reloc ~f:(fun (reloc, pos) ->
let patch name = gen_patch_int code pos name in
match reloc with
| ((Reloc_getglobal id) [@if ocaml_version < (5, 2, 0)]) ->
patch (slot_for_global (Ident.name id))
| ((Reloc_setglobal id) [@if ocaml_version < (5, 2, 0)]) ->
patch (slot_for_global (Ident.name id))
| ((Reloc_getcompunit (Compunit id)) [@if ocaml_version >= (5, 2, 0)]) ->
patch (slot_for_global id)
| ((Reloc_getpredef (Predef_exn id)) [@if ocaml_version >= (5, 2, 0)]) ->
patch (slot_for_global id)
| ((Reloc_setcompunit (Compunit id)) [@if ocaml_version >= (5, 2, 0)]) ->
patch (slot_for_global id)
| _ -> ())
let primitives t =
let l = Hashtbl.length t.primitives in
let a = Array.make l "" in
Hashtbl.iter (fun name i -> a.(i) <- name) t.primitives;
a
let constants t = Array.of_list (List.rev t.constants)
let make_globals t =
let primitives = primitives t in
let constants = constants t in
let globals = make_globals (Array.length constants) constants primitives in
resize_globals globals t.pos;
Hashtbl.iter (fun name i -> globals.named_value.(i) <- Some name) t.names;
(* Initialize module override mechanism *)
List.iter override_global ~f:(fun (name, v) ->
try
let i = Hashtbl.find t.names name in
globals.override.(i) <- Some v;
if debug_parser () then Format.eprintf "overriding global %s@." name
with Not_found -> ());
globals
end
let from_compilation_units ~includes:_ ~include_cmis ~debug_data l =
let reloc = Reloc.create () in
List.iter l ~f:(fun (compunit, code) -> Reloc.step1 reloc compunit code);
List.iter l ~f:(fun (compunit, code) -> Reloc.step2 reloc compunit code);
let globals = Reloc.make_globals reloc in
let code =
let l = List.map l ~f:(fun (_, c) -> Bytes.to_string c) in
String.concat ~sep:"" l
in
let prog = parse_bytecode code globals debug_data in
let gdata = Var.fresh_n "global_data" in
let need_gdata = ref false in
let body =
Array.fold_right_i globals.vars ~init:[] ~f:(fun i var l ->
match var with
| Some x when globals.is_const.(i) -> (
match globals.named_value.(i) with
| None ->
let l = register_global globals i l in
let cst = globals.constants.(i) in
(match cst, Code.Var.get_name x with
| String str, None -> Code.Var.name x (Printf.sprintf "cst_%s" str)
| _ -> ());
Let (x, Constant cst) :: l
| Some name ->
Var.name x name;
need_gdata := true;
Let
( x
, Prim
( Extern "caml_js_get"
, [ Pv gdata; Pc (NativeString (Native_string.of_string name)) ] )
)
:: l)
| _ -> l)
in
let body =
if !need_gdata
then Let (gdata, Prim (Extern "caml_get_global_data", [])) :: body
else body
in
let cmis =
if include_cmis
then
List.fold_left l ~init:StringSet.empty ~f:(fun acc (compunit, _) ->
StringSet.add (Ocaml_compiler.Cmo_format.name compunit) acc)
else StringSet.empty
in
{ code = prepend prog body; cmis; debug = debug_data }
let from_cmo ?(includes = []) ?(include_cmis = false) ?(debug = false) compunit ic =
let debug_data = Debug.create ~include_cmis debug in
seek_in ic compunit.Cmo_format.cu_pos;
let code = Bytes.create compunit.Cmo_format.cu_codesize in
really_input ic code 0 compunit.Cmo_format.cu_codesize;
let t = Timer.make () in
if Debug.dbg_section_needed debug_data && compunit.Cmo_format.cu_debug <> 0
then (
seek_in ic compunit.Cmo_format.cu_debug;
Debug.read_event_list debug_data ~crcs:[] ~includes ~orig:0 ic);
if times () then Format.eprintf " read debug events: %a@." Timer.print t;
let p = from_compilation_units ~includes ~include_cmis ~debug_data [ compunit, code ] in
Code.invariant p.code;
p
let from_cma ?(includes = []) ?(include_cmis = false) ?(debug = false) lib ic =
let debug_data = Debug.create ~include_cmis debug in
let orig = ref 0 in
let t = ref 0. in
let units =
List.map lib.Cmo_format.lib_units ~f:(fun compunit ->
seek_in ic compunit.Cmo_format.cu_pos;
let code = Bytes.create compunit.Cmo_format.cu_codesize in
really_input ic code 0 compunit.Cmo_format.cu_codesize;
let t0 = Timer.make () in
if Debug.dbg_section_needed debug_data && compunit.Cmo_format.cu_debug <> 0
then (
seek_in ic compunit.Cmo_format.cu_debug;
Debug.read_event_list debug_data ~crcs:[] ~includes ~orig:!orig ic);
t := !t +. Timer.get t0;
orig := !orig + compunit.Cmo_format.cu_codesize;
compunit, code)
in
if times () then Format.eprintf " read debug events: %.2f@." !t;
let p = from_compilation_units ~includes ~include_cmis ~debug_data units in
Code.invariant p.code;
p
let from_channel ic =
let format =
try
let header = really_input_string ic Magic_number.size in
`Pre (Magic_number.of_string header)
with _ ->
let pos_magic = in_channel_length ic - Magic_number.size in
seek_in ic pos_magic;
let header = really_input_string ic Magic_number.size in
`Post (Magic_number.of_string header)
in
match format with
| `Pre magic -> (
match Magic_number.kind magic with
| `Cmo ->
if Config.Flag.check_magic ()
&& not (Magic_number.equal magic Magic_number.current_cmo)
then raise Magic_number.(Bad_magic_version magic);
let compunit_pos = input_binary_int ic in
seek_in ic compunit_pos;
let compunit : Cmo_format.compilation_unit = input_value ic in
`Cmo compunit
| `Cma ->
if Config.Flag.check_magic ()
&& not (Magic_number.equal magic Magic_number.current_cma)
then raise Magic_number.(Bad_magic_version magic);
let pos_toc = input_binary_int ic in
(* Go to table of contents *)
seek_in ic pos_toc;
let lib : Cmo_format.library = input_value ic in
`Cma lib
| _ -> raise Magic_number.(Bad_magic_number (to_string magic)))
| `Post magic -> (
match Magic_number.kind magic with
| `Exe ->
if Config.Flag.check_magic ()
&& not (Magic_number.equal magic Magic_number.current_exe)
then raise Magic_number.(Bad_magic_version magic);
`Exe
| _ -> raise Magic_number.(Bad_magic_number (to_string magic)))
let predefined_exceptions () =
(* Register predefined exceptions in case of separate compilation *)
let body =
let open Code in
List.map predefined_exceptions ~f:(fun (index, name) ->
assert (String.is_valid_utf_8 name);
let exn = Var.fresh () in
let v_name = Var.fresh () in
let v_index = Var.fresh () in
[ Let (v_name, Constant (String name))
; Let
( v_index
, Constant
(Int
((* Predefined exceptions are registered in
Symtable.init with [-index - 1] *)
Targetint.of_int_exn
(-index - 1))) )
; Let (exn, Block (248, [| v_name; v_index |], NotArray, Immutable))
]
@
match Config.target () with
| `JavaScript ->
let v_name_js = Var.fresh () in
[ Let (v_name_js, Constant (NativeString (Native_string.of_string name)))
; Let
( Var.fresh ()
, Prim
( Extern "caml_register_global"
, [ Pc (Int (Targetint.of_int_exn index)); Pv exn; Pv v_name_js ] ) )
]
| `Wasm ->
[ Let
( Var.fresh ()
, Prim
( Extern "caml_register_global"
, [ Pc (Int (Targetint.of_int_exn index)); Pv exn; Pv v_name ] ) )
(* Also make the exception available to the generated code *)
; Let
( Var.fresh ()
, Prim (Extern "caml_set_global", [ Pc (String name); Pv exn ]) )
])
|> List.concat
in
let block = { params = []; body; branch = Stop } in
let unit_info =
{ Unit_info.provides = StringSet.of_list (List.map ~f:snd predefined_exceptions)
; requires = StringSet.empty
; crcs = StringMap.empty
; force_link = true
; effects_without_cps = false
; primitives = []
}
in
{ start = 0; blocks = Addr.Map.singleton 0 block; free_pc = 1 }, unit_info
let link_info ~symbols ~primitives ~crcs =
let gdata = Code.Var.fresh_n "global_data" in
let symbols_array =
Ocaml_compiler.Symtable.GlobalMap.fold
(fun i p acc -> (Ocaml_compiler.Symtable.Global.name i, p) :: acc)
symbols
[]
|> Array.of_list
in
let primitives =
(* Add the externals translated by jsoo directly (in generate.ml) *)
StringSet.union (Primitive.get_external ()) primitives |> StringSet.elements
in
let body = [] in
let body =
(* Include linking information *)
let sections = { symb = symbols; crcs; prim = primitives; dlpt = [] } in
let infos =
[ "sections", Constants.parse (Obj.repr sections)
; "symbols", Constants.parse (Obj.repr symbols_array)
; "prim_count", Int (Targetint.of_int_exn (List.length primitives))
]
in
let body =
List.fold_left infos ~init:body ~f:(fun rem (name, const) ->
let c = Var.fresh () in
Let (c, Constant const)
:: Let
( Var.fresh ()
, Prim
( Extern "caml_js_set"
, [ Pv gdata; Pc (NativeString (Native_string.of_string name)); Pv c ]
) )
:: rem)
in
Let (gdata, Prim (Extern "caml_get_global_data", [])) :: body
in
let block = { params = []; body; branch = Stop } in
{ start = 0; blocks = Addr.Map.singleton 0 block; free_pc = 1 }
|