1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
open Stdlib
open Code
let get_edges g src = try Hashtbl.find g src with Not_found -> Addr.Set.empty
let add_edge g src dst = Hashtbl.replace g src (Addr.Set.add dst (get_edges g src))
let reverse_tree t =
let g = Hashtbl.create 16 in
Hashtbl.iter (fun child parent -> add_edge g parent child) t;
g
let reverse_graph g =
let g' = Hashtbl.create 16 in
Hashtbl.iter
(fun child parents -> Addr.Set.iter (fun parent -> add_edge g' parent child) parents)
g;
g'
type graph = (Addr.t, Addr.Set.t) Hashtbl.t
type t =
{ succs : (Addr.t, Addr.Set.t) Hashtbl.t
; preds : (Addr.t, Addr.Set.t) Hashtbl.t
; reverse_post_order : Addr.t list
; block_order : (Addr.t, int) Hashtbl.t
}
let get_nodes g =
List.fold_left
~init:Addr.Set.empty
~f:(fun s pc -> Addr.Set.add pc s)
g.reverse_post_order
let block_order g pc = Hashtbl.find g.block_order pc
let is_backward g pc pc' = Hashtbl.find g.block_order pc >= Hashtbl.find g.block_order pc'
let is_forward g pc pc' = Hashtbl.find g.block_order pc < Hashtbl.find g.block_order pc'
(* pc has at least two forward edges moving into it *)
let is_merge_node' block_order preds pc =
let s = try Hashtbl.find preds pc with Not_found -> Addr.Set.empty in
let o = Hashtbl.find block_order pc in
let n =
Addr.Set.fold (fun pc' n -> if Hashtbl.find block_order pc' < o then n + 1 else n) s 0
in
n > 1
let empty_body body =
List.for_all
~f:(fun i ->
match i with
| Event _ -> true
| _ -> false)
body
let rec leave_try_body block_order preds blocks pc =
if is_merge_node' block_order preds pc
then false
else
match Addr.Map.find pc blocks with
| { body; branch = Return _ | Stop; _ } when empty_body body -> false
| { body; branch = Branch (pc', _); _ } when empty_body body ->
leave_try_body block_order preds blocks pc'
| _ -> true
let build_graph blocks pc =
let succs = Hashtbl.create 16 in
let l = ref [] in
let visited = Hashtbl.create 16 in
let poptraps = ref [] in
let rec traverse ~englobing_exn_handlers pc =
if not (Hashtbl.mem visited pc)
then (
Hashtbl.add visited pc ();
let successors = Code.fold_children blocks pc Addr.Set.add Addr.Set.empty in
Hashtbl.add succs pc successors;
let block = Addr.Map.find pc blocks in
Addr.Set.iter
(fun pc' ->
let englobing_exn_handlers =
match block.branch with
| Pushtrap ((body_pc, _), _, _) when pc' = body_pc ->
pc :: englobing_exn_handlers
| Poptrap (leave_pc, _) -> (
match englobing_exn_handlers with
| [] -> assert false
| enter_pc :: rem ->
poptraps := (enter_pc, leave_pc) :: !poptraps;
rem)
| _ -> englobing_exn_handlers
in
traverse ~englobing_exn_handlers pc')
successors;
l := pc :: !l)
in
traverse ~englobing_exn_handlers:[] pc;
let block_order = Hashtbl.create 16 in
List.iteri !l ~f:(fun i pc -> Hashtbl.add block_order pc i);
let preds = reverse_graph succs in
List.iter !poptraps ~f:(fun (enter_pc, leave_pc) ->
if leave_try_body block_order preds blocks leave_pc
then (
(* Add an edge to limit the [try] body *)
Hashtbl.replace
succs
enter_pc
(Addr.Set.add leave_pc (Hashtbl.find succs enter_pc));
Hashtbl.replace
preds
leave_pc
(Addr.Set.add enter_pc (Hashtbl.find preds leave_pc))));
{ succs; preds; reverse_post_order = !l; block_order }
let dominator_tree g =
(* A Simple, Fast Dominance Algorithm
Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy *)
let dom = Hashtbl.create 16 in
let rec inter pc pc' =
(* Compute closest common ancestor *)
if pc = pc'
then pc
else if is_forward g pc pc'
then inter pc (Hashtbl.find dom pc')
else inter (Hashtbl.find dom pc) pc'
in
List.iter g.reverse_post_order ~f:(fun pc ->
let l = Hashtbl.find g.succs pc in
Addr.Set.iter
(fun pc' ->
if is_forward g pc pc'
then
let d = try inter pc (Hashtbl.find dom pc') with Not_found -> pc in
Hashtbl.replace dom pc' d)
l);
(* Check we have reached a fixed point (reducible graph) *)
List.iter g.reverse_post_order ~f:(fun pc ->
let l = Hashtbl.find g.succs pc in
Addr.Set.iter
(fun pc' ->
if is_forward g pc pc'
then
let d = Hashtbl.find dom pc' in
assert (inter pc d = d))
l);
reverse_tree dom
(* pc has at least two forward edges moving into it *)
let is_merge_node g pc = is_merge_node' g.block_order g.preds pc
let is_loop_header g pc =
let s = try Hashtbl.find g.preds pc with Not_found -> Addr.Set.empty in
let o = Hashtbl.find g.block_order pc in
Addr.Set.exists (fun pc' -> Hashtbl.find g.block_order pc' >= o) s
let sort_in_post_order t l =
List.sort ~cmp:(fun a b -> compare (block_order t b) (block_order t a)) l
(*
(* pc dominates pc' *)
let rec dominates g idom pc pc' =
pc = pc' || (is_forward g pc pc' && dominates g idom pc (Hashtbl.find idom pc'))
let dominance_frontier g idom =
let frontiers = Hashtbl.create 16 in
Hashtbl.iter
(fun pc preds ->
if Addr.Set.cardinal preds > 1
then
let dom = Hashtbl.find idom pc in
let rec loop runner =
if runner <> dom
then (
add_edge frontiers runner pc;
loop (Hashtbl.find idom runner))
in
Addr.Set.iter loop preds)
g.preds;
frontiers
*)
(* Compute a map from each block to the set of loops it belongs to *)
let mark_loops g =
let in_loop = Hashtbl.create 16 in
Hashtbl.iter
(fun pc preds ->
let rec mark_loop pc' =
if not (Addr.Set.mem pc (get_edges in_loop pc'))
then (
add_edge in_loop pc' pc;
if pc' <> pc then Addr.Set.iter mark_loop (Hashtbl.find g.preds pc'))
in
Addr.Set.iter (fun pc' -> if is_backward g pc' pc then mark_loop pc') preds)
g.preds;
in_loop
let rec measure blocks g pc limit =
if is_loop_header g pc
then -1
else
let b = Addr.Map.find pc blocks in
let limit =
List.fold_left b.body ~init:limit ~f:(fun acc x ->
match x with
(* A closure is never small *)
| Let (_, Closure _) -> -1
| Event _ -> acc
| _ -> acc - 1)
in
if limit < 0
then limit
else
Addr.Set.fold
(fun pc limit -> if limit < 0 then limit else measure blocks g pc limit)
(get_edges g.succs pc)
limit
let is_small blocks g pc = measure blocks g pc 20 >= 0
let shrink_loops blocks ({ succs; preds; reverse_post_order; _ } as g) =
let add_edge pred succ =
Hashtbl.replace succs pred (Addr.Set.add succ (Hashtbl.find succs pred));
Hashtbl.replace preds succ (Addr.Set.add pred (Hashtbl.find preds succ))
in
let in_loop = mark_loops g in
let dom = dominator_tree g in
let root = List.hd reverse_post_order in
let rec traverse ignored pc =
let succs = get_edges dom pc in
let loops = get_edges in_loop pc in
let block = Addr.Map.find pc blocks in
Addr.Set.iter
(fun pc' ->
(* Whatever is in the scope of an exception handler should not be
moved outside *)
let ignored =
match block.branch with
| Pushtrap ((body_pc, _), _, _) when pc' = body_pc ->
Addr.Set.union ignored loops
| _ -> ignored
in
let loops' = get_edges in_loop pc' in
let left_loops = Addr.Set.diff (Addr.Set.diff loops loops') ignored in
(* If we leave a loop, we add an edge from predecessors of
the loop header to the current block, so that it is
considered outside of the loop. *)
if not (Addr.Set.is_empty left_loops || is_small blocks g pc')
then
Addr.Set.iter
(fun pc0 ->
Addr.Set.iter
(fun pc -> if is_forward g pc pc0 then add_edge pc pc')
(get_edges g.preds pc0))
left_loops;
traverse ignored pc')
succs
in
traverse Addr.Set.empty root
let build_graph blocks pc =
let g = build_graph blocks pc in
shrink_loops blocks g;
g
|