1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
(* Wasm_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
open Code
module W = Wasm_ast
(*
LLVM type checker does not work well. It does not handle 'br', and
there is a bug with `return` in clang 15.
Use 'clang-16 --target=wasm32 -Wa,--no-type-check' to disable it.
https://github.com/llvm/llvm-project/issues/56935
https://github.com/llvm/llvm-project/issues/58438
*)
(* binaryen does not support block input parameters
https://github.com/WebAssembly/binaryen/issues/5047 *)
type constant_global =
{ init : W.expression option
; constant : bool
; typ : W.value_type
}
type context =
{ constants : W.expression Var.Hashtbl.t
; mutable data_segments : string Var.Map.t
; mutable constant_globals : constant_global Var.Map.t
; mutable other_fields : W.module_field list
; mutable imports : (Var.t * Wasm_ast.import_desc) StringMap.t StringMap.t
; type_names : Var.t String.Hashtbl.t
; types : Wasm_ast.type_field Var.Hashtbl.t
; mutable closure_envs : Var.t Var.Map.t
(** GC: mapping of recursive functions to their shared environment *)
; closure_types : (W.value_type option list, int) Hashtbl.t
; mutable apply_funs : Var.t IntMap.t
; mutable cps_apply_funs : Var.t IntMap.t
; mutable curry_funs : Var.t IntMap.t
; mutable cps_curry_funs : Var.t IntMap.t
; mutable dummy_funs : Var.t IntMap.t
; mutable cps_dummy_funs : Var.t IntMap.t
; mutable init_code : W.instruction list
; mutable fragments : Javascript.expression StringMap.t
; mutable globalized_variables : Var.Set.t
; value_type : W.value_type
; mutable unit_name : string option
}
let make_context ~value_type =
{ constants = Var.Hashtbl.create 128
; data_segments = Var.Map.empty
; constant_globals = Var.Map.empty
; other_fields = []
; imports = StringMap.empty
; type_names = String.Hashtbl.create 128
; types = Var.Hashtbl.create 128
; closure_envs = Var.Map.empty
; closure_types = Poly.Hashtbl.create 128
; apply_funs = IntMap.empty
; cps_apply_funs = IntMap.empty
; curry_funs = IntMap.empty
; cps_curry_funs = IntMap.empty
; dummy_funs = IntMap.empty
; cps_dummy_funs = IntMap.empty
; init_code = []
; fragments = StringMap.empty
; globalized_variables = Var.Set.empty
; value_type
; unit_name = None
}
type var =
| Local of int * Var.t * W.value_type option
| Expr of W.expression t
and state =
{ var_count : int
; vars : var Var.Map.t
; instrs : W.instruction list
; context : context
}
and 'a t = state -> 'a * state
type expression = Wasm_ast.expression t
let ( let* ) (type a b) (e : a t) (f : a -> b t) : b t =
fun st ->
let v, st = e st in
f v st
let return x st = x, st
let expression_list f l =
let rec loop acc l =
match l with
| [] -> return (List.rev acc)
| x :: r ->
let* x = f x in
loop (x :: acc) r
in
loop [] l
let register_data_segment x v st =
st.context.data_segments <- Var.Map.add x v st.context.data_segments;
(), st
let get_context st = st.context, st
let register_constant x e st =
Var.Hashtbl.add st.context.constants x e;
(), st
type type_def =
{ supertype : Wasm_ast.var option
; final : bool
; typ : Wasm_ast.str_type
}
let register_type nm gen_typ st =
let context = st.context in
let { supertype; final; typ }, st = gen_typ () st in
( (try String.Hashtbl.find context.type_names nm
with Not_found ->
let name = Var.fresh_n nm in
let type_field = { Wasm_ast.name; typ; supertype; final } in
context.other_fields <- Type [ type_field ] :: context.other_fields;
String.Hashtbl.add context.type_names nm name;
Var.Hashtbl.add context.types name type_field;
name)
, st )
let rec type_index_sub ty ty' st =
if Var.equal ty ty'
then true, st
else
let type_field = Var.Hashtbl.find st.context.types ty in
match type_field.supertype with
| None -> false, st
| Some ty -> type_index_sub ty ty' st
let heap_type_sub (ty : W.heap_type) (ty' : W.heap_type) st =
match ty, ty' with
| Func, Func
| Extern, Extern
| (Any | Eq | Struct | Array | I31 | None_ | Type _), Any
| (Eq | Struct | Array | I31 | None_ | Type _), Eq
| (None_ | Struct), Struct -> true, st
| (None_ | Array), Array -> true, st
| (None_ | I31), I31 -> true, st
| None_, None_ -> true, st
| Type t, Struct ->
( (let type_field = Var.Hashtbl.find st.context.types t in
match type_field.typ with
| Struct _ -> true
| Array _ | Func _ -> false)
, st )
| Type t, Array ->
( (let type_field = Var.Hashtbl.find st.context.types t in
match type_field.typ with
| Array _ -> true
| Struct _ | Func _ -> false)
, st )
| Type t, Type t' -> type_index_sub t t' st
| None_, Type t ->
( (let type_field = Var.Hashtbl.find st.context.types t in
match type_field.typ with
| Struct _ | Array _ -> true
| Func _ -> false)
, st )
(* Func and Extern are only in suptyping relation with themselves *)
| Func, _
| _, Func
| Extern, _
| _, Extern
(* Any has no supertype *)
| Any, _
(* I31, struct, array and none have no other subtype *)
| _, (I31 | Type _ | Struct | Array | None_) -> false, st
let register_global name ?exported_name ?(constant = false) typ init st =
st.context.other_fields <-
W.Global { name; exported_name; typ; init } :: st.context.other_fields;
st.context.constant_globals <-
Var.Map.add
name
{ init = (if not typ.mut then Some init else None)
; constant = (not typ.mut) || constant
; typ = typ.typ
}
st.context.constant_globals;
(), st
let global_is_registered name =
let* ctx = get_context in
return (Var.Map.mem name ctx.constant_globals)
let global_is_constant name =
let* ctx = get_context in
return
(match Var.Map.find_opt name ctx.constant_globals with
| Some { constant = true; _ } -> true
| _ -> false)
let get_global name =
let* ctx = get_context in
return
(match Var.Map.find_opt name ctx.constant_globals with
| Some { init; _ } -> init
| _ -> None)
let register_import ?(import_module = "env") ~name typ st =
( (try
let x, typ' =
StringMap.find name (StringMap.find import_module st.context.imports)
in
(*ZZZ error message*)
assert (Poly.equal typ typ');
x
with Not_found ->
let x = Var.fresh_n name in
st.context.imports <-
StringMap.update
import_module
(fun m ->
Some
(match m with
| None -> StringMap.singleton name (x, typ)
| Some m -> StringMap.add name (x, typ) m))
st.context.imports;
x)
, st )
let register_init_code code st =
let st' = { var_count = 0; vars = Var.Map.empty; instrs = []; context = st.context } in
let (), st' = code st' in
st.context.init_code <- st'.instrs @ st.context.init_code;
(), st
let register_fragment name f st =
let context = st.context in
if not (StringMap.mem name context.fragments)
then context.fragments <- StringMap.add name (f ()) context.fragments;
(), st
let set_closure_env f env st =
st.context.closure_envs <- Var.Map.add f env st.context.closure_envs;
(), st
let get_closure_env f st = Var.Map.find f st.context.closure_envs, st
let is_closure f st = Var.Map.mem f st.context.closure_envs, st
let unit_name st = st.context.unit_name, st
let var x st =
try Var.Map.find x st.vars, st
with Not_found -> Expr (return (Var.Hashtbl.find st.context.constants x)), st
let add_var ?typ x ({ var_count; vars; _ } as st) =
match Var.Map.find_opt x vars with
| Some (Local (_, x', typ')) ->
assert (Poly.equal typ typ');
x', st
| Some (Expr _) -> assert false
| None ->
let i = var_count in
let vars = Var.Map.add x (Local (i, x, typ)) vars in
x, { st with var_count = var_count + 1; vars }
let define_var x e st = (), { st with vars = Var.Map.add x (Expr e) st.vars }
let instr i : unit t = fun st -> (), { st with instrs = i :: st.instrs }
let instrs l : unit t = fun st -> (), { st with instrs = List.rev_append l st.instrs }
let blk l st =
let instrs = st.instrs in
let (), st = l { st with instrs = [] } in
List.rev st.instrs, { st with instrs }
let event loc : unit t =
fun st ->
( ()
, match st.instrs with
| Event _ :: instrs | instrs -> { st with instrs = Event loc :: instrs } )
let hidden_location =
{ Parse_info.src = Some Wasm_source_map.blackbox_filename
; name = None
; col = 0
; line = 1
; idx = 0
}
let no_event = event hidden_location
let cast ?(nullable = false) typ e =
let* e = e in
match typ, e with
| W.I31, W.RefI31 _ -> return e
| _ -> return (W.RefCast ({ W.nullable; typ }, e))
module Arith = struct
let binary op e e' =
let* e = e in
let* e' = e' in
return (W.BinOp (I32 op, e, e'))
let unary op e =
let* e = e in
return (W.UnOp (I32 op, e))
let ( + ) e e' =
let* e = e in
let* e' = e' in
return
(match e, e' with
| W.BinOp (I32 Add, e1, W.Const (I32 n)), W.Const (I32 n') ->
let n'' = Int32.add n n' in
if Int32.equal n'' 0l
then e1
else W.BinOp (I32 Add, e1, W.Const (I32 (Int32.add n n')))
| W.Const (I32 n), W.Const (I32 n') -> W.Const (I32 (Int32.add n n'))
| W.Const (I32 0l), _ -> e'
| _, W.Const (I32 0l) -> e
| W.Const _, _ -> W.BinOp (I32 Add, e', e)
| _ -> W.BinOp (I32 Add, e, e'))
let ( - ) e e' =
let* e = e in
let* e' = e' in
return
(match e, e' with
| W.BinOp (I32 Add, e1, W.Const (I32 n)), W.Const (I32 n') ->
let n'' = Int32.sub n n' in
if Int32.equal n'' 0l then e1 else W.BinOp (I32 Add, e1, W.Const (I32 n''))
| W.Const (I32 n), W.Const (I32 n') -> W.Const (I32 (Int32.sub n n'))
| _, W.Const (I32 n) ->
if Int32.equal n 0l then e else W.BinOp (I32 Add, e, W.Const (I32 (Int32.neg n)))
| _ -> W.BinOp (I32 Sub, e, e'))
let ( * ) = binary Mul
let ( / ) = binary (Div S)
let ( mod ) = binary (Rem S)
let ( lsl ) e e' =
let* e = e in
let* e' = e' in
return
(match e, e' with
| W.Const (I32 n), W.Const (I32 n') when Int32.(n' < 31l) ->
W.Const (I32 (Int32.shift_left n (Int32.to_int n')))
| _ -> W.BinOp (I32 Shl, e, e'))
let ( lsr ) = binary (Shr U)
let ( asr ) = binary (Shr S)
let ( land ) = binary And
let ( lor ) = binary Or
let ( lxor ) = binary Xor
let ( < ) = binary (Lt S)
let ( <= ) = binary (Le S)
let ( = ) = binary Eq
let ( <> ) = binary Ne
let ult = binary (Lt U)
let uge = binary (Ge U)
let eqz = unary Eqz
let const n = return (W.Const (I32 n))
let to_int31 n =
let* n = n in
match n with
| W.I31Get (S, n') -> return n'
| _ -> return (W.RefI31 n)
let wrap31 n = Targetint.(of_int32_truncate n |> to_int32)
let of_int31 n =
let* n = n in
match n with
| W.RefI31 (Const (I32 n)) -> return (W.Const (I32 (wrap31 n)))
| _ -> return (W.I31Get (S, n))
end
let is_small_constant e =
match e with
| W.Const _ | W.RefI31 (W.Const _) | W.RefFunc _ -> return true
| W.GlobalGet name -> global_is_constant name
| _ -> return false
let load x =
let* x = var x in
match x with
| Local (_, x, _) -> return (W.LocalGet x)
| Expr e -> e
let rec variable_type x st =
match Var.Map.find_opt x st.vars with
| Some (Local (_, _, typ)) -> typ, st
| Some (Expr e) ->
(let* e = e in
expression_type e)
st
| None -> None, st
and expression_type (e : W.expression) st =
match e with
| Const _
| UnOp _
| BinOp _
| I32WrapI64 _
| I64ExtendI32 _
| F32DemoteF64 _
| F64PromoteF32 _
| BlockExpr _
| Call _
| RefFunc _
| Call_ref _
| I31Get _
| ArrayGet _
| ArrayLen _
| RefTest _
| RefEq _
| RefNull _
| Try _
| Br_on_null _ -> None, st
| LocalGet x | LocalTee (x, _) -> variable_type x st
| GlobalGet x ->
( (try
let typ = (Var.Map.find x st.context.constant_globals).typ in
if Poly.equal typ st.context.value_type
then None
else
Some
(match typ with
| Ref { typ; nullable = true } -> Ref { typ; nullable = false }
| _ -> typ)
with Not_found -> None)
, st )
| Seq (_, e') -> expression_type e' st
| Pop typ -> Some typ, st
| RefI31 _ -> Some (Ref { nullable = false; typ = I31 }), st
| ArrayNew (ty, _, _)
| ArrayNewFixed (ty, _)
| ArrayNewData (ty, _, _, _)
| StructNew (ty, _) -> Some (Ref { nullable = false; typ = Type ty }), st
| StructGet (_, ty, i, _) -> (
match (Var.Hashtbl.find st.context.types ty).typ with
| Struct l -> (
match (List.nth l i).typ with
| Value typ ->
(if Poly.equal typ st.context.value_type then None else Some typ), st
| Packed _ -> assert false)
| Array _ | Func _ -> assert false)
| RefCast (typ, _) | Br_on_cast (_, _, typ, _) | Br_on_cast_fail (_, typ, _, _) ->
Some (Ref typ), st
| IfExpr (_, _, _, _) | ExternConvertAny _ | AnyConvertExtern _ -> None, st
let tee ?typ x e =
let* e = e in
let* b = is_small_constant e in
if b
then
let* () = register_constant x e in
return e
else
let* typ =
match typ with
| Some _ -> return typ
| None -> expression_type e
in
let* i = add_var ?typ x in
return (W.LocalTee (i, e))
let should_make_global x st = Var.Set.mem x st.context.globalized_variables, st
let value_type st = st.context.value_type, st
let get_constant x st = Var.Hashtbl.find_opt st.context.constants x, st
let placeholder_value typ f =
let* c = get_constant typ in
match c with
| None ->
let x = Var.fresh () in
let* () = register_constant typ (W.GlobalGet x) in
let* () =
register_global
~constant:true
x
{ mut = false; typ = Ref { nullable = false; typ = Type typ } }
(f typ)
in
return (W.GlobalGet x)
| Some c -> return c
let array_placeholder typ = placeholder_value typ (fun typ -> ArrayNewFixed (typ, []))
let default_value val_typ st =
match val_typ with
| W.Ref { typ = I31 | Eq | Any; _ } -> (W.RefI31 (Const (I32 0l)), val_typ, None), st
| W.Ref { typ = Type typ; nullable = false } -> (
match (Var.Hashtbl.find st.context.types typ).typ with
| Array _ ->
(let* placeholder = array_placeholder typ in
return (placeholder, val_typ, None))
st
| Struct _ | Func _ ->
( ( W.RefNull (Type typ)
, W.Ref { typ = Type typ; nullable = true }
, Some { W.typ = Type typ; nullable = false } )
, st ))
| I32 -> (Const (I32 0l), val_typ, None), st
| F32 -> (Const (F32 0.), val_typ, None), st
| I64 -> (Const (I64 0L), val_typ, None), st
| F64 -> (Const (F64 0.), val_typ, None), st
| W.Ref { nullable = true; _ }
| W.Ref { typ = Func | Extern | Struct | Array | None_; _ } -> assert false
let rec store ?(always = false) ?typ x e =
let* e = e in
match e with
| W.Seq (l, e') ->
let* () = instrs l in
store ~always ?typ x (return e')
| _ ->
let* b = is_small_constant e in
if b && not always
then register_constant x e
else
let* b = should_make_global x in
if b
then
let* () =
let* b = global_is_registered x in
if b
then return ()
else
let* typ =
match typ with
| Some typ -> return typ
| None -> (
if always
then value_type
else
let* typ = expression_type e in
match typ with
| None -> value_type
| Some typ -> return typ)
in
let* default, typ', cast = default_value typ in
let* () =
register_constant
x
(match cast with
| Some typ -> W.RefCast (typ, W.GlobalGet x)
| None -> W.GlobalGet x)
in
register_global ~constant:true x { mut = true; typ = typ' } default
in
instr (GlobalSet (x, e))
else
let* typ =
match typ with
| Some _ -> return typ
| None -> if always then return None else expression_type e
in
let* i = add_var ?typ x in
instr (LocalSet (i, e))
let assign x e =
let* x = var x in
let* e = e in
match x with
| Local (_, x, _) -> instr (W.LocalSet (x, e))
| Expr _ -> assert false
let seq l e =
let* instrs = blk l in
let* e = e in
return (W.Seq (instrs, e))
let drop e =
let* e = e in
match e with
| W.Seq (l, e') ->
let* b = is_small_constant e' in
let* () = instrs l in
if b then return () else instr (Drop e')
| _ -> instr (Drop e)
let push e =
let* e = e in
match e with
| W.Seq (l, e') ->
let* () = instrs l in
instr (Push e')
| _ -> instr (Push e)
let loop ty l =
let* instrs = blk l in
instr (Loop (ty, instrs))
let block ty l =
let* instrs = blk l in
instr (Block (ty, instrs))
let block_expr ty l =
let* instrs = blk l in
return (W.BlockExpr (ty, instrs))
let if_ ty e l1 l2 =
let* e = e in
let* instrs1 = blk l1 in
let* instrs2 = blk l2 in
match e with
| W.UnOp (I32 Eqz, e') -> instr (If (ty, e', instrs2, instrs1))
| _ -> instr (If (ty, e, instrs1, instrs2))
let try_expr ty body handlers =
let* body = blk body in
return (W.Try (ty, body, handlers))
let need_apply_fun ~cps ~arity st =
let ctx = st.context in
( (if cps
then (
try IntMap.find arity ctx.cps_apply_funs
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "cps_apply_%d" arity) in
ctx.cps_apply_funs <- IntMap.add arity x ctx.cps_apply_funs;
x)
else
try IntMap.find arity ctx.apply_funs
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "apply_%d" arity) in
ctx.apply_funs <- IntMap.add arity x ctx.apply_funs;
x)
, st )
let need_curry_fun ~cps ~arity st =
let ctx = st.context in
( (if cps
then (
try IntMap.find arity ctx.cps_curry_funs
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "cps_curry_%d" arity) in
ctx.cps_curry_funs <- IntMap.add arity x ctx.cps_curry_funs;
x)
else
try IntMap.find arity ctx.curry_funs
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "curry_%d" arity) in
ctx.curry_funs <- IntMap.add arity x ctx.curry_funs;
x)
, st )
let need_dummy_fun ~cps ~arity st =
let ctx = st.context in
( (if cps
then (
try IntMap.find arity ctx.cps_dummy_funs
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "cps_dummy_%d" arity) in
ctx.cps_dummy_funs <- IntMap.add arity x ctx.cps_dummy_funs;
x)
else
try IntMap.find arity ctx.dummy_funs
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "dummy_%d" arity) in
ctx.dummy_funs <- IntMap.add arity x ctx.dummy_funs;
x)
, st )
let init_code context = instrs context.init_code
let function_body ~context ~param_names ~body =
let st = { var_count = 0; vars = Var.Map.empty; instrs = []; context } in
let (), st = body st in
let local_count, body = st.var_count, List.rev st.instrs in
let local_types = Array.make local_count (Var.fresh (), None) in
List.iteri ~f:(fun i x -> local_types.(i) <- x, None) param_names;
Var.Map.iter
(fun _ v ->
match v with
| Local (i, x, typ) -> local_types.(i) <- x, typ
| Expr _ -> ())
st.vars;
let body = Tail_call.f body in
let param_count = List.length param_names in
let locals =
local_types
|> Array.map ~f:(fun (x, v) -> x, Option.value ~default:context.value_type v)
|> (fun a -> Array.sub a ~pos:param_count ~len:(Array.length a - param_count))
|> Array.to_list
in
locals, body
|