1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
|
(* Wasm_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
module W = Wasm_ast
open Code_generation
type expression = Wasm_ast.expression Code_generation.t
let include_closure_arity = false
module Type = struct
let value = W.Ref { nullable = false; typ = Eq }
let block_type =
register_type "block" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Array { mut = true; typ = Value value }
})
let string_type =
register_type "string" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Array { mut = true; typ = Packed I8 }
})
let float_type =
register_type "float" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Struct [ { mut = false; typ = Value F64 } ]
})
let float_array_type =
register_type "float_array" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Array { mut = true; typ = Value F64 }
})
let js_type =
register_type "js" (fun () ->
return
{ supertype = None
; final = true
; typ =
W.Struct
[ { mut = false; typ = Value (Ref { nullable = true; typ = Any }) } ]
})
let compare_type =
register_type "compare" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Func { W.params = [ value; value; I32 ]; result = [ I32 ] }
})
let hash_type =
register_type "hash" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Func { W.params = [ value ]; result = [ I32 ] }
})
let fixed_length_type =
register_type "fixed_length" (fun () ->
return
{ supertype = None
; final = true
; typ =
W.Struct
[ { mut = false; typ = Value I32 }; { mut = false; typ = Value I32 } ]
})
let serialize_type =
register_type "serialize" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Func { W.params = [ value; value ]; result = [ I32; I32 ] }
})
let deserialize_type =
register_type "deserialize" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Func { W.params = [ value ]; result = [ value; I32 ] }
})
let dup_type =
register_type "dup" (fun () ->
return
{ supertype = None
; final = true
; typ = W.Func { W.params = [ value ]; result = [ value ] }
})
let custom_operations_type =
register_type "custom_operations" (fun () ->
let* string = string_type in
let* compare = compare_type in
let* hash = hash_type in
let* fixed_length = fixed_length_type in
let* serialize = serialize_type in
let* deserialize = deserialize_type in
let* dup = dup_type in
return
{ supertype = None
; final = true
; typ =
W.Struct
[ { mut = false
; typ = Value (Ref { nullable = false; typ = Type string })
}
; { mut = false
; typ = Value (Ref { nullable = true; typ = Type compare })
}
; { mut = false
; typ = Value (Ref { nullable = true; typ = Type compare })
}
; { mut = false; typ = Value (Ref { nullable = true; typ = Type hash }) }
; { mut = false
; typ = Value (Ref { nullable = true; typ = Type fixed_length })
}
; { mut = false
; typ = Value (Ref { nullable = true; typ = Type serialize })
}
; { mut = false
; typ = Value (Ref { nullable = true; typ = Type deserialize })
}
; { mut = false; typ = Value (Ref { nullable = true; typ = Type dup }) }
]
})
let custom_type =
register_type "custom" (fun () ->
let* custom_operations = custom_operations_type in
return
{ supertype = None
; final = false
; typ =
W.Struct
[ { mut = false
; typ = Value (Ref { nullable = false; typ = Type custom_operations })
}
]
})
let int32_type =
register_type "int32" (fun () ->
let* custom_operations = custom_operations_type in
let* custom = custom_type in
return
{ supertype = Some custom
; final = true
; typ =
W.Struct
[ { mut = false
; typ = Value (Ref { nullable = false; typ = Type custom_operations })
}
; { mut = false; typ = Value I32 }
]
})
let int64_type =
register_type "int64" (fun () ->
let* custom_operations = custom_operations_type in
let* custom = custom_type in
return
{ supertype = Some custom
; final = true
; typ =
W.Struct
[ { mut = false
; typ = Value (Ref { nullable = false; typ = Type custom_operations })
}
; { mut = false; typ = Value I64 }
]
})
let primitive_type n =
{ W.params = List.init ~len:n ~f:(fun _ -> value); result = [ value ] }
let func_type n = primitive_type (n + 1)
let function_type ~cps n =
let n = if cps then n + 1 else n in
register_type (Printf.sprintf "function_%d" n) (fun () ->
return { supertype = None; final = true; typ = W.Func (func_type n) })
let closure_common_fields ~cps =
let* fun_ty = function_type ~cps 1 in
return
(let function_pointer =
[ { W.mut = false; typ = W.Value (Ref { nullable = false; typ = Type fun_ty }) }
]
in
if include_closure_arity
then { W.mut = false; typ = W.Value I32 } :: function_pointer
else function_pointer)
let closure_type_1 ~cps =
register_type
(if cps then "cps_closure" else "closure")
(fun () ->
let* fields = closure_common_fields ~cps in
return { supertype = None; final = false; typ = W.Struct fields })
let closure_last_arg_type ~cps =
register_type
(if cps then "cps_closure_last_arg" else "closure_last_arg")
(fun () ->
let* cl_typ = closure_type_1 ~cps in
let* fields = closure_common_fields ~cps in
return { supertype = Some cl_typ; final = false; typ = W.Struct fields })
let closure_type ~usage ~cps arity =
if arity = 1
then
match usage with
| `Alloc -> closure_last_arg_type ~cps
| `Access -> closure_type_1 ~cps
else if arity = 0
then
register_type
(if cps then "cps_closure_0" else "closure_0")
(fun () ->
let* fun_ty' = function_type ~cps arity in
return
{ supertype = None
; final = false
; typ =
W.Struct
[ { mut = false
; typ = Value (Ref { nullable = false; typ = Type fun_ty' })
}
]
})
else
register_type
(if cps
then Printf.sprintf "cps_closure_%d" arity
else Printf.sprintf "closure_%d" arity)
(fun () ->
let* cl_typ = closure_type_1 ~cps in
let* common = closure_common_fields ~cps in
let* fun_ty' = function_type ~cps arity in
return
{ supertype = Some cl_typ
; final = false
; typ =
W.Struct
(common
@ [ { mut = false
; typ = Value (Ref { nullable = false; typ = Type fun_ty' })
}
])
})
let make_env_type env_type =
List.map
~f:(fun typ ->
{ W.mut = false
; typ = W.Value (Option.value ~default:(W.Ref { nullable = false; typ = Eq }) typ)
})
env_type
let env_type ~cps ~arity ~env_type_id ~env_type =
register_type
(if cps
then Printf.sprintf "cps_env_%d_%d" arity env_type_id
else Printf.sprintf "env_%d_%d" arity env_type_id)
(fun () ->
let* cl_typ = closure_type ~usage:`Alloc ~cps arity in
let* common = closure_common_fields ~cps in
let* fun_ty' = function_type ~cps arity in
return
{ supertype = Some cl_typ
; final = true
; typ =
W.Struct
((if arity = 1
then common
else if arity = 0
then
[ { mut = false
; typ = Value (Ref { nullable = false; typ = Type fun_ty' })
}
]
else
common
@ [ { mut = false
; typ = Value (Ref { nullable = false; typ = Type fun_ty' })
}
])
@ make_env_type env_type)
})
let rec_env_type ~function_count ~env_type_id ~env_type =
register_type (Printf.sprintf "rec_env_%d_%d" function_count env_type_id) (fun () ->
return
{ supertype = None
; final = true
; typ =
W.Struct
(List.init
~f:(fun i ->
{ W.mut = i < function_count
; typ = W.Value (Ref { nullable = false; typ = Eq })
})
~len:function_count
@ make_env_type env_type)
})
let rec_closure_type ~cps ~arity ~function_count ~env_type_id ~env_type =
register_type
(if cps
then Printf.sprintf "cps_closure_rec_%d_%d_%d" arity function_count env_type_id
else Printf.sprintf "closure_rec_%d_%d_%d" arity function_count env_type_id)
(fun () ->
let* cl_typ = closure_type ~usage:`Alloc ~cps arity in
let* common = closure_common_fields ~cps in
let* fun_ty' = function_type ~cps arity in
let* env_ty = rec_env_type ~function_count ~env_type_id ~env_type in
return
{ supertype = Some cl_typ
; final = true
; typ =
W.Struct
((if arity = 1
then common
else
common
@ [ { mut = false
; typ = Value (Ref { nullable = false; typ = Type fun_ty' })
}
])
@ [ { W.mut = false
; typ = W.Value (Ref { nullable = false; typ = Type env_ty })
}
])
})
let rec curry_type ~cps arity m =
register_type
(if cps
then Printf.sprintf "cps_curry_%d_%d" arity m
else Printf.sprintf "curry_%d_%d" arity m)
(fun () ->
let* cl_typ = closure_type ~usage:(if m = 2 then `Alloc else `Access) ~cps 1 in
let* common = closure_common_fields ~cps in
let* cl_ty =
if m = arity
then closure_type ~usage:`Alloc ~cps arity
else curry_type ~cps arity (m + 1)
in
return
{ supertype = Some cl_typ
; final = true
; typ =
W.Struct
(common
@ [ { mut = false
; typ = Value (Ref { nullable = false; typ = Type cl_ty })
}
; { W.mut = false; typ = Value value }
])
})
let dummy_closure_type ~cps ~arity =
register_type
(if cps
then Printf.sprintf "cps_dummy_closure_%d" arity
else Printf.sprintf "dummy_closure_%d" arity)
(fun () ->
let* cl_typ = closure_type ~cps ~usage:`Alloc arity in
let* cl_typ' = closure_type ~cps ~usage:`Access arity in
let* common = closure_common_fields ~cps in
let* fun_ty' = function_type ~cps arity in
return
{ supertype = Some cl_typ
; final = true
; typ =
W.Struct
((if arity = 1
then common
else
common
@ [ { mut = false
; typ = Value (Ref { nullable = false; typ = Type fun_ty' })
}
])
@ [ { W.mut = true
; typ = W.Value (Ref { nullable = true; typ = Type cl_typ' })
}
])
})
end
module Value = struct
let block_type =
let* t = Type.block_type in
return (W.Ref { nullable = false; typ = Type t })
let dummy_block =
let* t = Type.block_type in
array_placeholder t
let as_block e =
let* t = Type.block_type in
let* e = e in
return (W.RefCast ({ nullable = false; typ = Type t }, e))
let unit = return (W.RefI31 (Const (I32 0l)))
let val_int = Arith.to_int31
let int_val i = Arith.of_int31 (cast I31 i)
let check_is_not_zero i =
let* i = i in
return (W.UnOp (I32 Eqz, RefEq (i, W.RefI31 (Const (I32 0l)))))
let check_is_int i =
let* i = i in
return (W.RefTest ({ nullable = false; typ = I31 }, i))
let not i = Arith.eqz i
let lt = Arith.( < )
let le = Arith.( <= )
let ref_eq i i' =
let* i = i in
let* i' = i' in
return (W.RefEq (i, i'))
let ref ty = { W.nullable = false; typ = Type ty }
let ref_test (typ : W.ref_type) e =
let* e = e in
match e with
| W.RefI31 _ -> (
match typ.typ with
| W.I31 | Eq | Any -> return (W.Const (I32 1l))
| Struct | Array | Type _ | None_ | Func | Extern -> return (W.Const (I32 0l)))
| GlobalGet nm -> (
let* init = get_global nm in
match init with
| Some (W.ArrayNewFixed (t, _) | W.StructNew (t, _)) ->
let* b = heap_type_sub (Type t) typ.typ in
if b then return (W.Const (I32 1l)) else return (W.Const (I32 0l))
| _ -> return (W.RefTest (typ, e)))
| _ -> return (W.RefTest (typ, e))
let caml_js_strict_equals x y =
let* x = x in
let* y = y in
let* f =
register_import
~name:"caml_js_strict_equals"
~import_module:"env"
(Fun { params = [ Type.value; Type.value ]; result = [ Type.value ] })
in
return (W.Call (f, [ x; y ]))
let rec effect_free e =
match e with
| W.Const _ | LocalGet _ | GlobalGet _ | RefFunc _ | RefNull _ -> true
| UnOp (_, e')
| I32WrapI64 e'
| I64ExtendI32 (_, e')
| F32DemoteF64 e'
| F64PromoteF32 e'
| RefI31 e'
| I31Get (_, e')
| ArrayLen e'
| StructGet (_, _, _, e')
| RefCast (_, e')
| RefTest (_, e')
| ExternConvertAny e'
| AnyConvertExtern e' -> effect_free e'
| BinOp (_, e1, e2)
| ArrayNew (_, e1, e2)
| ArrayNewData (_, _, e1, e2)
| ArrayGet (_, _, e1, e2)
| RefEq (e1, e2) -> effect_free e1 && effect_free e2
| LocalTee _
| BlockExpr _
| Call _
| Seq _
| Pop _
| Call_ref _
| Br_on_cast _
| Br_on_cast_fail _
| Br_on_null _
| Try _ -> false
| IfExpr (_, e1, e2, e3) -> effect_free e1 && effect_free e2 && effect_free e3
| ArrayNewFixed (_, l) | StructNew (_, l) -> List.for_all ~f:effect_free l
let if_expr ty cond ift iff =
let* cond = cond in
let* ift = ift in
let* iff = iff in
match cond with
| W.Const (I32 n) -> return (if Int32.equal n 0l then iff else ift)
| _ ->
if Poly.equal ift iff && effect_free cond
then return ift
else return (W.IfExpr (ty, cond, ift, iff))
let map f x =
let* x = x in
return (f x)
let ( >>| ) x f = map f x
let js_eqeqeq ~negate x y =
let xv = Code.Var.fresh () in
let yv = Code.Var.fresh () in
let* js = Type.js_type in
let n =
if_expr
I32
(* We mimic an "and" on the two conditions, but in a way that is nicer to the
binaryen optimizer. *)
(if_expr
I32
(ref_test (ref js) (load xv))
(ref_test (ref js) (load yv))
(Arith.const 0l))
(caml_js_strict_equals (load xv) (load yv)
>>| (fun e -> W.RefCast ({ nullable = false; typ = I31 }, e))
>>| fun e -> W.I31Get (S, e))
(ref_eq (load xv) (load yv))
in
seq
(let* () = store xv x in
let* () = store yv y in
return ())
(if negate then Arith.eqz n else n)
let phys_eq x y =
let* x = x in
let* y = y in
return (W.RefEq (x, y))
let phys_neq x y =
let* x = x in
let* y = y in
Arith.eqz (return (W.RefEq (x, y)))
let ult = Arith.ult
let is_int i =
let* i = i in
return (W.RefTest ({ nullable = false; typ = I31 }, i))
let int_add = Arith.( + )
let int_sub = Arith.( - )
let int_mul = Arith.( * )
let int_div = Arith.( / )
let int_mod = Arith.( mod )
let int_neg i = Arith.(const 0l - i)
let int_or = Arith.( lor )
let int_and = Arith.( land )
let int_xor = Arith.( lxor )
let int_lsl = Arith.( lsl )
let int_lsr i i' = Arith.((i land const 0x7fffffffl) lsr i')
let int_asr = Arith.( asr )
end
module Memory = struct
let wasm_cast ty e =
let* e = e in
return (W.RefCast ({ nullable = false; typ = Type ty }, e))
let wasm_struct_get ty e i =
let* e = e in
match e with
| W.RefCast ({ typ; _ }, GlobalGet nm) -> (
let* init = get_global nm in
match init with
| Some (W.StructNew (ty', l)) ->
let* b = heap_type_sub (Type ty') typ in
if b
then
let e' = List.nth l i in
let* b = is_small_constant e' in
if b then return e' else return (W.StructGet (None, ty, i, e))
else return (W.StructGet (None, ty, i, e))
| _ -> return (W.StructGet (None, ty, i, e)))
| _ -> return (W.StructGet (None, ty, i, e))
let wasm_struct_set ty e i e' =
let* e = e in
let* e' = e' in
instr (W.StructSet (ty, i, e, e'))
let wasm_array_get ?(ty = Type.block_type) e e' =
let* ty = ty in
let* e = wasm_cast ty e in
let* e' = e' in
return (W.ArrayGet (None, ty, e, e'))
let wasm_array_set ?(ty = Type.block_type) e e' e'' =
let* ty = ty in
let* e = wasm_cast ty e in
let* e' = e' in
let* e'' = e'' in
instr (W.ArraySet (ty, e, e', e''))
let box_float e =
let* ty = Type.float_type in
let* e = e in
return (W.StructNew (ty, [ e ]))
let unbox_float e =
let* ty = Type.float_type in
wasm_struct_get ty (wasm_cast ty e) 0
let allocate ~tag ~deadcode_sentinal ~load l =
if tag = 254
then
let* l =
expression_list
(fun v ->
match v with
| `Var y ->
if Code.Var.equal y deadcode_sentinal
then return (W.Const (F64 0.))
else unbox_float (load y)
| `Expr e -> unbox_float (return e))
l
in
let* ty = Type.float_array_type in
return (W.ArrayNewFixed (ty, l))
else
let* l =
expression_list
(fun v ->
match v with
| `Var y -> load y
| `Expr e -> return e)
l
in
let* ty = Type.block_type in
return (W.ArrayNewFixed (ty, RefI31 (Const (I32 (Int32.of_int tag))) :: l))
let tag e = wasm_array_get e (Arith.const 0l)
let check_is_float_array e =
let* float_array = Type.float_array_type in
Value.ref_test (Value.ref float_array) e
let array_length e =
let* block = Type.block_type in
let* e = wasm_cast block e in
Arith.(return (W.ArrayLen e) - const 1l)
let float_array_length e =
let* float_array = Type.float_array_type in
let* e = wasm_cast float_array e in
return (W.ArrayLen e)
let gen_array_length e =
let a = Code.Var.fresh_n "a" in
block_expr
{ params = []; result = [ I32 ] }
(let* () = store a e in
let* () =
drop
(block_expr
{ params = []; result = [ Type.value ] }
(let* block = Type.block_type in
let* a = load a in
let* e =
Arith.(
return
(W.ArrayLen
(W.Br_on_cast_fail
( 0
, { nullable = false; typ = Eq }
, { nullable = false; typ = Type block }
, a )))
- const 1l)
in
instr (Br (1, Some e))))
in
let* e = float_array_length (load a) in
instr (W.Push e))
let array_get e e' = wasm_array_get e Arith.(e' + const 1l)
let array_set e e' e'' = wasm_array_set e Arith.(e' + const 1l) e''
let float_array_get e e' = box_float (wasm_array_get ~ty:Type.float_array_type e e')
let float_array_set e e' e'' =
wasm_array_set ~ty:Type.float_array_type e e' (unbox_float e'')
let gen_array_get e e' =
let a = Code.Var.fresh_n "a" in
let i = Code.Var.fresh_n "i" in
block_expr
{ params = []; result = [ Type.value ] }
(let* () = store a e in
let* () = store ~typ:I32 i e' in
let* () =
drop
(block_expr
{ params = []; result = [ Type.value ] }
(let* block = Type.block_type in
let* a = load a in
let* e =
wasm_array_get
(return
(W.Br_on_cast_fail
( 0
, { nullable = false; typ = Eq }
, { nullable = false; typ = Type block }
, a )))
Arith.(load i + const 1l)
in
instr (Br (1, Some e))))
in
let* e = box_float (wasm_array_get ~ty:Type.float_array_type (load a) (load i)) in
instr (W.Push e))
let gen_array_set e e' e'' =
let a = Code.Var.fresh_n "a" in
let i = Code.Var.fresh_n "i" in
let v = Code.Var.fresh_n "v" in
let* () = store a e in
let* () = store ~typ:I32 i e' in
let* () = store v e'' in
block
{ params = []; result = [] }
(let* () =
drop
(block_expr
{ params = []; result = [ Type.value ] }
(let* block = Type.block_type in
let* a = load a in
let* () =
wasm_array_set
(return
(W.Br_on_cast_fail
( 0
, { nullable = false; typ = Eq }
, { nullable = false; typ = Type block }
, a )))
Arith.(load i + const 1l)
(load v)
in
instr (Br (1, None))))
in
wasm_array_set ~ty:Type.float_array_type (load a) (load i) (unbox_float (load v)))
let bytes_length e =
let* ty = Type.string_type in
let* e = wasm_cast ty e in
return (W.ArrayLen e)
let bytes_get e e' = wasm_array_get ~ty:Type.string_type e e'
let bytes_set e e' e'' = wasm_array_set ~ty:Type.string_type e e' e''
let field e idx = wasm_array_get e (Arith.const (Int32.of_int (idx + 1)))
let set_field e idx e' = wasm_array_set e (Arith.const (Int32.of_int (idx + 1))) e'
let env_start arity =
if arity = 0
then 1
else (if include_closure_arity then 1 else 0) + if arity = 1 then 1 else 2
let load_function_pointer ~cps ~arity ?(skip_cast = false) closure =
let arity = if cps then arity - 1 else arity in
let* ty = Type.closure_type ~usage:`Access ~cps arity in
let* fun_ty = Type.function_type ~cps arity in
let casted_closure = if skip_cast then closure else wasm_cast ty closure in
let* e = wasm_struct_get ty casted_closure (env_start arity - 1) in
return (fun_ty, e)
let load_real_closure ~cps ~arity closure =
let arity = if cps then arity - 1 else arity in
let* ty = Type.dummy_closure_type ~cps ~arity in
let* cl_typ = Type.closure_type ~usage:`Access ~cps arity in
let* e =
wasm_cast cl_typ (wasm_struct_get ty (wasm_cast ty closure) (env_start arity))
in
return (cl_typ, e)
let check_function_arity f ~cps ~arity if_match if_mismatch =
let* fun_ty = Type.closure_type ~usage:`Access ~cps arity in
let* closure = load f in
let* () =
drop
(block_expr
{ params = []; result = [ Type.value ] }
(let* e =
if_match
~typ:(Some (W.Ref { nullable = false; typ = Type fun_ty }))
(return
(W.Br_on_cast_fail
( 0
, { nullable = false; typ = Eq }
, { nullable = false; typ = Type fun_ty }
, closure )))
in
instr (W.Return (Some e))))
in
if_mismatch
let make_int32 ~kind e =
let* custom_operations = Type.custom_operations_type in
let* int32_ops =
register_import
~name:
(match kind with
| `Int32 -> "int32_ops"
| `Nativeint -> "nativeint_ops")
(Global
{ mut = false; typ = Ref { nullable = false; typ = Type custom_operations } })
in
let* ty = Type.int32_type in
let* e = e in
return (W.StructNew (ty, [ GlobalGet int32_ops; e ]))
let box_int32 e = make_int32 ~kind:`Int32 e
let unbox_int32 e =
let* ty = Type.int32_type in
wasm_struct_get ty (wasm_cast ty e) 1
let make_int64 e =
let* custom_operations = Type.custom_operations_type in
let* int64_ops =
register_import
~name:"int64_ops"
(Global
{ mut = false; typ = Ref { nullable = false; typ = Type custom_operations } })
in
let* ty = Type.int64_type in
let* e = e in
return (W.StructNew (ty, [ GlobalGet int64_ops; e ]))
let box_int64 e = make_int64 e
let unbox_int64 e =
let* ty = Type.int64_type in
wasm_struct_get ty (wasm_cast ty e) 1
let box_nativeint e = make_int32 ~kind:`Nativeint e
let unbox_nativeint e =
let* ty = Type.int32_type in
wasm_struct_get ty (wasm_cast ty e) 1
end
module Constant = struct
(* dune-build-info use a 64-byte placeholder. This ensures that such
strings are encoded as a sequence of bytes in the wasm module. *)
let string_length_threshold = 64
let store_in_global ?(name = "const") c =
let name = Code.Var.fresh_n name in
let* () = register_global name { mut = false; typ = Type.value } c in
return (W.GlobalGet name)
let byte_string s =
let b = Buffer.create (String.length s) in
String.iter s ~f:(function
| '\128' .. '\255' as c ->
Buffer.add_char b (Char.chr (0xC2 lor (Char.code c lsr 6)));
Buffer.add_char b (Char.chr (0x80 lor (Char.code c land 0x3F)))
| c -> Buffer.add_char b c);
Buffer.contents b
type t =
| Const
| Const_named of string
| Mutated
let rec translate_rec c =
match c with
| Code.Int i -> return (Const, W.RefI31 (Const (I32 (Targetint.to_int32 i))))
| Tuple (tag, a, _) ->
let* ty = Type.block_type in
let* l =
Array.fold_left
~f:(fun prev c ->
let* acc = prev in
let* c = translate_rec c in
return (c :: acc))
~init:(return [])
a
in
let l = List.rev l in
let l' =
List.map
~f:(fun (const, v) ->
match const with
| Const | Const_named _ -> v
| Mutated -> W.RefI31 (Const (I32 0l)))
l
in
let c = W.ArrayNewFixed (ty, RefI31 (Const (I32 (Int32.of_int tag))) :: l') in
if
List.exists
~f:(fun (const, _) ->
match const with
| Const | Const_named _ -> false
| Mutated -> true)
l
then
let* c = store_in_global c in
let* () =
register_init_code
(snd
(List.fold_left
~f:(fun (i, before) (const, v) ->
( i + 1
, let* () = before in
match const with
| Const | Const_named _ -> return ()
| Mutated ->
Memory.wasm_array_set
(return c)
(Arith.const (Int32.of_int i))
(return v) ))
~init:(1, return ())
l))
in
return (Const, c)
else return (Const, c)
| NativeString s ->
let s =
match s with
| Utf (Utf8 s) -> s
| Byte s -> byte_string s
in
let* x =
register_import
~import_module:"str"
~name:s
(Global { mut = false; typ = Ref { nullable = false; typ = Extern } })
in
let* ty = Type.js_type in
return
(Const_named ("str_" ^ s), W.StructNew (ty, [ AnyConvertExtern (GlobalGet x) ]))
| String s ->
let* ty = Type.string_type in
if String.length s >= string_length_threshold
then
let name = Code.Var.fresh_n "string" in
let* () = register_data_segment name s in
return
( Mutated
, W.ArrayNewData
(ty, name, Const (I32 0l), Const (I32 (Int32.of_int (String.length s))))
)
else
let l =
String.fold_right
~f:(fun c r -> W.Const (I32 (Int32.of_int (Char.code c))) :: r)
s
~init:[]
in
return (Const_named ("str_" ^ s), W.ArrayNewFixed (ty, l))
| Float f ->
let* ty = Type.float_type in
return (Const, W.StructNew (ty, [ Const (F64 (Int64.float_of_bits f)) ]))
| Float_array l ->
let l = Array.to_list l in
let* ty = Type.float_array_type in
(*ZZZ Boxed array? *)
return
( Const
, W.ArrayNewFixed
(ty, List.map ~f:(fun f -> W.Const (F64 (Int64.float_of_bits f))) l) )
| Int64 i ->
let* e = Memory.make_int64 (return (W.Const (I64 i))) in
return (Const, e)
| Int32 i ->
let* e = Memory.make_int32 ~kind:`Int32 (return (W.Const (I32 i))) in
return (Const, e)
| NativeInt i ->
let* e = Memory.make_int32 ~kind:`Nativeint (return (W.Const (I32 i))) in
return (Const, e)
let translate c =
match c with
| Code.Int i -> return (W.Const (I32 (Targetint.to_int32 i)))
| _ -> (
let* const, c = translate_rec c in
match const with
| Const ->
let* b = is_small_constant c in
if b then return c else store_in_global c
| Const_named name -> store_in_global ~name c
| Mutated ->
let name = Code.Var.fresh_n "const" in
let* () =
register_global
~constant:true
name
{ mut = true; typ = Type.value }
(W.RefI31 (Const (I32 0l)))
in
let* () = register_init_code (instr (W.GlobalSet (name, c))) in
return (W.GlobalGet name))
end
module Closure = struct
let get_free_variables ~context info =
List.filter
~f:(fun x -> not (Code.Var.Hashtbl.mem context.constants x))
info.Closure_conversion.free_variables
let rec is_last_fun l f =
match l with
| [] -> false
| [ (g, _) ] -> Code.Var.equal f g
| _ :: r -> is_last_fun r f
let translate ~context ~closures ~cps f =
let info = Code.Var.Map.find f closures in
let free_variables = get_free_variables ~context info in
assert (
not
(List.exists
~f:(fun x -> Code.Var.Set.mem x context.globalized_variables)
free_variables));
let _, arity = List.find ~f:(fun (f', _) -> Code.Var.equal f f') info.functions in
let arity = if cps then arity - 1 else arity in
let* curry_fun = if arity > 1 then need_curry_fun ~cps ~arity else return f in
if List.is_empty free_variables
then
let* typ = Type.closure_type ~usage:`Alloc ~cps arity in
let name = Code.Var.fork f in
let* () =
register_global
name
{ mut = false; typ = Type.value }
(W.StructNew
( typ
, if arity = 0
then [ W.RefFunc f ]
else
let code_pointers =
if arity = 1 then [ W.RefFunc f ] else [ RefFunc curry_fun; RefFunc f ]
in
if include_closure_arity
then Const (I32 (Int32.of_int arity)) :: code_pointers
else code_pointers ))
in
return (W.GlobalGet name)
else
let* env_type = expression_list variable_type free_variables in
let env_type_id =
try Hashtbl.find context.closure_types env_type
with Not_found ->
let id = Hashtbl.length context.closure_types in
Hashtbl.add context.closure_types env_type id;
id
in
info.id <- Some env_type_id;
match info.Closure_conversion.functions with
| [] -> assert false
| [ _ ] ->
let* typ = Type.env_type ~cps ~arity ~env_type_id ~env_type in
let* l = expression_list load free_variables in
return
(W.StructNew
( typ
, (if arity = 0
then [ W.RefFunc f ]
else
let code_pointers =
if arity = 1
then [ W.RefFunc f ]
else [ RefFunc curry_fun; RefFunc f ]
in
if include_closure_arity
then W.Const (I32 (Int32.of_int arity)) :: code_pointers
else code_pointers)
@ l ))
| (g, _) :: _ as functions ->
let function_count = List.length functions in
let* env_typ = Type.rec_env_type ~function_count ~env_type_id ~env_type in
let env =
if Code.Var.equal f g
then
let env = Code.Var.fresh () in
let* () = set_closure_env f env in
let* l = expression_list load free_variables in
tee
~typ:(W.Ref { nullable = false; typ = Type env_typ })
env
(return
(W.StructNew
( env_typ
, List.init ~len:function_count ~f:(fun _ ->
W.RefI31 (W.Const (I32 0l)))
@ l )))
else
let* env = get_closure_env g in
let* () = set_closure_env f env in
load env
in
let* typ =
Type.rec_closure_type ~cps ~arity ~function_count ~env_type_id ~env_type
in
let res =
let* env = env in
return
(W.StructNew
( typ
, (let code_pointers =
if arity = 1
then [ W.RefFunc f ]
else [ RefFunc curry_fun; RefFunc f ]
in
if include_closure_arity
then W.Const (I32 (Int32.of_int arity)) :: code_pointers
else code_pointers)
@ [ env ] ))
in
if is_last_fun functions f
then
seq
(snd
(List.fold_left
~f:(fun (i, prev) (g, _) ->
( i + 1
, let* () = prev in
Memory.wasm_struct_set
env_typ
env
i
(if Code.Var.equal f g then tee f res else load g) ))
~init:(0, return ())
functions))
(load f)
else res
let bind_environment ~context ~closures ~cps f =
let info = Code.Var.Map.find f closures in
let free_variables = get_free_variables ~context info in
let free_variable_count = List.length free_variables in
if free_variable_count = 0
then
(* The closures are all constants and the environment is empty. *)
let* _ = add_var (Code.Var.fresh ()) in
return ()
else
let env_type_id = Option.value ~default:(-1) info.id in
let _, arity = List.find ~f:(fun (f', _) -> Code.Var.equal f f') info.functions in
let arity = if cps then arity - 1 else arity in
let offset = Memory.env_start arity in
match info.Closure_conversion.functions with
| [ _ ] ->
let* typ = Type.env_type ~cps ~arity ~env_type_id ~env_type:[] in
let* _ = add_var f in
let env = Code.Var.fresh_n "env" in
let* () =
store
~typ:(W.Ref { nullable = false; typ = Type typ })
env
Memory.(wasm_cast typ (load f))
in
snd
(List.fold_left
~f:(fun (i, prev) x ->
( i + 1
, let* () = prev in
define_var x Memory.(wasm_struct_get typ (load env) i) ))
~init:(offset, return ())
free_variables)
| functions ->
let function_count = List.length functions in
let* typ =
Type.rec_closure_type ~cps ~arity ~function_count ~env_type_id ~env_type:[]
in
let* _ = add_var f in
let env = Code.Var.fresh_n "env" in
let* env_typ = Type.rec_env_type ~function_count ~env_type_id ~env_type:[] in
let* () =
store
~typ:(W.Ref { nullable = false; typ = Type env_typ })
env
Memory.(wasm_struct_get typ (wasm_cast typ (load f)) offset)
in
snd
(List.fold_left
~f:(fun (i, prev) x ->
( i + 1
, let* () = prev in
define_var x Memory.(wasm_struct_get env_typ (load env) i) ))
~init:(0, return ())
(List.map ~f:fst functions @ free_variables))
let curry_allocate ~cps ~arity m ~f ~closure ~arg =
let* ty = Type.curry_type ~cps arity m in
let* cl_ty =
if m = arity
then Type.closure_type ~usage:`Alloc ~cps arity
else Type.curry_type ~cps arity (m + 1)
in
let* closure = Memory.wasm_cast cl_ty (load closure) in
let* arg = load arg in
let closure_contents = [ W.RefFunc f; closure; arg ] in
return
(W.StructNew
( ty
, if include_closure_arity
then Const (I32 1l) :: closure_contents
else closure_contents ))
let curry_load ~cps ~arity m closure =
let m = m + 1 in
let* ty = Type.curry_type ~cps arity m in
let* cl_ty =
if m = arity
then Type.closure_type ~usage:`Alloc ~cps arity
else Type.curry_type ~cps arity (m + 1)
in
let cast e = if m = 2 then Memory.wasm_cast ty e else e in
let offset = Memory.env_start 1 in
return
( Memory.wasm_struct_get ty (cast (load closure)) (offset + 1)
, Memory.wasm_struct_get ty (cast (load closure)) offset
, Some (W.Ref { nullable = false; typ = Type cl_ty }) )
let dummy ~cps ~arity =
(* The runtime only handle function with arity up to 4
(1 for CPS functions) *)
let arity = if cps then 1 else if arity > 4 then 1 else arity in
let* dummy_fun = need_dummy_fun ~cps ~arity in
let* ty = Type.dummy_closure_type ~cps ~arity in
let* curry_fun = if arity > 1 then need_curry_fun ~cps ~arity else return dummy_fun in
let* cl_typ = Type.closure_type ~usage:`Alloc ~cps arity in
let closure_contents =
if arity = 1
then [ W.RefFunc dummy_fun; RefNull (Type cl_typ) ]
else [ RefFunc curry_fun; RefFunc dummy_fun; RefNull (Type cl_typ) ]
in
return
(W.StructNew
( ty
, if include_closure_arity
then Const (I32 1l) :: closure_contents
else closure_contents ))
end
module Math = struct
let float_func_type n =
{ W.params = List.init ~len:n ~f:(fun _ : W.value_type -> F64); result = [ F64 ] }
let unary name x =
let* f = register_import ~import_module:"Math" ~name (Fun (float_func_type 1)) in
let* x = x in
return (W.Call (f, [ x ]))
let cos f = unary "cos" f
let sin f = unary "sin" f
let tan f = unary "tan" f
let acos f = unary "acos" f
let asin f = unary "asin" f
let atan f = unary "atan" f
let cosh f = unary "cosh" f
let sinh f = unary "sinh" f
let tanh f = unary "tanh" f
let acosh f = unary "acosh" f
let asinh f = unary "asinh" f
let atanh f = unary "atanh" f
let cbrt f = unary "cbrt" f
let exp f = unary "exp" f
let expm1 f = unary "expm1" f
let log f = unary "log" f
let log1p f = unary "log1p" f
let log2 f = unary "log2" f
let log10 f = unary "log10" f
let binary name x y =
let* f = register_import ~import_module:"Math" ~name (Fun (float_func_type 2)) in
let* x = x in
let* y = y in
return (W.Call (f, [ x; y ]))
let atan2 f g = binary "atan2" f g
let hypot f g = binary "hypot" f g
let power f g = binary "pow" f g
let fmod f g = binary "fmod" f g
let round x =
let* f = register_import ~name:"caml_round" (Fun (float_func_type 1)) in
let* x = x in
return (W.Call (f, [ x ]))
let exp2 x = power (return (W.Const (F64 2.))) x
end
module JavaScript = struct
let anyref = W.Ref { nullable = true; typ = Any }
let invoke_fragment name args =
let* f =
let* unit = unit_name in
register_import
~import_module:
(match unit with
| None -> "fragments"
| Some unit -> unit ^ ".fragments")
~name
(Fun { params = List.map ~f:(fun _ -> anyref) args; result = [ anyref ] })
in
let* wrap =
register_import ~name:"wrap" (Fun { params = [ anyref ]; result = [ Type.value ] })
in
let* unwrap =
register_import
~name:"unwrap"
(Fun { params = [ Type.value ]; result = [ anyref ] })
in
let* args =
expression_list
(fun e ->
let* e = e in
return (W.Call (unwrap, [ e ])))
args
in
return (W.Call (wrap, [ Call (f, args) ]))
end
let internal_primitives =
let l = ref [] in
let register name ?(kind = `Mutator) f = l := (name, kind, f) :: !l in
let module J = Javascript in
let call_prim ~transl_prim_arg name args =
let arity = List.length args in
(* [Type.func_type] counts one additional argument for the closure environment (absent
here) *)
let* f = register_import ~name (Fun (Type.primitive_type arity)) in
let args = List.map ~f:transl_prim_arg args in
let* args = expression_list Fun.id args in
return (W.Call (f, args))
in
let register_js_expr (prim_name, kind) =
register prim_name ~kind (fun transl_prim_arg l ->
match l with
| Code.[ Pc (String str) ] -> (
try
let lex = Parse_js.Lexer.of_string str in
let e = Parse_js.parse_expr lex in
let name = Printf.sprintf "js_expr_%x" (String.hash str) in
let* () =
register_fragment name (fun () ->
EArrow
(J.fun_ [] [ Return_statement (Some e, N), N ] N, true, AUnknown))
in
JavaScript.invoke_fragment name []
with Parse_js.Parsing_error pi ->
failwith
(Printf.sprintf
"Parse error in argument of %s %S at position %d:%d"
prim_name
str
pi.Parse_info.line
pi.Parse_info.col))
| [ Pv _ ] ->
let* () =
register_fragment "eval" (fun () ->
let lex = Parse_js.Lexer.of_string {|(x)=>eval("("+x+")")|} in
Parse_js.parse_expr lex)
in
JavaScript.invoke_fragment
"eval"
[ call_prim ~transl_prim_arg "caml_jsstring_of_string" l ]
| [] | _ :: _ ->
failwith (Printf.sprintf "Wrong number argument to primitive %s" prim_name))
in
List.iter
~f:register_js_expr
[ "caml_js_expr", `Mutator
; "caml_pure_js_expr", `Pure
; "caml_js_var", `Mutable
; "caml_js_eval_string", `Mutator
];
register "%caml_js_opt_call" (fun transl_prim_arg l ->
let arity = List.length l - 2 in
let name = Printf.sprintf "call_%d" arity in
let* () =
register_fragment name (fun () ->
let f = Utf8_string.of_string_exn "f" in
let o = Utf8_string.of_string_exn "o" in
let params =
List.init ~len:arity ~f:(fun i ->
Utf8_string.of_string_exn (Printf.sprintf "x%d" i))
in
EArrow
( J.fun_
(List.map ~f:J.ident (f :: o :: params))
[ ( Return_statement
( Some
(J.call
(J.dot
(EVar (J.ident f))
(Utf8_string.of_string_exn "call"))
(List.map ~f:(fun x -> J.EVar (J.ident x)) (o :: params))
N)
, N )
, N )
]
N
, true
, AUnknown ))
in
let l = List.map ~f:transl_prim_arg l in
JavaScript.invoke_fragment name l);
register "%caml_js_opt_fun_call" (fun transl_prim_arg l ->
let arity = List.length l - 1 in
let name = Printf.sprintf "fun_call_%d" arity in
let* () =
register_fragment name (fun () ->
let f = Utf8_string.of_string_exn "f" in
let params =
List.init ~len:arity ~f:(fun i ->
Utf8_string.of_string_exn (Printf.sprintf "x%d" i))
in
EArrow
( J.fun_
(List.map ~f:J.ident (f :: params))
[ ( Return_statement
( Some
(J.call
(EVar (J.ident f))
(List.map ~f:(fun x -> J.EVar (J.ident x)) params)
N)
, N )
, N )
]
N
, true
, AUnknown ))
in
let l = List.map ~f:transl_prim_arg l in
JavaScript.invoke_fragment name l);
register "%caml_js_opt_meth_call" (fun transl_prim_arg l ->
match l with
| o :: Code.Pc (NativeString (Utf meth)) :: args ->
let arity = List.length args in
let name =
let (Utf8 name) = meth in
Printf.sprintf "meth_call_%d_%s" arity name
in
let* () =
register_fragment name (fun () ->
let o = Utf8_string.of_string_exn "o" in
let params =
List.init ~len:arity ~f:(fun i ->
Utf8_string.of_string_exn (Printf.sprintf "x%d" i))
in
EArrow
( J.fun_
(List.map ~f:J.ident (o :: params))
[ ( Return_statement
( Some
(J.call
(J.dot (EVar (J.ident o)) meth)
(List.map ~f:(fun x -> J.EVar (J.ident x)) params)
N)
, N )
, N )
]
N
, true
, AUnknown ))
in
let o = transl_prim_arg o in
let args = List.map ~f:transl_prim_arg args in
JavaScript.invoke_fragment name (o :: args)
| _ -> assert false);
register "%caml_js_opt_new" (fun transl_prim_arg l ->
let arity = List.length l - 1 in
let name = Printf.sprintf "new_%d" arity in
let* () =
register_fragment name (fun () ->
let c = Utf8_string.of_string_exn "c" in
let params =
List.init ~len:arity ~f:(fun i ->
Utf8_string.of_string_exn (Printf.sprintf "x%d" i))
in
EArrow
( J.fun_
(List.map ~f:J.ident (c :: params))
[ ( Return_statement
( Some
(ENew
( EVar (J.ident c)
, Some
(List.map
~f:(fun x -> J.Arg (EVar (J.ident x)))
params)
, N ))
, N )
, N )
]
N
, true
, AUnknown ))
in
let l = List.map ~f:transl_prim_arg l in
JavaScript.invoke_fragment name l);
register "caml_js_get" (fun transl_prim_arg l ->
match l with
| [ x; Code.Pc (NativeString (Utf prop)) ] when J.is_ident' prop ->
let name =
let (Utf8 name) = prop in
Printf.sprintf "get_%s" name
in
let* () =
register_fragment name (fun () ->
let o = Utf8_string.of_string_exn "o" in
EArrow
( J.fun_
[ J.ident o ]
[ Return_statement (Some (J.dot (EVar (J.ident o)) prop), N), N ]
N
, true
, AUnknown ))
in
JavaScript.invoke_fragment name [ transl_prim_arg x ]
| [ _; _ ] -> call_prim ~transl_prim_arg "caml_js_get" l
| _ -> assert false);
register "caml_js_set" (fun transl_prim_arg l ->
match l with
| [ x; Code.Pc (NativeString (Utf prop)); y ] when J.is_ident' prop ->
let name =
let (Utf8 name) = prop in
Printf.sprintf "set_%s" name
in
let* () =
register_fragment name (fun () ->
let o = Utf8_string.of_string_exn "o" in
let v = Utf8_string.of_string_exn "v" in
EArrow
( J.fun_
[ J.ident o; J.ident v ]
[ ( Return_statement
( Some
(J.EBin
(J.Eq, J.dot (EVar (J.ident o)) prop, EVar (J.ident v)))
, N )
, N )
]
N
, true
, AUnknown ))
in
let l = List.map ~f:transl_prim_arg [ x; y ] in
JavaScript.invoke_fragment name l
| [ _; _; _ ] -> call_prim ~transl_prim_arg "caml_js_set" l
| _ -> assert false);
let counter = ref (-1) in
register "%caml_js_opt_object" (fun transl_prim_arg l ->
let rec split kl vl l =
match l with
| [] -> List.rev kl, List.rev vl
| Code.Pc (NativeString (Utf k)) :: v :: r -> split (k :: kl) (v :: vl) r
| _ -> assert false
in
let kl, vl = split [] [] l in
let name =
incr counter;
Printf.sprintf "obj_%d" !counter
in
let* () =
register_fragment name (fun () ->
let arity = List.length kl in
let params =
List.init ~len:arity ~f:(fun i ->
Utf8_string.of_string_exn (Printf.sprintf "x%d" i))
in
EArrow
( J.fun_
(List.map ~f:J.ident params)
[ ( Return_statement
( Some
(EObj
(List.map2
~f:(fun k x ->
J.Property
( (if J.is_ident' k then J.PNI k else J.PNS k)
, EVar (J.ident x) ))
kl
params))
, N )
, N )
]
N
, true
, AUnknown ))
in
let l = List.map ~f:transl_prim_arg vl in
JavaScript.invoke_fragment name l);
!l
let externref = W.Ref { nullable = true; typ = Extern }
let handle_exceptions ~result_typ ~fall_through ~context body x exn_handler =
let* js_tag = register_import ~name:"javascript_exception" (Tag externref) in
let* ocaml_tag = register_import ~name:"ocaml_exception" (Tag Type.value) in
let* f =
register_import
~name:"caml_wrap_exception"
(Fun { params = [ externref ]; result = [ Type.value ] })
in
block
{ params = []; result = result_typ }
(let* () =
store
x
(block_expr
{ params = []; result = [ Type.value ] }
(let* exn =
block_expr
{ params = []; result = [ externref ] }
(let* e =
try_expr
{ params = []; result = [ externref ] }
(body
~result_typ:[ externref ]
~fall_through:`Skip
~context:(`Skip :: `Skip :: `Catch :: context))
[ ocaml_tag, 1, Type.value; js_tag, 0, externref ]
in
instr (W.Push e))
in
instr (W.CallInstr (f, [ exn ]))))
in
let* () = no_event in
exn_handler ~result_typ ~fall_through ~context)
let post_process_function_body = Initialize_locals.f
let entry_point ~toplevel_fun =
let code =
let* main =
register_import
~name:"caml_main"
(Fun { params = [ W.Ref { nullable = false; typ = Func } ]; result = [] })
in
instr (W.CallInstr (main, [ RefFunc toplevel_fun ]))
in
{ W.params = []; result = [] }, [], code
|