1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
|
(* Wasm_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
open Code
module W = Wasm_ast
open Code_generation
let times = Debug.find "times"
let effects_cps () =
match Config.effects () with
| `Cps -> true
| `Disabled | `Jspi -> false
| `Double_translation -> assert false
module Generate (Target : Target_sig.S) = struct
open Target
type ctx =
{ live : int array
; in_cps : Effects.in_cps
; deadcode_sentinal : Var.t
; global_flow_info : Global_flow.info
; types : Typing.typ Var.Tbl.t
; blocks : block Addr.Map.t
; closures : Closure_conversion.closure Var.Map.t
; global_context : Code_generation.context
}
let label_index context pc =
let rec index_rec context pc i =
match context with
| `Block pc' :: _ when pc = pc' -> i
| (`Block _ | `Skip | `Catch) :: rem -> index_rec rem pc (i + 1)
| [] -> assert false
in
index_rec context pc 0
let catch_index context =
let rec index_rec context i =
match context with
| `Catch :: _ -> Some i
| (`Block _ | `Skip | `Return) :: rem -> index_rec rem (i + 1)
| [] -> None
in
index_rec context 0
let bound_error_pc = -1
let zero_divide_pc = -2
type repr =
| Value
| Float
| Int32
| Nativeint
| Int64
let repr_type r =
match r with
| Value -> Type.value
| Float -> F64
| Int32 -> I32
| Nativeint -> I32
| Int64 -> I64
let specialized_primitive_type (_, params, result) =
{ W.params = List.map ~f:repr_type params; result = [ repr_type result ] }
let box_value r e =
match r with
| Value -> e
| Float -> Memory.box_float e
| Int32 -> Memory.box_int32 e
| Nativeint -> Memory.box_nativeint e
| Int64 -> Memory.box_int64 e
let unbox_value r e =
match r with
| Value -> e
| Float -> Memory.unbox_float e
| Int32 -> Memory.unbox_int32 e
| Nativeint -> Memory.unbox_nativeint e
| Int64 -> Memory.unbox_int64 e
let specialized_primitives =
let h = String.Hashtbl.create 18 in
List.iter
~f:(fun (nm, typ) -> String.Hashtbl.add h nm typ)
[ "caml_int32_bswap", (`Pure, [ Int32 ], Int32)
; "caml_nativeint_bswap", (`Pure, [ Nativeint ], Nativeint)
; "caml_int64_bswap", (`Pure, [ Int64 ], Int64)
; "caml_int32_compare", (`Pure, [ Int32; Int32 ], Value)
; "caml_nativeint_compare", (`Pure, [ Nativeint; Nativeint ], Value)
; "caml_int64_compare", (`Pure, [ Int64; Int64 ], Value)
; "caml_string_get32", (`Mutator, [ Value; Value ], Int32)
; "caml_string_get64", (`Mutator, [ Value; Value ], Int64)
; "caml_bytes_get32", (`Mutator, [ Value; Value ], Int32)
; "caml_bytes_get64", (`Mutator, [ Value; Value ], Int64)
; "caml_bytes_set32", (`Mutator, [ Value; Value; Int32 ], Value)
; "caml_bytes_set64", (`Mutator, [ Value; Value; Int64 ], Value)
; "caml_lxm_next", (`Mutable, [ Value ], Int64)
; "caml_ba_uint8_get32", (`Mutator, [ Value; Value ], Int32)
; "caml_ba_uint8_get64", (`Mutator, [ Value; Value ], Int64)
; "caml_ba_uint8_set32", (`Mutator, [ Value; Value; Int32 ], Value)
; "caml_ba_uint8_set64", (`Mutator, [ Value; Value; Int64 ], Value)
; "caml_nextafter_float", (`Pure, [ Float; Float ], Float)
; "caml_classify_float", (`Pure, [ Float ], Value)
; "caml_ldexp_float", (`Pure, [ Float; Value ], Float)
; "caml_erf_float", (`Pure, [ Float ], Float)
; "caml_erfc_float", (`Pure, [ Float ], Float)
; "caml_float_compare", (`Pure, [ Float; Float ], Value)
];
h
let float_bin_op' op f g =
Memory.box_float (op (Memory.unbox_float f) (Memory.unbox_float g))
let float_bin_op op f g =
let* f = Memory.unbox_float f in
let* g = Memory.unbox_float g in
Memory.box_float (return (W.BinOp (F64 op, f, g)))
let float_un_op' op f = Memory.box_float (op (Memory.unbox_float f))
let float_un_op op f =
let* f = Memory.unbox_float f in
Memory.box_float (return (W.UnOp (F64 op, f)))
let float_comparison op f g =
let* f = Memory.unbox_float f in
let* g = Memory.unbox_float g in
return (W.BinOp (F64 op, f, g))
let int32_bin_op op f g =
let* f = Memory.unbox_int32 f in
let* g = Memory.unbox_int32 g in
Memory.box_int32 (return (W.BinOp (I32 op, f, g)))
let int32_shift_op op f g =
let* f = Memory.unbox_int32 f in
let* g = g in
Memory.box_int32 (return (W.BinOp (I32 op, f, g)))
let int64_bin_op op f g =
let* f = Memory.unbox_int64 f in
let* g = Memory.unbox_int64 g in
Memory.box_int64 (return (W.BinOp (I64 op, f, g)))
let int64_shift_op op f g =
let* f = Memory.unbox_int64 f in
let* g = g in
Memory.box_int64 (return (W.BinOp (I64 op, f, I64ExtendI32 (S, g))))
let nativeint_bin_op op f g =
let* f = Memory.unbox_nativeint f in
let* g = Memory.unbox_nativeint g in
Memory.box_nativeint (return (W.BinOp (I32 op, f, g)))
let nativeint_shift_op op f g =
let* f = Memory.unbox_nativeint f in
let* g = g in
Memory.box_nativeint (return (W.BinOp (I32 op, f, g)))
let get_var_type ctx x = Var.Tbl.get ctx.types x
let get_type ctx p =
match p with
| Pv x -> get_var_type ctx x
| Pc c -> Typing.constant_type c
let convert ~(from : Typing.typ) ~(into : Typing.typ) e =
match from, into with
| Int Unnormalized, Int Normalized -> Arith.((e lsl const 1l) asr const 1l)
| Int (Normalized | Unnormalized), Int (Normalized | Unnormalized) -> e
| _, Int (Normalized | Unnormalized) -> Value.int_val e
| Int (Unnormalized | Normalized), _ -> Value.val_int e
| _ -> e
let load_and_box ctx x = convert ~from:(get_var_type ctx x) ~into:Top (load x)
let transl_prim_arg ctx ?(typ = Typing.Top) x =
convert
~from:(get_type ctx x)
~into:typ
(match x with
| Pv x -> load x
| Pc c -> Constant.translate c)
let translate_int_comparison ctx op x y =
match get_type ctx x, get_type ctx y with
| Int Unnormalized, Int Unnormalized
| Int Normalized, Int Unnormalized
| Int Unnormalized, Int Normalized ->
op
Arith.(transl_prim_arg ctx ~typ:(Int Unnormalized) x lsl const 1l)
Arith.(transl_prim_arg ctx ~typ:(Int Unnormalized) y lsl const 1l)
| _ ->
op
(transl_prim_arg ctx ~typ:(Int Normalized) x)
(transl_prim_arg ctx ~typ:(Int Normalized) y)
let translate_int_equality ctx ~negate x y =
match get_type ctx x, get_type ctx y with
| (Int Normalized as typ), Int Normalized ->
(if negate then Arith.( <> ) else Arith.( = ))
(transl_prim_arg ctx ~typ x)
(transl_prim_arg ctx ~typ y)
| Int (Normalized | Unnormalized), Int (Normalized | Unnormalized) ->
(if negate then Arith.( <> ) else Arith.( = ))
Arith.(transl_prim_arg ctx ~typ:(Int Unnormalized) x lsl const 1l)
Arith.(transl_prim_arg ctx ~typ:(Int Unnormalized) y lsl const 1l)
| Top, Top ->
Value.js_eqeqeq
~negate
(transl_prim_arg ctx ~typ:Top x)
(transl_prim_arg ctx ~typ:Top y)
| Bot, _ | _, Bot ->
(* this is deadcode *)
(if negate then Value.phys_neq else Value.phys_eq)
(transl_prim_arg ctx ~typ:Top x)
(transl_prim_arg ctx ~typ:Top y)
| (Int _ | Number _ | Tuple _), _ | _, (Int _ | Number _ | Tuple _) ->
(* Only Top may contain JavaScript values *)
(if negate then Value.phys_neq else Value.phys_eq)
(transl_prim_arg ctx ~typ:Top x)
(transl_prim_arg ctx ~typ:Top y)
let internal_primitives =
let h = String.Hashtbl.create 128 in
List.iter
~f:(fun (nm, k, f) ->
String.Hashtbl.add h nm (k, fun ctx _ l -> f (fun x -> transl_prim_arg ctx x) l))
internal_primitives;
h
let register_prim name k f = String.Hashtbl.add internal_primitives name (k, f)
let invalid_arity name l ~expected =
failwith
(Printf.sprintf
"Invalid arity for primitive %s. Expecting %d but used with %d."
name
expected
(List.length l))
let register_un_prim name k ?typ f =
register_prim name k (fun ctx _ l ->
match l with
| [ x ] -> f (transl_prim_arg ctx ?typ x)
| l -> invalid_arity name l ~expected:1)
let register_bin_prim name k ?tx ?ty f =
register_prim name k (fun ctx _ l ->
match l with
| [ x; y ] -> f (transl_prim_arg ctx ?typ:tx x) (transl_prim_arg ctx ?typ:ty y)
| _ -> invalid_arity name l ~expected:2)
let register_bin_prim_ctx name ?tx ?ty f =
register_prim name `Mutator (fun ctx context l ->
match l with
| [ x; y ] ->
f context (transl_prim_arg ctx ?typ:tx x) (transl_prim_arg ctx ?typ:ty y)
| _ -> invalid_arity name l ~expected:2)
let register_tern_prim name ?ty ?tz f =
register_prim name `Mutator (fun ctx _ l ->
match l with
| [ x; y; z ] ->
f
(transl_prim_arg ctx x)
(transl_prim_arg ctx ?typ:ty y)
(transl_prim_arg ctx ?typ:tz z)
| _ -> invalid_arity name l ~expected:3)
let register_tern_prim_ctx name ?ty ?tz f =
register_prim name `Mutator (fun ctx context l ->
match l with
| [ x; y; z ] ->
f
context
(transl_prim_arg ctx x)
(transl_prim_arg ctx ?typ:ty y)
(transl_prim_arg ctx ?typ:tz z)
| _ -> invalid_arity name l ~expected:3)
let () =
register_bin_prim
"caml_array_unsafe_get"
`Mutable
~ty:(Int Normalized)
Memory.gen_array_get;
register_bin_prim
"caml_floatarray_unsafe_get"
`Mutable
~ty:(Int Normalized)
Memory.float_array_get;
register_tern_prim "caml_array_unsafe_set" ~ty:(Int Normalized) (fun x y z ->
seq (Memory.gen_array_set x y z) Value.unit);
register_tern_prim "caml_array_unsafe_set_addr" ~ty:(Int Normalized) (fun x y z ->
seq (Memory.array_set x y z) Value.unit);
register_tern_prim "caml_floatarray_unsafe_set" ~ty:(Int Normalized) (fun x y z ->
seq (Memory.float_array_set x y z) Value.unit);
register_bin_prim "caml_string_unsafe_get" `Pure ~ty:(Int Normalized) Memory.bytes_get;
register_bin_prim
"caml_bytes_unsafe_get"
`Mutable
~ty:(Int Normalized)
Memory.bytes_get;
register_tern_prim
"caml_string_unsafe_set"
~ty:(Int Normalized)
~tz:(Int Unnormalized)
(fun x y z -> seq (Memory.bytes_set x y z) Value.unit);
register_tern_prim
"caml_bytes_unsafe_set"
~ty:(Int Normalized)
~tz:(Int Unnormalized)
(fun x y z -> seq (Memory.bytes_set x y z) Value.unit);
let bytes_get context x y =
seq
(let* cond = Arith.uge y (Memory.bytes_length x) in
instr (W.Br_if (label_index context bound_error_pc, cond)))
(Memory.bytes_get x y)
in
register_bin_prim_ctx "caml_string_get" ~ty:(Int Normalized) bytes_get;
register_bin_prim_ctx "caml_bytes_get" ~ty:(Int Normalized) bytes_get;
let bytes_set context x y z =
seq
(let* cond = Arith.uge y (Memory.bytes_length x) in
let* () = instr (W.Br_if (label_index context bound_error_pc, cond)) in
Memory.bytes_set x y z)
Value.unit
in
register_tern_prim_ctx
"caml_string_set"
~ty:(Int Normalized)
~tz:(Int Unnormalized)
bytes_set;
register_tern_prim_ctx
"caml_bytes_set"
~ty:(Int Normalized)
~tz:(Int Unnormalized)
bytes_set;
register_un_prim "caml_ml_string_length" `Pure (fun x -> Memory.bytes_length x);
register_un_prim "caml_ml_bytes_length" `Pure (fun x -> Memory.bytes_length x);
register_bin_prim
"%int_add"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_add;
register_bin_prim
"%int_sub"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_sub;
register_bin_prim
"%int_mul"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_mul;
register_bin_prim
"%direct_int_mul"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_mul;
register_bin_prim
"%direct_int_div"
`Pure
~tx:(Int Normalized)
~ty:(Int Normalized)
Value.int_div;
register_bin_prim_ctx
"%int_div"
~tx:(Int Normalized)
~ty:(Int Normalized)
(fun context x y ->
seq
(let* cond = Arith.eqz y in
instr (W.Br_if (label_index context zero_divide_pc, cond)))
(Value.int_div x y));
register_bin_prim
"%direct_int_mod"
`Pure
~tx:(Int Normalized)
~ty:(Int Normalized)
Value.int_mod;
register_bin_prim_ctx
"%int_mod"
~tx:(Int Normalized)
~ty:(Int Normalized)
(fun context x y ->
seq
(let* cond = Arith.eqz y in
instr (W.Br_if (label_index context zero_divide_pc, cond)))
(Value.int_mod x y));
register_un_prim "%int_neg" `Pure ~typ:(Int Unnormalized) Value.int_neg;
register_bin_prim
"%int_or"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_or;
register_bin_prim
"%int_and"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_and;
register_bin_prim
"%int_xor"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_xor;
register_bin_prim
"%int_lsl"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_lsl;
register_bin_prim
"%int_lsr"
`Pure
~tx:(Int Unnormalized)
~ty:(Int Unnormalized)
Value.int_lsr;
register_bin_prim
"%int_asr"
`Pure
~tx:(Int Normalized)
~ty:(Int Unnormalized)
Value.int_asr;
register_un_prim "%direct_obj_tag" `Pure Memory.tag;
register_bin_prim_ctx "caml_check_bound" ~ty:(Int Normalized) (fun context x y ->
seq
(let* cond = Arith.uge y (Memory.array_length x) in
instr (W.Br_if (label_index context bound_error_pc, cond)))
x);
register_bin_prim_ctx "caml_check_bound_gen" ~ty:(Int Normalized) (fun context x y ->
seq
(let* cond = Arith.uge y (Memory.gen_array_length x) in
instr (W.Br_if (label_index context bound_error_pc, cond)))
x);
register_bin_prim_ctx
"caml_check_bound_float"
~ty:(Int Normalized)
(fun context x y ->
seq
(let a = Code.Var.fresh () in
let* () = store a x in
let label = label_index context bound_error_pc in
(* If this is not a float array, it must be the
empty array, and the bound check should fail. *)
let* cond = Arith.eqz (Memory.check_is_float_array (load a)) in
let* () = instr (W.Br_if (label, cond)) in
let* cond = Arith.uge y (Memory.float_array_length (load a)) in
instr (W.Br_if (label, cond)))
x);
register_bin_prim "caml_add_float" `Pure (fun f g -> float_bin_op Add f g);
register_bin_prim "caml_sub_float" `Pure (fun f g -> float_bin_op Sub f g);
register_bin_prim "caml_mul_float" `Pure (fun f g -> float_bin_op Mul f g);
register_bin_prim "caml_div_float" `Pure (fun f g -> float_bin_op Div f g);
register_bin_prim "caml_copysign_float" `Pure (fun f g -> float_bin_op CopySign f g);
register_un_prim "caml_signbit_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
let sign = W.BinOp (F64 CopySign, Const (F64 1.), f) in
return (W.BinOp (F64 Lt, sign, Const (F64 0.))));
register_un_prim "caml_neg_float" `Pure (fun f -> float_un_op Neg f);
register_un_prim "caml_abs_float" `Pure (fun f -> float_un_op Abs f);
register_un_prim "caml_ceil_float" `Pure (fun f -> float_un_op Ceil f);
register_un_prim "caml_floor_float" `Pure (fun f -> float_un_op Floor f);
register_un_prim "caml_trunc_float" `Pure (fun f -> float_un_op Trunc f);
register_un_prim "caml_round_float" `Pure (fun f -> float_un_op' Math.round f);
register_un_prim "caml_sqrt_float" `Pure (fun f -> float_un_op Sqrt f);
register_bin_prim "caml_eq_float" `Pure (fun f g -> float_comparison Eq f g);
register_bin_prim "caml_neq_float" `Pure (fun f g -> float_comparison Ne f g);
register_bin_prim "caml_ge_float" `Pure (fun f g -> float_comparison Ge f g);
register_bin_prim "caml_le_float" `Pure (fun f g -> float_comparison Le f g);
register_bin_prim "caml_gt_float" `Pure (fun f g -> float_comparison Gt f g);
register_bin_prim "caml_lt_float" `Pure (fun f g -> float_comparison Lt f g);
register_un_prim "caml_int_of_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
return (W.UnOp (I32 (TruncSatF64 S), f)));
register_un_prim "caml_float_of_int" `Pure ~typ:(Int Normalized) (fun n ->
let* n = n in
Memory.box_float (return (W.UnOp (F64 (Convert (`I32, S)), n))));
register_un_prim "caml_cos_float" `Pure (fun f -> float_un_op' Math.cos f);
register_un_prim "caml_sin_float" `Pure (fun f -> float_un_op' Math.sin f);
register_un_prim "caml_tan_float" `Pure (fun f -> float_un_op' Math.tan f);
register_un_prim "caml_acos_float" `Pure (fun f -> float_un_op' Math.acos f);
register_un_prim "caml_asin_float" `Pure (fun f -> float_un_op' Math.asin f);
register_un_prim "caml_atan_float" `Pure (fun f -> float_un_op' Math.atan f);
register_bin_prim "caml_atan2_float" `Pure (fun f g -> float_bin_op' Math.atan2 f g);
register_un_prim "caml_cosh_float" `Pure (fun f -> float_un_op' Math.cosh f);
register_un_prim "caml_sinh_float" `Pure (fun f -> float_un_op' Math.sinh f);
register_un_prim "caml_tanh_float" `Pure (fun f -> float_un_op' Math.tanh f);
register_un_prim "caml_acosh_float" `Pure (fun f -> float_un_op' Math.acosh f);
register_un_prim "caml_asinh_float" `Pure (fun f -> float_un_op' Math.asinh f);
register_un_prim "caml_atanh_float" `Pure (fun f -> float_un_op' Math.atanh f);
register_un_prim "caml_cbrt_float" `Pure (fun f -> float_un_op' Math.cbrt f);
register_un_prim "caml_exp_float" `Pure (fun f -> float_un_op' Math.exp f);
register_un_prim "caml_exp2_float" `Pure (fun f -> float_un_op' Math.exp2 f);
register_un_prim "caml_log_float" `Pure (fun f -> float_un_op' Math.log f);
register_un_prim "caml_expm1_float" `Pure (fun f -> float_un_op' Math.expm1 f);
register_un_prim "caml_log1p_float" `Pure (fun f -> float_un_op' Math.log1p f);
register_un_prim "caml_log2_float" `Pure (fun f -> float_un_op' Math.log2 f);
register_un_prim "caml_log10_float" `Pure (fun f -> float_un_op' Math.log10 f);
register_bin_prim "caml_power_float" `Pure (fun f g -> float_bin_op' Math.power f g);
register_bin_prim "caml_hypot_float" `Pure (fun f g -> float_bin_op' Math.hypot f g);
register_bin_prim "caml_fmod_float" `Pure (fun f g -> float_bin_op' Math.fmod f g);
register_un_prim "caml_int32_bits_of_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
Memory.box_int32 (return (W.UnOp (I32 ReinterpretF, F32DemoteF64 f))));
register_un_prim "caml_int32_float_of_bits" `Pure (fun i ->
let* i = Memory.unbox_int32 i in
Memory.box_float (return (W.F64PromoteF32 (UnOp (F32 ReinterpretI, i)))));
register_un_prim "caml_int32_of_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
Memory.box_int32 (return (W.UnOp (I32 (TruncSatF64 S), f))));
register_un_prim "caml_int32_to_float" `Pure (fun n ->
let* n = Memory.unbox_int32 n in
Memory.box_float (return (W.UnOp (F64 (Convert (`I32, S)), n))));
register_un_prim "caml_int32_neg" `Pure (fun i ->
let* i = Memory.unbox_int32 i in
Memory.box_int32 (return (W.BinOp (I32 Sub, Const (I32 0l), i))));
register_bin_prim "caml_int32_add" `Pure (fun i j -> int32_bin_op Add i j);
register_bin_prim "caml_int32_sub" `Pure (fun i j -> int32_bin_op Sub i j);
register_bin_prim "caml_int32_mul" `Pure (fun i j -> int32_bin_op Mul i j);
register_bin_prim "caml_int32_and" `Pure (fun i j -> int32_bin_op And i j);
register_bin_prim "caml_int32_or" `Pure (fun i j -> int32_bin_op Or i j);
register_bin_prim "caml_int32_xor" `Pure (fun i j -> int32_bin_op Xor i j);
register_bin_prim_ctx "caml_int32_div" (fun context i j ->
let res = Var.fresh () in
(*ZZZ Can we do better?*)
let i' = Var.fresh () in
let j' = Var.fresh () in
seq
(let* () = store ~typ:I32 j' (Memory.unbox_int32 j) in
let* () =
let* j = load j' in
instr (W.Br_if (label_index context zero_divide_pc, W.UnOp (I32 Eqz, j)))
in
let* () = store ~typ:I32 i' (Memory.unbox_int32 i) in
if_
{ params = []; result = [] }
Arith.(
(let* j = load j' in
return (W.BinOp (I32 Eq, j, Const (I32 (-1l)))))
land let* i = load i' in
return (W.BinOp (I32 Eq, i, Const (I32 Int32.min_int))))
(store ~always:true ~typ:I32 res (return (W.Const (I32 Int32.min_int))))
(store
~always:true
~typ:I32
res
(let* i = load i' in
let* j = load j' in
return (W.BinOp (I32 (Div S), i, j)))))
(Memory.box_int32 (load res)));
register_bin_prim_ctx "caml_int32_mod" (fun context i j ->
let j' = Var.fresh () in
seq
(let* () = store ~typ:I32 j' (Memory.unbox_int32 j) in
let* j = load j' in
instr (W.Br_if (label_index context zero_divide_pc, W.UnOp (I32 Eqz, j))))
(let* i = Memory.unbox_int32 i in
let* j = load j' in
Memory.box_int32 (return (W.BinOp (I32 (Rem S), i, j)))));
register_bin_prim "caml_int32_shift_left" `Pure ~ty:(Int Unnormalized) (fun i j ->
int32_shift_op Shl i j);
register_bin_prim "caml_int32_shift_right" `Pure ~ty:(Int Unnormalized) (fun i j ->
int32_shift_op (Shr S) i j);
register_bin_prim
"caml_int32_shift_right_unsigned"
`Pure
~ty:(Int Unnormalized)
(fun i j -> int32_shift_op (Shr U) i j);
register_un_prim "caml_int32_to_int" `Pure (fun i -> Memory.unbox_int32 i);
register_un_prim "caml_int32_of_int" `Pure ~typ:(Int Normalized) (fun i ->
Memory.box_int32 i);
register_un_prim "caml_nativeint_of_int32" `Pure (fun i ->
Memory.box_nativeint (Memory.unbox_int32 i));
register_un_prim "caml_nativeint_to_int32" `Pure (fun i ->
Memory.box_int32 (Memory.unbox_nativeint i));
register_un_prim "caml_int64_bits_of_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
Memory.box_int64 (return (W.UnOp (I64 ReinterpretF, f))));
register_un_prim "caml_int64_float_of_bits" `Pure (fun i ->
let* i = Memory.unbox_int64 i in
Memory.box_float (return (W.UnOp (F64 ReinterpretI, i))));
register_un_prim "caml_int64_of_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
Memory.box_int64 (return (W.UnOp (I64 (TruncSatF64 S), f))));
register_un_prim "caml_int64_to_float" `Pure (fun n ->
let* n = Memory.unbox_int64 n in
Memory.box_float (return (W.UnOp (F64 (Convert (`I64, S)), n))));
register_un_prim "caml_int64_neg" `Pure (fun i ->
let* i = Memory.unbox_int64 i in
Memory.box_int64 (return (W.BinOp (I64 Sub, Const (I64 0L), i))));
register_bin_prim "caml_int64_add" `Pure (fun i j -> int64_bin_op Add i j);
register_bin_prim "caml_int64_sub" `Pure (fun i j -> int64_bin_op Sub i j);
register_bin_prim "caml_int64_mul" `Pure (fun i j -> int64_bin_op Mul i j);
register_bin_prim "caml_int64_and" `Pure (fun i j -> int64_bin_op And i j);
register_bin_prim "caml_int64_or" `Pure (fun i j -> int64_bin_op Or i j);
register_bin_prim "caml_int64_xor" `Pure (fun i j -> int64_bin_op Xor i j);
register_bin_prim_ctx "caml_int64_div" (fun context i j ->
let res = Var.fresh () in
(*ZZZ Can we do better?*)
let i' = Var.fresh () in
let j' = Var.fresh () in
seq
(let* () = store ~typ:I64 j' (Memory.unbox_int64 j) in
let* () =
let* j = load j' in
instr (W.Br_if (label_index context zero_divide_pc, W.UnOp (I64 Eqz, j)))
in
let* () = store ~typ:I64 i' (Memory.unbox_int64 i) in
if_
{ params = []; result = [] }
Arith.(
(let* j = load j' in
return (W.BinOp (I64 Eq, j, Const (I64 (-1L)))))
land let* i = load i' in
return (W.BinOp (I64 Eq, i, Const (I64 Int64.min_int))))
(store ~always:true ~typ:I64 res (return (W.Const (I64 Int64.min_int))))
(store
~always:true
~typ:I64
res
(let* i = load i' in
let* j = load j' in
return (W.BinOp (I64 (Div S), i, j)))))
(Memory.box_int64 (load res)));
register_bin_prim_ctx "caml_int64_mod" (fun context i j ->
let j' = Var.fresh () in
seq
(let* () = store ~typ:I64 j' (Memory.unbox_int64 j) in
let* j = load j' in
instr (W.Br_if (label_index context zero_divide_pc, W.UnOp (I64 Eqz, j))))
(let* i = Memory.unbox_int64 i in
let* j = load j' in
Memory.box_int64 (return (W.BinOp (I64 (Rem S), i, j)))));
register_bin_prim "caml_int64_shift_left" `Pure ~ty:(Int Unnormalized) (fun i j ->
int64_shift_op Shl i j);
register_bin_prim "caml_int64_shift_right" `Pure ~ty:(Int Unnormalized) (fun i j ->
int64_shift_op (Shr S) i j);
register_bin_prim
"caml_int64_shift_right_unsigned"
~ty:(Int Unnormalized)
`Pure
(fun i j -> int64_shift_op (Shr U) i j);
register_un_prim "caml_int64_to_int" `Pure (fun i ->
let* i = Memory.unbox_int64 i in
return (W.I32WrapI64 i));
register_un_prim "caml_int64_of_int" `Pure ~typ:(Int Normalized) (fun i ->
let* i = i in
Memory.box_int64
(return
(match i with
| Const (I32 i) -> W.Const (I64 (Int64.of_int32 i))
| _ -> W.I64ExtendI32 (S, i))));
register_un_prim "caml_int64_to_int32" `Pure (fun i ->
let* i = Memory.unbox_int64 i in
Memory.box_int32 (return (W.I32WrapI64 i)));
register_un_prim "caml_int64_of_int32" `Pure (fun i ->
let* i = Memory.unbox_int32 i in
Memory.box_int64 (return (W.I64ExtendI32 (S, i))));
register_un_prim "caml_int64_to_nativeint" `Pure (fun i ->
let* i = Memory.unbox_int64 i in
Memory.box_nativeint (return (W.I32WrapI64 i)));
register_un_prim "caml_int64_of_nativeint" `Pure (fun i ->
let* i = Memory.unbox_nativeint i in
Memory.box_int64 (return (W.I64ExtendI32 (S, i))));
register_un_prim "caml_nativeint_bits_of_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
Memory.box_nativeint (return (W.UnOp (I32 ReinterpretF, F32DemoteF64 f))));
register_un_prim "caml_nativeint_float_of_bits" `Pure (fun i ->
let* i = Memory.unbox_int64 i in
Memory.box_float (return (W.F64PromoteF32 (UnOp (I32 ReinterpretF, i)))));
register_un_prim "caml_nativeint_of_float" `Pure (fun f ->
let* f = Memory.unbox_float f in
Memory.box_nativeint (return (W.UnOp (I32 (TruncSatF64 S), f))));
register_un_prim "caml_nativeint_to_float" `Pure (fun n ->
let* n = Memory.unbox_nativeint n in
Memory.box_float (return (W.UnOp (F64 (Convert (`I32, S)), n))));
register_un_prim "caml_nativeint_neg" `Pure (fun i ->
let* i = Memory.unbox_nativeint i in
Memory.box_nativeint (return (W.BinOp (I32 Sub, Const (I32 0l), i))));
register_bin_prim "caml_nativeint_add" `Pure (fun i j -> nativeint_bin_op Add i j);
register_bin_prim "caml_nativeint_sub" `Pure (fun i j -> nativeint_bin_op Sub i j);
register_bin_prim "caml_nativeint_mul" `Pure (fun i j -> nativeint_bin_op Mul i j);
register_bin_prim "caml_nativeint_and" `Pure (fun i j -> nativeint_bin_op And i j);
register_bin_prim "caml_nativeint_or" `Pure (fun i j -> nativeint_bin_op Or i j);
register_bin_prim "caml_nativeint_xor" `Pure (fun i j -> nativeint_bin_op Xor i j);
register_bin_prim_ctx "caml_nativeint_div" (fun context i j ->
let res = Var.fresh () in
(*ZZZ Can we do better?*)
let i' = Var.fresh () in
let j' = Var.fresh () in
seq
(let* () = store ~typ:I32 j' (Memory.unbox_nativeint j) in
let* () =
let* j = load j' in
instr (W.Br_if (label_index context zero_divide_pc, W.UnOp (I32 Eqz, j)))
in
let* () = store ~typ:I32 i' (Memory.unbox_nativeint i) in
if_
{ params = []; result = [] }
Arith.(
(let* j = load j' in
return (W.BinOp (I32 Eq, j, Const (I32 (-1l)))))
land let* i = load i' in
return (W.BinOp (I32 Eq, i, Const (I32 Int32.min_int))))
(store ~always:true ~typ:I32 res (return (W.Const (I32 Int32.min_int))))
(store
~always:true
~typ:I32
res
(let* i = load i' in
let* j = load j' in
return (W.BinOp (I32 (Div S), i, j)))))
(Memory.box_nativeint (load res)));
register_bin_prim_ctx "caml_nativeint_mod" (fun context i j ->
let j' = Var.fresh () in
seq
(let* () = store ~typ:I32 j' (Memory.unbox_nativeint j) in
let* j = load j' in
instr (W.Br_if (label_index context zero_divide_pc, W.UnOp (I32 Eqz, j))))
(let* i = Memory.unbox_nativeint i in
let* j = load j' in
Memory.box_nativeint (return (W.BinOp (I32 (Rem S), i, j)))));
register_bin_prim "caml_nativeint_shift_left" `Pure ~ty:(Int Unnormalized) (fun i j ->
nativeint_shift_op Shl i j);
register_bin_prim
"caml_nativeint_shift_right"
`Pure
~ty:(Int Unnormalized)
(fun i j -> nativeint_shift_op (Shr S) i j);
register_bin_prim
"caml_nativeint_shift_right_unsigned"
`Pure
~ty:(Int Unnormalized)
(fun i j -> nativeint_shift_op (Shr U) i j);
register_un_prim "caml_nativeint_to_int" `Pure (fun i -> Memory.unbox_nativeint i);
register_un_prim "caml_nativeint_of_int" `Pure ~typ:(Int Normalized) (fun i ->
Memory.box_nativeint i);
register_bin_prim
"caml_int_compare"
`Pure
~tx:(Int Normalized)
~ty:(Int Normalized)
(fun i j -> Arith.((j < i) - (i < j)));
register_prim "%js_array" `Pure (fun ctx _ l ->
let* l =
List.fold_right
~f:(fun x acc ->
let* x = transl_prim_arg ctx x in
let* acc = acc in
return (`Expr x :: acc))
l
~init:(return [])
in
Memory.allocate ~tag:0 ~deadcode_sentinal:ctx.deadcode_sentinal ~load l)
let rec translate_expr ctx context x e =
match e with
| Apply { f; args; exact; _ } ->
if exact || List.length args = if Var.Set.mem x ctx.in_cps then 2 else 1
then
let rec loop acc l =
match l with
| [] -> (
let arity = List.length args in
let funct = Var.fresh () in
let* closure = tee funct (load f) in
let* ty, funct =
Memory.load_function_pointer
~cps:(Var.Set.mem x ctx.in_cps)
~arity
(load funct)
in
let* b = is_closure f in
if b
then return (W.Call (f, List.rev (closure :: acc)))
else
match funct with
| W.RefFunc g ->
(* Functions with constant closures ignore their
environment. In case of partial application, we
still need the closure. *)
let* cl = if exact then Value.unit else return closure in
return (W.Call (g, List.rev (cl :: acc)))
| _ -> (
match
if exact
then Global_flow.get_unique_closure ctx.global_flow_info f
else None
with
| Some g -> return (W.Call (g, List.rev (closure :: acc)))
| None -> return (W.Call_ref (ty, funct, List.rev (closure :: acc)))
))
| x :: r ->
let* x = load_and_box ctx x in
loop (x :: acc) r
in
loop [] args
else
let* apply =
need_apply_fun ~cps:(Var.Set.mem x ctx.in_cps) ~arity:(List.length args)
in
let* args = expression_list (fun x -> load_and_box ctx x) args in
let* closure = load f in
return (W.Call (apply, args @ [ closure ]))
| Block (tag, a, _, _) ->
Memory.allocate
~deadcode_sentinal:ctx.deadcode_sentinal
~tag
~load:(fun x -> load_and_box ctx x)
(List.map ~f:(fun x -> `Var x) (Array.to_list a))
| Field (x, n, Non_float) -> Memory.field (load_and_box ctx x) n
| Field (x, n, Float) ->
Memory.float_array_get
(load_and_box ctx x)
(Constant.translate (Int (Targetint.of_int_warning_on_overflow n)))
| Closure _ ->
Closure.translate
~context:ctx.global_context
~closures:ctx.closures
~cps:(Var.Set.mem x ctx.in_cps)
x
| Constant c -> Constant.translate c
| Special (Alias_prim _) -> assert false
| Prim (Extern "caml_alloc_dummy_function", [ _; Pc (Int arity) ]) ->
(* Removed in OCaml 5.2 *)
Closure.dummy ~cps:(effects_cps ()) ~arity:(Targetint.to_int_exn arity)
| Prim (Extern "caml_alloc_dummy_infix", _) ->
Closure.dummy ~cps:(effects_cps ()) ~arity:1
| Prim (Extern "caml_get_global", [ Pc (String name) ]) ->
let* x =
let* context = get_context in
match
List.find_map
~f:(fun f ->
match f with
| W.Global { name = name'; exported_name = Some exported_name; _ }
when String.equal exported_name name -> Some name'
| _ -> None)
context.other_fields
with
| Some x -> return x
| _ ->
let* typ = Value.block_type in
register_import ~import_module:"OCaml" ~name (Global { mut = true; typ })
in
return (W.GlobalGet x)
| Prim (Extern "caml_set_global", [ Pc (String name); v ]) ->
let v = transl_prim_arg ctx v in
let x = Var.fresh_n name in
let* () =
let* typ = Value.block_type in
let* dummy = Value.dummy_block in
register_global x ~exported_name:name { mut = true; typ } dummy
in
seq
(let* v = Value.as_block v in
instr (W.GlobalSet (x, v)))
Value.unit
| Prim (Not, [ x ]) -> Value.not (transl_prim_arg ctx ~typ:(Int Unnormalized) x)
| Prim (Lt, [ x; y ]) -> translate_int_comparison ctx Arith.( < ) x y
| Prim (Le, [ x; y ]) -> translate_int_comparison ctx Arith.( <= ) x y
| Prim (Ult, [ x; y ]) -> translate_int_comparison ctx Arith.ult x y
| Prim (Eq, [ x; y ]) -> translate_int_equality ctx ~negate:false x y
| Prim (Neq, [ x; y ]) -> translate_int_equality ctx ~negate:true x y
| Prim (Array_get, [ x; y ]) ->
Memory.array_get
(transl_prim_arg ctx x)
(transl_prim_arg ctx ~typ:(Int Normalized) y)
| Prim (p, l) -> (
match p with
| Extern name when String.Hashtbl.mem internal_primitives name ->
snd (String.Hashtbl.find internal_primitives name) ctx context l
| _ -> (
let l = List.map ~f:(fun x -> transl_prim_arg ctx x) l in
match p, l with
| Extern name, l -> (
try
let ((_, arg_typ, res_typ) as typ) =
String.Hashtbl.find specialized_primitives name
in
let* f = register_import ~name (Fun (specialized_primitive_type typ)) in
let rec loop acc arg_typ l =
match arg_typ, l with
| [], [] -> box_value res_typ (return (W.Call (f, List.rev acc)))
| repr :: rem, x :: r ->
let* x = unbox_value repr x in
loop (x :: acc) rem r
| [], _ :: _ | _ :: _, [] -> assert false
in
loop [] arg_typ l
with Not_found ->
let* f =
register_import ~name (Fun (Type.primitive_type (List.length l)))
in
let rec loop acc l =
match l with
| [] -> return (W.Call (f, List.rev acc))
| x :: r ->
let* x = x in
loop (x :: acc) r
in
loop [] l)
| IsInt, [ x ] -> Value.is_int x
| Vectlength, [ x ] -> Memory.gen_array_length x
| (Not | Lt | Le | Eq | Neq | Ult | Array_get | IsInt | Vectlength), _ ->
assert false))
and translate_instr ctx context i =
match i with
| Assign (x, y) ->
assign x (convert ~from:(get_var_type ctx y) ~into:(get_var_type ctx x) (load y))
| Let (x, e) ->
if ctx.live.(Var.idx x) = 0
then drop (translate_expr ctx context x e)
else
store
?typ:
(match get_var_type ctx x with
| Int (Normalized | Unnormalized) -> Some I32
| _ -> None)
x
(translate_expr ctx context x e)
| Set_field (x, n, Non_float, y) ->
Memory.set_field (load_and_box ctx x) n (load_and_box ctx y)
| Set_field (x, n, Float, y) ->
Memory.float_array_set
(load_and_box ctx x)
(Constant.translate (Int (Targetint.of_int_warning_on_overflow n)))
(load y)
| Offset_ref (x, n) ->
Memory.set_field
(load x)
0
(Value.val_int
Arith.(Value.int_val (Memory.field (load x) 0) + const (Int32.of_int n)))
| Array_set (x, y, z) ->
Memory.array_set
(load x)
(convert ~from:(get_var_type ctx y) ~into:(Int Normalized) (load y))
(load_and_box ctx z)
| Event loc -> event loc
and translate_instrs ctx context l =
match l with
| [] -> return ()
| i :: rem ->
let* () = translate_instr ctx context i in
translate_instrs ctx context rem
let parallel_renaming ~ctx params args =
let rec visit visited prev s m x l =
if not (Var.Set.mem x visited)
then
let visited = Var.Set.add x visited in
let y = Var.Map.find x m in
if Code.Var.compare x y = 0
then visited, None, l
else
let tx = get_var_type ctx x in
let ty = get_var_type ctx y in
if Var.Set.mem y prev
then
let t = Code.Var.fresh () in
visited, Some (y, ty, t, tx), (x, tx, t, tx) :: l
else if Var.Set.mem y s
then
let visited, aliases, l = visit visited (Var.Set.add x prev) s m y l in
match aliases with
| Some (a, ta, b, tb) when Code.Var.compare a x = 0 ->
visited, None, (b, tb, a, ta) :: (x, tx, y, ty) :: l
| _ -> visited, aliases, (x, tx, y, ty) :: l
else visited, None, (x, tx, y, ty) :: l
else visited, None, l
in
let visit_all params args =
let m = Subst.build_mapping params args in
let s = List.fold_left params ~init:Var.Set.empty ~f:(fun s x -> Var.Set.add x s) in
let _, l =
Var.Set.fold
(fun x (visited, l) ->
let visited, _, l = visit visited Var.Set.empty s m x l in
visited, l)
s
(Var.Set.empty, [])
in
l
in
let l = visit_all params args in
List.fold_left
l
~f:(fun continuation (y, ty, x, tx) ->
let* () = continuation in
store
~always:true
?typ:
(match ty with
| Typing.Int (Normalized | Unnormalized) -> Some I32
| _ -> None)
y
(convert ~from:tx ~into:ty (load x)))
~init:(return ())
let exception_name = "ocaml_exception"
let extend_context fall_through context =
match fall_through with
| (`Block _ | `Catch | `Skip) as b -> b :: context
| `Return -> `Skip :: context
let needed_handlers (p : program) pc =
Code.traverse
{ fold = fold_children_skip_try_body }
(fun pc n ->
let block = Addr.Map.find pc p.blocks in
List.fold_left
~f:(fun n i ->
match i with
| Let
( _
, Prim
( Extern
( "caml_string_get"
| "caml_bytes_get"
| "caml_string_set"
| "caml_bytes_set"
| "caml_check_bound"
| "caml_check_bound_gen"
| "caml_check_bound_float" )
, _ ) ) -> fst n, true
| Let
( _
, Prim
( Extern
( "%int_div"
| "%int_mod"
| "caml_int32_div"
| "caml_int32_mod"
| "caml_int64_div"
| "caml_int64_mod"
| "caml_nativeint_div"
| "caml_nativeint_mod" )
, _ ) ) -> true, snd n
| _ -> n)
~init:n
block.body)
pc
p.blocks
(false, false)
let wrap_with_handler needed pc handler ~result_typ ~fall_through ~context body =
if needed
then
let* () =
block
{ params = []; result = [] }
(body ~result_typ:[] ~fall_through:(`Block pc) ~context:(`Block pc :: context))
in
if List.is_empty result_typ
then handler
else
let* () = handler in
instr (W.Return (Some (RefI31 (Const (I32 0l)))))
else body ~result_typ ~fall_through ~context
let wrap_with_handlers p pc ~result_typ ~fall_through ~context body =
let need_zero_divide_handler, need_bound_error_handler = needed_handlers p pc in
wrap_with_handler
need_bound_error_handler
bound_error_pc
(let* f =
register_import ~name:"caml_bound_error" (Fun { params = []; result = [] })
in
instr (CallInstr (f, [])))
(wrap_with_handler
need_zero_divide_handler
zero_divide_pc
(let* f =
register_import
~name:"caml_raise_zero_divide"
(Fun { params = []; result = [] })
in
instr (CallInstr (f, [])))
body)
~result_typ
~fall_through
~context
let translate_function
p
ctx
name_opt
~toplevel_name
~unit_name
params
((pc, _) as cont)
cloc
acc =
let g = Structure.build_graph ctx.blocks pc in
let dom = Structure.dominator_tree g in
let rec translate_tree result_typ fall_through pc context =
let block = Addr.Map.find pc ctx.blocks in
let keep_ouside pc' =
match block.branch with
| Switch _ -> true
| Cond (_, (pc1, _), (pc2, _)) when pc' = pc1 && pc' = pc2 -> true
| _ -> Structure.is_merge_node g pc'
in
let code ~context =
let block = Addr.Map.find pc ctx.blocks in
let* () = translate_instrs ctx context block.body in
translate_node_within
~result_typ
~fall_through
~pc
~l:
(pc
|> Structure.get_edges dom
|> Addr.Set.elements
|> List.filter ~f:keep_ouside
|> Structure.sort_in_post_order g)
~context
in
if Structure.is_loop_header g pc
then
loop { params = []; result = result_typ } (code ~context:(`Block pc :: context))
else code ~context
and translate_node_within ~result_typ ~fall_through ~pc ~l ~context =
match l with
| pc' :: rem ->
let* () =
let code ~context =
translate_node_within
~result_typ:[]
~fall_through:(`Block pc')
~pc
~l:rem
~context
in
(* Do not insert a block if the inner code contains a
structured control flow instruction ([if] or [try] *)
if
(not (List.is_empty rem))
||
let block = Addr.Map.find pc ctx.blocks in
match block.branch with
| Cond _ | Pushtrap _ -> false (*ZZZ also some Switch*)
| _ -> true
then
block { params = []; result = [] } (code ~context:(`Block pc' :: context))
else code ~context
in
translate_tree result_typ fall_through pc' context
| [] -> (
let block = Addr.Map.find pc ctx.blocks in
let branch = block.branch in
match branch with
| Branch cont -> translate_branch result_typ fall_through pc cont context
| Return x -> (
let* e = load_and_box ctx x in
match fall_through with
| `Return -> instr (Push e)
| `Block _ | `Catch | `Skip -> instr (Return (Some e)))
| Cond (x, cont1, cont2) ->
let context' = extend_context fall_through context in
if_
{ params = []; result = result_typ }
(match get_var_type ctx x with
| Int Normalized -> load x
| Int Unnormalized -> Arith.(load x lsl const 1l)
| _ -> Value.check_is_not_zero (load x))
(translate_branch result_typ fall_through pc cont1 context')
(translate_branch result_typ fall_through pc cont2 context')
| Stop -> (
let* e = Value.unit in
match fall_through with
| `Return -> instr (Push e)
| `Block _ | `Catch | `Skip -> instr (Return (Some e)))
| Switch (x, a) ->
let len = Array.length a in
let l = Array.to_list (Array.sub a ~pos:0 ~len:(len - 1)) in
let dest (pc, args) =
assert (List.is_empty args);
label_index context pc
in
let* e =
convert ~from:(get_var_type ctx x) ~into:(Int Normalized) (load x)
in
instr (Br_table (e, List.map ~f:dest l, dest a.(len - 1)))
| Raise (x, _) -> (
let* e = load x in
let* tag = register_import ~name:exception_name (Tag Type.value) in
match fall_through with
| `Catch -> instr (Push e)
| `Block _ | `Return | `Skip -> (
match catch_index context with
| Some i -> instr (Br (i, Some e))
| None -> instr (Throw (tag, e))))
| Pushtrap (cont, x, cont') ->
handle_exceptions
~result_typ
~fall_through
~context:(extend_context fall_through context)
(wrap_with_handlers
p
(fst cont)
(fun ~result_typ ~fall_through ~context ->
translate_branch result_typ fall_through pc cont context))
x
(fun ~result_typ ~fall_through ~context ->
translate_branch result_typ fall_through pc cont' context)
| Poptrap cont -> translate_branch result_typ fall_through pc cont context)
and translate_branch result_typ fall_through src (dst, args) context =
let* () =
if List.is_empty args
then return ()
else
let block = Addr.Map.find dst ctx.blocks in
parallel_renaming ~ctx block.params args
in
match fall_through with
| `Block dst' when dst = dst' -> return ()
| _ ->
if
(src >= 0 && Structure.is_backward g src dst) || Structure.is_merge_node g dst
then instr (Br (label_index context dst, None))
else translate_tree result_typ fall_through dst context
in
let bind_parameters =
List.fold_left
~f:(fun l x ->
let* _ = l in
let* _ = add_var x in
return ())
~init:(return ())
params
in
let build_initial_env =
let* () = bind_parameters in
match name_opt with
| Some f ->
Closure.bind_environment
~context:ctx.global_context
~closures:ctx.closures
~cps:(Var.Set.mem f ctx.in_cps)
f
| None -> return ()
in
(*
Format.eprintf "=== %d ===@." pc;
*)
let param_names =
match name_opt with
| None -> []
| Some f -> params @ [ f ]
in
let param_count = List.length param_names in
(match name_opt with
| None -> ctx.global_context.globalized_variables <- Globalize.f p g ctx.closures
| Some _ -> ());
let locals, body =
function_body
~context:ctx.global_context
~param_names
~body:
(let* () =
let block = Addr.Map.find pc ctx.blocks in
match block.body with
| Event start_loc :: _ -> event start_loc
| _ -> no_event
in
let* () = build_initial_env in
let* () =
wrap_with_handlers
p
pc
~result_typ:[ Type.value ]
~fall_through:`Return
~context:[]
(fun ~result_typ ~fall_through ~context ->
translate_branch result_typ fall_through (-1) cont context)
in
match cloc with
| Some loc -> event loc
| None -> return ())
in
let locals, body = post_process_function_body ~param_names ~locals body in
W.Function
{ name =
(match name_opt with
| None -> toplevel_name
| Some x -> x)
; exported_name =
(match name_opt with
| None -> Option.map ~f:(fun name -> name ^ ".init") unit_name
| Some _ -> None)
; typ = None
; signature =
(match name_opt with
| None -> Type.primitive_type param_count
| Some _ -> Type.func_type (param_count - 1))
; param_names
; locals
; body
}
:: acc
let init_function ~context ~to_link =
let name = Code.Var.fresh_n "initialize" in
let signature = { W.params = []; result = [ Type.value ] } in
let locals, body =
function_body
~context
~param_names:[]
~body:
(List.fold_right
~f:(fun name cont ->
let* f =
register_import
~import_module:"OCaml"
~name:(name ^ ".init")
(Fun signature)
in
let* () = instr (Drop (Call (f, []))) in
cont)
~init:(instr (Push (RefI31 (Const (I32 0l)))))
to_link)
in
context.other_fields <-
W.Function
{ name
; exported_name = None
; typ = None
; signature
; param_names = []
; locals
; body
}
:: context.other_fields;
name
let entry_point context toplevel_fun entry_name =
let signature, param_names, body = entry_point ~toplevel_fun in
let locals, body = function_body ~context ~param_names ~body in
W.Function
{ name = Var.fresh_n "entry_point"
; exported_name = Some entry_name
; typ = None
; signature
; param_names
; locals
; body
}
module Curry = Curry.Make (Target)
let add_start_function ~context toplevel_name =
context.other_fields <-
entry_point context toplevel_name "_initialize" :: context.other_fields
let add_init_function ~context ~to_link =
add_start_function ~context (init_function ~context ~to_link)
let f
~context:global_context
~unit_name
(p : Code.program)
~live_vars
~in_cps (*
~should_export
*)
~deadcode_sentinal
~global_flow_info
~types =
global_context.unit_name <- unit_name;
let p, closures = Closure_conversion.f p in
(*
Code.Print.program (fun _ _ -> "") p;
*)
let ctx =
{ live = live_vars
; in_cps
; deadcode_sentinal
; global_flow_info
; types
; blocks = p.blocks
; closures
; global_context
}
in
let toplevel_name = Var.fresh_n "toplevel" in
let functions =
Code.fold_closures_outermost_first
p
(fun name_opt params cont cloc ->
translate_function p ctx name_opt ~toplevel_name ~unit_name params cont cloc)
[]
in
let functions =
List.map
~f:(fun f ->
match f with
| W.Function ({ name; _ } as f) when Code.Var.equal name toplevel_name ->
W.Function { f with body = global_context.init_code @ f.body }
| _ -> f)
functions
in
global_context.init_code <- [];
global_context.other_fields <- List.rev_append functions global_context.other_fields;
let js_code = StringMap.bindings global_context.fragments in
global_context.fragments <- StringMap.empty;
Curry.f ~context:global_context;
toplevel_name, js_code
let output ~context =
let imports =
List.concat
(List.map
~f:(fun (import_module, m) ->
List.map
~f:(fun (import_name, (name, desc)) ->
W.Import { import_module; import_name; name; desc })
(StringMap.bindings m))
(StringMap.bindings context.imports))
in
let constant_data =
List.map
~f:(fun (name, contents) -> W.Data { name; contents })
(Var.Map.bindings context.data_segments)
in
List.rev_append context.other_fields (imports @ constant_data)
let init () =
Primitive.register "caml_make_array" `Mutable None None;
Primitive.register "caml_array_of_uniform_array" `Mutable None None;
String.Hashtbl.iter
(fun name (k, _) -> Primitive.register name k None None)
internal_primitives;
String.Hashtbl.iter
(fun name (k, _, _) -> Primitive.register name k None None)
specialized_primitives
end
(* Make sure we can use [br_table] for switches *)
let fix_switch_branches p =
let p' = ref p in
let updates = ref Addr.Map.empty in
let fix_branches l =
Array.iteri
~f:(fun i ((pc, args) as cont) ->
if not (List.is_empty args)
then
l.(i) <-
( (let l = try Addr.Map.find pc !updates with Not_found -> [] in
match
List.find_map
~f:(fun (args', pc') ->
if List.equal ~eq:Var.equal args' args then Some pc' else None)
l
with
| Some x -> x
| None ->
let pc' = !p'.free_pc in
p' :=
{ !p' with
blocks =
Addr.Map.add
pc'
{ params = []; body = []; branch = Branch cont }
!p'.blocks
; free_pc = pc' + 1
};
updates := Addr.Map.add pc ((args, pc') :: l) !updates;
pc')
, [] ))
l
in
Addr.Map.iter
(fun _ block ->
match block.branch with
| Switch (_, l) -> fix_branches l
| _ -> ())
p.blocks;
!p'
module G = Generate (Gc_target)
let init = G.init
let start () = make_context ~value_type:Gc_target.Type.value
let f ~context ~unit_name p ~live_vars ~in_cps ~deadcode_sentinal ~global_flow_data =
let state, info = global_flow_data in
let p = Structure.norm p in
let types = Typing.f ~state ~info ~deadcode_sentinal p in
let t = Timer.make () in
let p = fix_switch_branches p in
let res =
G.f
~context
~unit_name
~live_vars
~in_cps
~deadcode_sentinal
~global_flow_info:info
~types
p
in
if times () then Format.eprintf " code gen.: %a@." Timer.print t;
res
let add_start_function = G.add_start_function
let add_init_function = G.add_init_function
let output ch ~context =
let t = Timer.make () in
let fields = G.output ~context in
if times () then Format.eprintf " fields: %a@." Timer.print t;
Wat_output.f ch fields;
if times () then Format.eprintf " output: %a@." Timer.print t
let wasm_output ch ~opt_source_map_file ~context =
let t = Timer.make () in
let fields = G.output ~context in
if times () then Format.eprintf " fields: %a@." Timer.print t;
Wasm_output.f ch ~opt_source_map_file fields;
if times () then Format.eprintf " output: %a@." Timer.print t
|