1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
|
(* Wasm_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
open Wasm_ast
module Feature : sig
type set
val make : unit -> set
val get : set -> string list
type t
val register : set -> string -> t
val require : t -> unit
val test : t -> bool
end = struct
type t = string * bool ref
type set = t list ref
let make () = ref []
let get l = !l |> List.filter ~f:(fun (_, b) -> !b) |> List.map ~f:fst
let register l name =
let f = name, ref false in
l := f :: !l;
f
let require (_, b) = b := true
let test (_, b) = !b
end
module Make (Output : sig
type t
val position : t -> int
val seek : t -> int -> unit
val byte : t -> int -> unit
val string : t -> string -> unit
val push_mapping : Source_map.map -> unit
val get_file_index : string -> int
end) : sig
val output_module : Output.t -> module_field list -> unit
end = struct
let features = Feature.make ()
let mutable_globals = Feature.register features "mutable-globals"
let nontrapping_fptoint = Feature.register features "nontrapping-fptoint"
let multivalue = Feature.register features "multivalue"
let exception_handling = Feature.register features "exception-handling"
let tail_call = Feature.register features "tail-call"
let bulk_memory = Feature.register features "bulk-memory"
let gc = Feature.register features "gc"
let reference_types = Feature.register features "reference-types"
let position = Output.position
let seek = Output.seek
let output_byte = Output.byte
let output_string = Output.string
let rec output_uint ch i =
if i < 128
then output_byte ch i
else (
output_byte ch (128 + (i land 127));
output_uint ch (i lsr 7))
let rec output_sint ch i =
if i >= -64 && i < 64
then output_byte ch (i land 127)
else (
output_byte ch (128 + (i land 127));
output_sint ch (i asr 7))
let output_sint32 ch i =
if Int32.(i >= -64l && i < 64l)
then
let i = Int32.to_int i in
if i >= 0 then output_byte ch i else output_byte ch (i + 128)
else (
output_byte ch (128 + (Int32.to_int i land 127));
output_sint ch (Int32.to_int (Int32.shift_right i 7)))
let rec output_sint64 ch i =
if Int64.(i >= -64L && i < 64L)
then
let i = Int64.to_int i in
if i >= 0 then output_byte ch i else output_byte ch (i + 128)
else (
output_byte ch (128 + (Int64.to_int i land 127));
output_sint64 ch (Int64.shift_right i 7))
let output_bytes32 ch v =
let v = ref v in
for _ = 0 to 3 do
output_byte ch (Int32.to_int !v land 255);
v := Int32.shift_right !v 8
done
let output_bytes64 ch v =
let v = ref v in
for _ = 0 to 7 do
output_byte ch (Int64.to_int !v land 255);
v := Int64.shift_right !v 8
done
let output_f32 ch f = output_bytes32 ch (Int32.bits_of_float f)
let output_f64 ch f = output_bytes64 ch (Int64.bits_of_float f)
let output_name ch name =
output_uint ch (String.length name);
output_string ch name
let output_vec f ch l =
output_uint ch (List.length l);
List.iter ~f:(fun x -> f ch x) l
let output_uint32_placeholder ch =
let pos = position ch in
output_string ch "\x80\x80\x80\x80\x00";
pos
let output_uint32_fixed ch ~pos v =
let pos' = position ch in
seek ch pos;
let v = ref v in
for _ = 0 to 3 do
output_byte ch ((!v land 0x7f) + 128);
v := !v lsr 7
done;
output_byte ch !v;
seek ch pos'
let with_size f ch x =
let pos = output_uint32_placeholder ch in
let res = f ch x in
output_uint32_fixed ch ~pos (position ch - pos - 5);
res
(****)
let output_heaptype type_names ch typ =
match (typ : heap_type) with
| None_ -> output_byte ch 0x71
| Func -> output_byte ch 0x70
| Extern -> output_byte ch 0x6F
| Any -> output_byte ch 0x6E
| Eq -> output_byte ch 0x6D
| I31 -> output_byte ch 0x6C
| Struct -> output_byte ch 0x6B
| Array -> output_byte ch 0x6A
| Type nm -> output_sint ch (Code.Var.Hashtbl.find type_names nm)
let output_valtype type_names ch (typ : value_type) =
match typ with
| I32 -> output_byte ch 0x7F
| I64 -> output_byte ch 0x7E
| F32 -> output_byte ch 0x7D
| F64 -> output_byte ch 0x7C
| Ref { nullable; typ } ->
output_byte ch (if nullable then 0x63 else 0x64);
output_heaptype type_names ch typ
let output_mut ch mut = output_byte ch (if mut then 0x01 else 0x00)
let output_fieldtype type_names ch { mut; typ } =
(match typ with
| Value typ -> output_valtype type_names ch typ
| Packed typ -> (
match typ with
| I8 -> output_byte ch 0x78
| I16 -> output_byte ch 0x77));
output_mut ch mut
let output_functype type_names ch { params; result } =
if List.length result > 1 then Feature.require multivalue;
output_byte ch 0x60;
output_vec (output_valtype type_names) ch params;
output_vec (output_valtype type_names) ch result
let output_globaltype type_names ch { typ; mut } =
output_valtype type_names ch typ;
output_mut ch mut
let fold_types func_type explicit_definition acc fields =
List.fold_left
~f:(fun acc field ->
match field with
| Function { typ = None; signature; _ } | Import { desc = Fun signature; _ } ->
func_type acc signature
| Import { desc = Tag typ; _ } -> func_type acc { params = [ typ ]; result = [] }
| Type l -> explicit_definition acc l
| Function { typ = Some _; _ }
| Import { desc = Global _; _ }
| Data _ | Global _ | Tag _ -> acc)
~init:acc
fields
let output_types ch fields =
let count =
let func_types = Poly.Hashtbl.create 16 in
fold_types
(fun count typ ->
if Poly.Hashtbl.mem func_types typ
then count
else (
Poly.Hashtbl.add func_types typ ();
count + 1))
(fun count _ -> count + 1)
0
fields
in
output_uint ch count;
let func_types = Poly.Hashtbl.create 16 in
let type_names = Code.Var.Hashtbl.create 16 in
let _idx =
fold_types
(fun idx typ ->
if Hashtbl.mem func_types typ
then idx
else (
Hashtbl.add func_types typ idx;
output_functype type_names ch typ;
idx + 1))
(fun idx l ->
let len = List.length l in
if List.length l > 1
then (
output_byte ch 0x4E;
output_uint ch len);
List.fold_left
~f:(fun idx { name; typ; supertype; final } ->
Code.Var.Hashtbl.add type_names name idx;
(match supertype, final with
| None, true -> ()
| None, false ->
output_byte ch 0x50;
output_byte ch 0
| Some supertype, _ ->
output_byte ch (if final then 0X4F else 0x50);
output_byte ch 1;
output_uint ch (Code.Var.Hashtbl.find type_names supertype));
(match typ with
| Array field_type ->
output_byte ch 0x5E;
output_fieldtype type_names ch field_type
| Struct l ->
output_byte ch 0x5F;
output_vec (output_fieldtype type_names) ch l
| Func typ -> output_functype type_names ch typ);
idx + 1)
~init:idx
l)
0
fields
in
func_types, type_names
let output_imports ch (func_types, type_names, fields) =
let count =
List.fold_left
~f:(fun count field ->
match field with
| Import _ -> count + 1
| Function _ | Type _ | Data _ | Global _ | Tag _ -> count)
~init:0
fields
in
output_uint ch count;
let func_idx = ref 0 in
let func_names = Code.Var.Hashtbl.create 16 in
let global_idx = ref 0 in
let global_names = Code.Var.Hashtbl.create 16 in
let tag_idx = ref 0 in
let tag_names = Code.Var.Hashtbl.create 16 in
List.iter
~f:(fun field ->
match field with
| Function _ | Type _ | Data _ | Global _ | Tag _ -> ()
| Import { import_module; import_name; name; desc } -> (
output_name ch import_module;
output_name ch import_name;
match desc with
| Fun typ ->
output_byte ch 0x00;
output_uint ch (Hashtbl.find func_types typ);
Code.Var.Hashtbl.add func_names name !func_idx;
incr func_idx
| Global typ ->
if typ.mut then Feature.require mutable_globals;
output_byte ch 0x03;
output_globaltype type_names ch typ;
Code.Var.Hashtbl.add global_names name !global_idx;
incr global_idx
| Tag typ ->
Feature.require exception_handling;
output_byte ch 0x04;
output_byte ch 0x00;
output_uint ch (Hashtbl.find func_types { params = [ typ ]; result = [] });
Code.Var.Hashtbl.add tag_names name !tag_idx;
incr tag_idx))
fields;
!func_idx, func_names, !global_idx, global_names, !tag_idx, tag_names
let output_functions ch (type_names, func_idx, func_names, func_types, fields) =
let l =
List.fold_left
~f:(fun acc field ->
match field with
| Function { typ = Some typ; _ } -> Code.Var.Hashtbl.find type_names typ :: acc
| Function { signature; _ } -> Hashtbl.find func_types signature :: acc
| Type _ | Import _ | Data _ | Global _ | Tag _ -> acc)
~init:[]
fields
in
let _ =
List.fold_left
~f:(fun idx field ->
match field with
| Function { name; _ } ->
Code.Var.Hashtbl.add func_names name idx;
idx + 1
| Type _ | Import _ | Data _ | Global _ | Tag _ -> idx)
~init:func_idx
fields
in
output_vec (fun ch typ -> output_uint ch typ) ch (List.rev l)
let int_un_op (arith, comp, trunc, reinterpret) ch op =
match op with
| Clz -> output_byte ch arith
| Ctz -> output_byte ch (arith + 1)
| Popcnt -> output_byte ch (arith + 2)
| Eqz -> output_byte ch comp
| TruncSatF64 signage ->
Feature.require nontrapping_fptoint;
output_byte ch 0xFC;
output_byte
ch
(trunc
+
match signage with
| S -> 0
| U -> 1)
| ReinterpretF -> output_byte ch reinterpret
let int_bin_op (arith, comp) op =
match (op : int_bin_op) with
| Add -> arith + 3
| Sub -> arith + 4
| Mul -> arith + 5
| Div S -> arith + 6
| Div U -> arith + 7
| Rem S -> arith + 8
| Rem U -> arith + 9
| And -> arith + 10
| Or -> arith + 11
| Xor -> arith + 12
| Shl -> arith + 13
| Shr S -> arith + 14
| Shr U -> arith + 15
| Rotl -> arith + 16
| Rotr -> arith + 17
| Eq -> comp + 1
| Ne -> comp + 2
| Lt S -> comp + 3
| Lt U -> comp + 4
| Gt S -> comp + 5
| Gt U -> comp + 6
| Le S -> comp + 7
| Le U -> comp + 8
| Ge S -> comp + 9
| Ge U -> comp + 10
let float_un_op (arith, convert, reinterpret) op =
match op with
| Abs -> arith
| Neg -> arith + 1
| Ceil -> arith + 2
| Floor -> arith + 3
| Trunc -> arith + 4
| Nearest -> arith + 5
| Sqrt -> arith + 6
| Convert (size, signage) -> (
convert
+ (match size with
| `I32 -> 0
| `I64 -> 2)
+
match signage with
| S -> 0
| U -> 1)
| ReinterpretI -> reinterpret
let float_bin_op (arith, comp) op =
match op with
| Add -> arith + 7
| Sub -> arith + 8
| Mul -> arith + 9
| Div -> arith + 10
| Min -> arith + 11
| Max -> arith + 12
| CopySign -> arith + 13
| Eq -> comp
| Ne -> comp + 1
| Lt -> comp + 2
| Gt -> comp + 3
| Le -> comp + 4
| Ge -> comp + 5
let output_blocktype type_names ch typ =
match typ with
| { params = []; result = [] } -> output_byte ch 0x40
| { params = []; result = [ typ ] } -> output_valtype type_names ch typ
| _ -> assert false
type st =
{ type_names : int Code.Var.Hashtbl.t
; func_names : int Code.Var.Hashtbl.t
; global_names : int Code.Var.Hashtbl.t
; data_names : int Code.Var.Hashtbl.t
; tag_names : int Code.Var.Hashtbl.t
; local_names : int Code.Var.Hashtbl.t Code.Var.Hashtbl.t
; current_local_names : int Code.Var.Hashtbl.t
}
let last_event = ref None
let push_no_event ch =
if Option.is_some !last_event
then (
Output.push_mapping (Source_map.Gen { gen_line = 1; gen_col = position ch });
last_event := None)
let push_event ch ~src ~line ~col =
match !last_event with
| Some (src', line', col') when col = col' && line = line' && String.equal src src' ->
()
| _ ->
Output.push_mapping
(Source_map.Gen_Ori
{ gen_line = 1
; gen_col = position ch
; ori_source = Output.get_file_index src
; ori_line = line
; ori_col = col
});
last_event := Some (src, line, col)
let rec output_expression st ch e =
match e with
| Const c -> (
match c with
| I32 d ->
output_byte ch 0x41;
output_sint32 ch d
| I64 d ->
output_byte ch 0x42;
output_sint64 ch d
| F32 d ->
output_byte ch 0x43;
output_f32 ch d
| F64 d ->
output_byte ch 0x44;
output_f64 ch d)
| UnOp (op, e') -> (
output_expression st ch e';
match op with
| I32 op -> int_un_op (0x67, 0x45, 2, 0xBC) ch op
| I64 op -> int_un_op (0x79, 0x50, 6, 0xBD) ch op
| F32 op -> output_byte ch (float_un_op (0x8B, 0xB2, 0xBE) op)
| F64 op -> output_byte ch (float_un_op (0x99, 0xB7, 0xBF) op))
| BinOp (op, e', e'') -> (
output_expression st ch e';
output_expression st ch e'';
match op with
| I32 op -> output_byte ch (int_bin_op (0x67, 0x45) op)
| I64 op -> output_byte ch (int_bin_op (0x79, 0x50) op)
| F32 op -> output_byte ch (float_bin_op (0x8B, 0x5B) op)
| F64 op -> output_byte ch (float_bin_op (0x99, 0x61) op))
| I32WrapI64 e' ->
output_expression st ch e';
output_byte ch 0xA7
| I64ExtendI32 (S, e') ->
output_expression st ch e';
output_byte ch 0xAC
| I64ExtendI32 (U, e') ->
output_expression st ch e';
output_byte ch 0xAD
| F32DemoteF64 e' ->
output_expression st ch e';
output_byte ch 0xB6
| F64PromoteF32 e' ->
output_expression st ch e';
output_byte ch 0xBB
| LocalGet i ->
output_byte ch 0x20;
output_uint ch (Code.Var.Hashtbl.find st.current_local_names i)
| LocalTee (i, e') ->
output_expression st ch e';
output_byte ch 0x22;
output_uint ch (Code.Var.Hashtbl.find st.current_local_names i)
| GlobalGet g ->
output_byte ch 0x23;
output_uint ch (Code.Var.Hashtbl.find st.global_names g)
| BlockExpr (typ, l) ->
output_byte ch 0x02;
output_blocktype st.type_names ch typ;
List.iter ~f:(fun i' -> output_instruction st ch i') l;
output_byte ch 0x0B
| Call (f, l) ->
List.iter ~f:(fun e' -> output_expression st ch e') l;
output_byte ch 0x10;
output_uint ch (Code.Var.Hashtbl.find st.func_names f)
| Seq _ -> assert false
| Pop _ -> ()
| RefFunc f ->
Feature.require reference_types;
output_byte ch 0xD2;
output_uint ch (Code.Var.Hashtbl.find st.func_names f)
| Call_ref (typ, e', l) ->
Feature.require gc;
List.iter ~f:(fun e' -> output_expression st ch e') l;
output_expression st ch e';
output_byte ch 0x14;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ)
| RefI31 e' ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch 0x1C
| I31Get (s, e') -> (
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
match s with
| S -> output_byte ch 0x1D
| U -> output_byte ch 0x1E)
| ArrayNew (typ, e', e'') ->
Feature.require gc;
output_expression st ch e';
output_expression st ch e'';
output_byte ch 0xFB;
output_byte ch 6;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ)
| ArrayNewFixed (typ, l) ->
Feature.require gc;
List.iter ~f:(fun e' -> output_expression st ch e') l;
output_byte ch 0xFB;
output_byte ch 8;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ);
output_uint ch (List.length l)
| ArrayNewData (typ, data, e', e'') ->
Feature.require gc;
output_expression st ch e';
output_expression st ch e'';
output_byte ch 0xFB;
output_byte ch 9;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ);
output_uint ch (Code.Var.Hashtbl.find st.data_names data)
| ArrayGet (signage, typ, e', e'') ->
Feature.require gc;
output_expression st ch e';
output_expression st ch e'';
output_byte ch 0xFB;
output_byte
ch
(match signage with
| None -> 0x0B
| Some S -> 0x0C
| Some U -> 0x0D);
output_uint ch (Code.Var.Hashtbl.find st.type_names typ)
| ArrayLen e' ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch 0x0F
| StructNew (typ, l) ->
Feature.require gc;
List.iter ~f:(fun e' -> output_expression st ch e') l;
output_byte ch 0xFB;
output_byte ch 0;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ)
| StructGet (signage, typ, idx, e') ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte
ch
(match signage with
| None -> 0x02
| Some S -> 0x03
| Some U -> 0x04);
output_uint ch (Code.Var.Hashtbl.find st.type_names typ);
output_uint ch idx
| RefCast ({ typ; nullable }, e') ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch (if nullable then 0x17 else 0x16);
output_heaptype st.type_names ch typ
| RefTest ({ typ; nullable }, e') ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch (if nullable then 0x15 else 0x14);
output_heaptype st.type_names ch typ
| RefEq (e', e'') ->
Feature.require gc;
output_expression st ch e';
output_expression st ch e'';
output_byte ch 0xD3
| RefNull typ ->
Feature.require reference_types;
output_byte ch 0xD0;
output_heaptype st.type_names ch typ
| Br_on_cast (i, typ1, typ2, e') ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch 0x18;
output_byte ch ((if typ1.nullable then 1 else 0) + if typ2.nullable then 2 else 0);
output_uint ch i;
output_heaptype st.type_names ch typ1.typ;
output_heaptype st.type_names ch typ2.typ
| Br_on_cast_fail (i, typ1, typ2, e') ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch 0x19;
output_byte ch ((if typ1.nullable then 1 else 0) + if typ2.nullable then 2 else 0);
output_uint ch i;
output_heaptype st.type_names ch typ1.typ;
output_heaptype st.type_names ch typ2.typ
| Br_on_null (i, e') ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xD5;
output_uint ch i
| IfExpr (typ, e1, e2, e3) ->
output_expression st ch e1;
output_byte ch 0x04;
output_valtype st.type_names ch typ;
output_expression st ch e2;
output_byte ch 0x05;
output_expression st ch e3;
output_byte ch 0x0B
| Try (typ, l, catches) ->
Feature.require exception_handling;
output_byte ch 0x06;
output_blocktype st.type_names ch typ;
List.iter ~f:(fun i' -> output_instruction st ch i') l;
List.iter
~f:(fun (tag, l, ty) ->
output_byte ch 0x07;
output_uint ch (Code.Var.Hashtbl.find st.tag_names tag);
output_instruction st ch (Br (l + 1, Some (Pop ty))))
catches;
output_byte ch 0X0B
| ExternConvertAny e' ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch 0x1B
| AnyConvertExtern e' ->
Feature.require gc;
output_expression st ch e';
output_byte ch 0xFB;
output_byte ch 0x1A
and output_instruction st ch i =
match i with
| Drop e ->
output_expression st ch e;
output_byte ch 0x1A
| LocalSet (i, e) ->
output_expression st ch e;
output_byte ch 0x21;
output_uint ch (Code.Var.Hashtbl.find st.current_local_names i)
| GlobalSet (g, e) ->
output_expression st ch e;
output_byte ch 0x24;
output_uint ch (Code.Var.Hashtbl.find st.global_names g)
| Loop (typ, l) ->
output_byte ch 0x03;
output_blocktype st.type_names ch typ;
List.iter ~f:(fun i' -> output_instruction st ch i') l;
output_byte ch 0x0B
| Block (typ, l) ->
output_byte ch 0x02;
output_blocktype st.type_names ch typ;
List.iter ~f:(fun i' -> output_instruction st ch i') l;
output_byte ch 0x0B
| If (typ, e, l1, l2) ->
output_expression st ch e;
output_byte ch 0x04;
output_blocktype st.type_names ch typ;
List.iter ~f:(fun i' -> output_instruction st ch i') l1;
if not (List.is_empty l2)
then (
output_byte ch 0x05;
List.iter ~f:(fun i' -> output_instruction st ch i') l2);
output_byte ch 0x0B
| Br_table (e, l, i) ->
output_expression st ch e;
output_byte ch 0x0E;
output_vec output_uint ch l;
output_uint ch i
| Br (i, None) ->
output_byte ch 0x0C;
output_uint ch i
| Br (i, Some e) ->
output_expression st ch e;
output_byte ch 0x0C;
output_uint ch i
| Br_if (i, e) ->
output_expression st ch e;
output_byte ch 0x0D;
output_uint ch i
| Return None -> output_byte ch 0x0F
| Return (Some e) ->
output_expression st ch e;
output_byte ch 0x0F
| CallInstr (f, l) ->
List.iter ~f:(fun e -> output_expression st ch e) l;
output_byte ch 0x10;
output_uint ch (Code.Var.Hashtbl.find st.func_names f)
| Nop -> ()
| Push e -> output_expression st ch e
| Throw (tag, e) ->
Feature.require exception_handling;
output_expression st ch e;
output_byte ch 0x08;
output_uint ch (Code.Var.Hashtbl.find st.tag_names tag)
| Rethrow i ->
Feature.require exception_handling;
output_byte ch 0x09;
output_uint ch i
| ArraySet (typ, e1, e2, e3) ->
Feature.require gc;
output_expression st ch e1;
output_expression st ch e2;
output_expression st ch e3;
output_byte ch 0xFB;
output_byte ch 0x0E;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ)
| StructSet (typ, idx, e1, e2) ->
Feature.require gc;
output_expression st ch e1;
output_expression st ch e2;
output_byte ch 0xFB;
output_byte ch 0x05;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ);
output_uint ch idx
| Return_call (f, l) ->
Feature.require tail_call;
List.iter ~f:(fun e -> output_expression st ch e) l;
output_byte ch 0x12;
output_uint ch (Code.Var.Hashtbl.find st.func_names f)
| Return_call_ref (typ, e', l) ->
Feature.require tail_call;
List.iter ~f:(fun e' -> output_expression st ch e') l;
output_expression st ch e';
output_byte ch 0x15;
output_uint ch (Code.Var.Hashtbl.find st.type_names typ)
| Unreachable -> output_byte ch 0x00
| Event Parse_info.{ src = None | Some ""; _ } -> push_no_event ch
| Event Parse_info.{ src = Some src; line; col; _ } -> push_event ch ~src ~line ~col
let output_globals ch (st, global_idx, fields) =
let count =
List.fold_left
~f:(fun count field ->
match field with
| Global _ -> count + 1
| Function _ | Type _ | Import _ | Data _ | Tag _ -> count)
~init:0
fields
in
output_uint ch count;
let _idx =
List.fold_left
~f:(fun idx field ->
match field with
| Global { name; typ; init; _ } ->
Code.Var.Hashtbl.add st.global_names name idx;
output_globaltype st.type_names ch typ;
output_expression st ch init;
output_byte ch 0x0B;
idx + 1
| Function _ | Type _ | Import _ | Data _ | Tag _ -> idx)
~init:global_idx
fields
in
()
let output_exports ch (func_names, global_names, fields) =
let count =
List.fold_left
~f:(fun count field ->
match field with
| Function { exported_name = Some _; _ } | Global { exported_name = Some _; _ }
-> count + 1
| Function { exported_name = None; _ }
| Global { exported_name = None; _ }
| Import _ | Type _ | Data _ | Tag _ -> count)
~init:0
fields
in
output_uint ch count;
List.iter
~f:(fun field ->
match field with
| Function { exported_name = None; _ }
| Type _ | Data _
| Global { exported_name = None; _ }
| Tag _ | Import _ -> ()
| Function { name; exported_name = Some exported_name; _ } ->
output_name ch exported_name;
output_byte ch 0x00;
output_uint ch (Code.Var.Hashtbl.find func_names name)
| Global { name; exported_name = Some exported_name; typ; _ } ->
if typ.mut then Feature.require mutable_globals;
output_name ch exported_name;
output_byte ch 0x03;
output_uint ch (Code.Var.Hashtbl.find global_names name))
fields
let compute_data_names fields =
let data_count =
List.fold_left
~f:(fun count field ->
match field with
| Data _ -> count + 1
| Function _ | Type _ | Import _ | Global _ | Tag _ -> count)
~init:0
fields
in
let data_names = Code.Var.Hashtbl.create 16 in
let _idx =
List.fold_left
~f:(fun idx field ->
match field with
| Data { name; _ } ->
Code.Var.Hashtbl.add data_names name idx;
idx + 1
| Function _ | Type _ | Import _ | Global _ | Tag _ -> idx)
~init:0
fields
in
data_count, data_names
let output_data_count ch data_count = output_uint ch data_count
let output_data ch (data_count, fields) =
output_uint ch data_count;
ignore
(List.fold_left
~f:(fun idx field ->
match field with
| Data { contents; _ } ->
output_byte ch 1;
output_name ch contents;
idx + 1
| Function _ | Type _ | Import _ | Global _ | Tag _ -> idx)
~init:0
fields)
let rec expr_function_references e set =
match e with
| Const _ | LocalGet _ | GlobalGet _ | Pop _ | RefNull _ -> set
| UnOp (_, e')
| I32WrapI64 e'
| I64ExtendI32 (_, e')
| F32DemoteF64 e'
| F64PromoteF32 e'
| LocalTee (_, e')
| RefI31 e'
| I31Get (_, e')
| ArrayLen e'
| StructGet (_, _, _, e')
| RefCast (_, e')
| RefTest (_, e')
| Br_on_cast (_, _, _, e')
| Br_on_cast_fail (_, _, _, e')
| Br_on_null (_, e')
| ExternConvertAny e'
| AnyConvertExtern e' -> expr_function_references e' set
| BinOp (_, e', e'')
| ArrayNew (_, e', e'')
| ArrayNewData (_, _, e', e'')
| ArrayGet (_, _, e', e'')
| RefEq (e', e'') ->
set |> expr_function_references e' |> expr_function_references e''
| IfExpr (_, e1, e2, e3) ->
set
|> expr_function_references e1
|> expr_function_references e2
|> expr_function_references e3
| BlockExpr (_, l) ->
List.fold_left ~f:(fun set i -> instr_function_references i set) ~init:set l
| Call (_, l) | ArrayNewFixed (_, l) | StructNew (_, l) ->
List.fold_left ~f:(fun set i -> expr_function_references i set) ~init:set l
| Seq _ -> assert false
| RefFunc f -> Code.Var.Set.add f set
| Call_ref (_, e', l) ->
List.fold_left
~f:(fun set i -> expr_function_references i set)
~init:(expr_function_references e' set)
l
| Try (_, l, _) ->
List.fold_left ~f:(fun set i -> instr_function_references i set) ~init:set l
and instr_function_references i set =
match i with
| Drop e
| LocalSet (_, e)
| GlobalSet (_, e)
| Br (_, Some e)
| Br_table (e, _, _)
| Br_if (_, e)
| Return (Some e)
| Push e
| Throw (_, e) -> expr_function_references e set
| Loop (_, l) | Block (_, l) ->
List.fold_left ~f:(fun set i -> instr_function_references i set) ~init:set l
| If (_, e, l1, l2) ->
set
|> expr_function_references e
|> (fun init ->
List.fold_left ~f:(fun set i -> instr_function_references i set) ~init l1)
|> fun init ->
List.fold_left ~f:(fun set i -> instr_function_references i set) ~init l2
| Br (_, None) | Return None | Nop | Rethrow _ -> set
| CallInstr (_, l) ->
List.fold_left ~f:(fun set i -> expr_function_references i set) ~init:set l
| ArraySet (_, e1, e2, e3) ->
set
|> expr_function_references e1
|> expr_function_references e2
|> expr_function_references e3
| StructSet (_, _, e1, e2) ->
set |> expr_function_references e1 |> expr_function_references e2
| Return_call (_, l) ->
List.fold_left ~f:(fun set i -> expr_function_references i set) ~init:set l
| Return_call_ref (_, e', l) ->
List.fold_left
~f:(fun set i -> expr_function_references i set)
~init:(expr_function_references e' set)
l
| Unreachable | Event _ -> set
let function_references fields set =
List.fold_left
~f:(fun set field ->
match field with
| Function { body; _ } ->
List.fold_left
~f:(fun set i -> instr_function_references i set)
~init:set
body
| Global _ | Import _ | Type _ | Data _ | Tag _ -> set)
~init:set
fields
let output_elem ch (st, refs) =
output_byte ch (* declare *) 1;
output_byte ch (* func *) 3;
output_byte ch 0x00;
let refs = Code.Var.Set.elements refs in
output_vec
(fun ch f -> output_uint ch (Code.Var.Hashtbl.find st.func_names f))
ch
refs
let coalesce_locals l =
let rec loop acc n t l =
match l with
| [] -> List.rev ((n, t) :: acc)
| (_, t') :: r ->
if Poly.equal t t' then loop acc (n + 1) t r else loop ((n, t) :: acc) 1 t' r
in
match l with
| [] -> []
| (_, t) :: rem -> loop [] 1 t rem
let output_code ch (st, fields) =
let l =
List.fold_left
~f:(fun acc field ->
match field with
| Function { name; param_names; locals; body; _ } ->
(name, param_names, locals, body) :: acc
| Type _ | Import _ | Data _ | Global _ | Tag _ -> acc)
~init:[]
fields
in
output_vec
(with_size (fun ch (name, param_names, locals, body) ->
let current_local_names = Code.Var.Hashtbl.create 8 in
let idx =
List.fold_left
~f:(fun idx x ->
Code.Var.Hashtbl.add current_local_names x idx;
idx + 1)
~init:0
param_names
in
let _ =
List.fold_left
~f:(fun idx (x, _) ->
Code.Var.Hashtbl.add current_local_names x idx;
idx + 1)
~init:idx
locals
in
Code.Var.Hashtbl.add st.local_names name current_local_names;
let st = { st with current_local_names } in
output_vec
(fun ch (n, typ) ->
output_uint ch n;
output_valtype st.type_names ch typ)
ch
(coalesce_locals locals);
(try List.iter ~f:(fun i -> output_instruction st ch i) body
with e ->
let backtrace = Printexc.get_backtrace () in
prerr_endline (Printexc.to_string e);
prerr_endline backtrace;
assert false);
output_byte ch 0x0B;
push_no_event ch))
ch
(List.rev l)
let output_section id f ch x =
output_byte ch id;
with_size f ch x
let assign_names f tbl =
let names = Code.Var.Hashtbl.fold (fun name idx rem -> (idx, name) :: rem) tbl [] in
let names = List.sort ~cmp:(fun (idx, _) (idx', _) -> compare idx idx') names in
let used = ref StringSet.empty in
let counts = String.Hashtbl.create 101 in
let rec find_available_name used name =
let i =
try String.Hashtbl.find counts name
with Not_found ->
let i = ref 0 in
String.Hashtbl.replace counts name i;
i
in
incr i;
let nm = Printf.sprintf "%s$%d" name !i in
if StringSet.mem nm used then find_available_name used name else nm
in
let names =
List.map
~f:(fun (idx, x) ->
match f x with
| None -> idx, None
| Some nm ->
let nm =
if StringSet.mem nm !used then find_available_name !used nm else nm
in
used := StringSet.add nm !used;
idx, Some nm)
names
in
let printer = Var_printer.create Var_printer.Alphabet.javascript in
let i = ref 0 in
let rec first_available_name () =
let nm = Var_printer.to_string printer !i in
incr i;
if StringSet.mem nm !used then first_available_name () else nm
in
List.map
~f:(fun (idx, nm) ->
match nm with
| Some nm -> idx, nm
| None -> idx, first_available_name ())
names
let output_names ch st =
output_name ch "name";
let index = Code.Var.get_name in
let out id f tbl =
let names = assign_names f tbl in
if not (List.is_empty names)
then
output_section
id
(output_vec (fun ch (idx, name) ->
output_uint ch idx;
output_name ch name))
ch
names
in
let locals =
Code.Var.Hashtbl.fold
(fun name tbl rem -> (Code.Var.Hashtbl.find st.func_names name, tbl) :: rem)
st.local_names
[]
|> List.sort ~cmp:(fun (idx, _) (idx', _) -> compare idx idx')
in
out 1 index st.func_names;
output_section
2
(output_vec (fun ch (idx, tbl) ->
output_uint ch idx;
let locals = assign_names index tbl in
output_vec
(fun ch (idx, name) ->
output_uint ch idx;
output_name ch name)
ch
locals))
ch
locals;
out 4 index st.type_names;
out 7 index st.global_names;
out 9 index st.data_names;
out 11 index st.tag_names
let output_features ch () =
output_name ch "target_features";
output_vec
(fun ch f ->
output_byte ch 0x2b;
output_name ch f)
ch
(Feature.get features)
let output_module ch fields =
output_string ch "\x00\x61\x73\x6D\x01\x00\x00\x00";
let func_types, type_names = output_section 1 output_types ch fields in
let func_idx, func_names, global_idx, global_names, _, tag_names =
output_section 2 output_imports ch (func_types, type_names, fields)
in
output_section
3
output_functions
ch
(type_names, func_idx, func_names, func_types, fields);
let st =
{ type_names
; func_names
; global_names
; data_names = Code.Var.Hashtbl.create 1
; tag_names
; local_names = Code.Var.Hashtbl.create 8
; current_local_names = Code.Var.Hashtbl.create 8
}
in
output_section 6 output_globals ch (st, global_idx, fields);
output_section 7 output_exports ch (func_names, global_names, fields);
let refs = function_references fields Code.Var.Set.empty in
output_section 9 output_elem ch (st, refs);
let data_count, data_names = compute_data_names fields in
if data_count > 0
then (
Feature.require bulk_memory;
output_section 12 output_data_count ch data_count);
let st = { st with data_names } in
output_section 10 output_code ch (st, fields);
output_section 11 output_data ch (data_count, fields);
if Config.Flag.pretty () then output_section 0 output_names ch st;
if Feature.test gc then Feature.require reference_types;
output_section 0 output_features ch ()
end
let f ~opt_source_map_file ch fields =
let mappings = ref [] in
let files = String.Hashtbl.create 16 in
let module O = Make (struct
type t = out_channel
let position = pos_out
let seek = seek_out
let byte = output_byte
let string = output_string
let push_mapping m = mappings := m :: !mappings
let get_file_index file =
try String.Hashtbl.find files file
with Not_found ->
let pos = String.Hashtbl.length files in
String.Hashtbl.add files file pos;
pos
end) in
O.output_module ch fields;
Option.iter opt_source_map_file ~f:(fun source_map_file ->
let hashtbl_to_list htb =
String.Hashtbl.fold (fun k v l -> (k, v) :: l) htb []
|> List.sort ~cmp:(fun (_, a) (_, b) -> compare a b)
|> List.map ~f:fst
in
let sm =
{ (Source_map.Standard.empty ~inline_source_content:false) with
sources = hashtbl_to_list files
; mappings = Source_map.Mappings.encode (List.rev !mappings)
}
in
Source_map.to_file ~rewrite_paths:false (Standard sm) source_map_file)
|