1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
(* Js_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
* Copyright (C) 2013 Hugo Heuzard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
open Code
open Flow
let times = Debug.find "times"
let stats = Debug.find "stats"
let debug_stats = Debug.find "stats-debug"
let static_env = String.Hashtbl.create 17
let clear_static_env () = String.Hashtbl.clear static_env
let set_static_env s value = String.Hashtbl.add static_env s value
let get_static_env s =
try Some (String.Hashtbl.find static_env s) with Not_found -> None
let int_unop l f =
match l with
| [ Int i ] -> Some (Int (f i))
| _ -> None
let int_binop l f =
match l with
| [ Int i; Int j ] -> Some (Int (f i j))
| _ -> None
(* For when the underlying function takes an [int] (not [t]) as its second argument *)
let shift_op l f =
match l with
| [ Int i; Int j ] -> Some (Int (f i (Targetint.to_int_exn j)))
| _ -> None
let float f : constant = Float (Int64.bits_of_float f)
let float_binop_aux (l : constant list) (f : float -> float -> 'a) : 'a option =
let args =
match l with
| [ Float i; Float j ] -> Some (Int64.float_of_bits i, Int64.float_of_bits j)
| _ -> None
in
match args with
| None -> None
| Some (i, j) -> Some (f i j)
let float_binop (l : constant list) (f : float -> float -> float) : constant option =
match float_binop_aux l f with
| Some x -> Some (float x)
| None -> None
let float_unop (l : constant list) (f : float -> float) : constant option =
match l with
| [ Float i ] -> Some (float (f (Int64.float_of_bits i)))
| _ -> None
let bool' b = Int Targetint.(if b then one else zero)
let bool b = Some (bool' b)
let float_unop_bool (l : constant list) (f : float -> bool) =
match l with
| [ Float i ] -> bool (f (Int64.float_of_bits i))
| _ -> None
let float_binop_bool l f =
match float_binop_aux l f with
| Some b -> bool b
| None -> None
let int32 i = Some (Int32 i)
let int32_unop (l : constant list) (f : int32 -> int32) : constant option =
match l with
| [ Int32 i ] -> Some (Int32 (f i))
| _ -> None
let int32_binop (l : constant list) (f : int32 -> int32 -> int32) : constant option =
match l with
| [ Int32 i; Int32 j ] -> Some (Int32 (f i j))
| _ -> None
let int32_shiftop (l : constant list) (f : int32 -> int -> int32) : constant option =
match l with
| [ Int32 i; Int j ] -> Some (Int32 (f i (Targetint.to_int_exn j)))
| _ -> None
let int64 i = Some (Int64 i)
let int64_unop (l : constant list) (f : int64 -> int64) : constant option =
match l with
| [ Int64 i ] -> Some (Int64 (f i))
| _ -> None
let int64_binop (l : constant list) (f : int64 -> int64 -> int64) : constant option =
match l with
| [ Int64 i; Int64 j ] -> Some (Int64 (f i j))
| _ -> None
let int64_shiftop (l : constant list) (f : int64 -> int -> int64) : constant option =
match l with
| [ Int64 i; Int j ] -> Some (Int64 (f i (Targetint.to_int_exn j)))
| _ -> None
let nativeint i = Some (NativeInt i)
let nativeint_unop (l : constant list) (f : int32 -> int32) : constant option =
match l with
| [ NativeInt i ] -> Some (NativeInt (f i))
| _ -> None
let nativeint_binop (l : constant list) (f : int32 -> int32 -> int32) : constant option =
match l with
| [ NativeInt i; NativeInt j ] -> Some (NativeInt (f i j))
| _ -> None
let nativeint_shiftop (l : constant list) (f : int32 -> int -> int32) : constant option =
match l with
| [ NativeInt i; Int j ] -> Some (NativeInt (f i (Targetint.to_int_exn j)))
| _ -> None
let eval_prim x =
match x with
| Not, [ Int i ] -> bool (Targetint.is_zero i)
| Lt, [ Int i; Int j ] -> bool Targetint.(i < j)
| Le, [ Int i; Int j ] -> bool Targetint.(i <= j)
| Eq, [ Int i; Int j ] -> bool Targetint.(i = j)
| Neq, [ Int i; Int j ] -> bool Targetint.(i <> j)
| Ult, [ Int i; Int j ] -> bool (Targetint.unsigned_lt i j)
| Extern name, l -> (
match name, l with
(* int *)
| "%int_add", _ -> int_binop l Targetint.add
| "%int_sub", _ -> int_binop l Targetint.sub
| ("%int_mul" | "%direct_int_mul"), _ -> int_binop l Targetint.mul
| "%direct_int_div", _ -> int_binop l Targetint.div
| "%int_div", [ _; Int i ] when not (Targetint.is_zero i) ->
int_binop l Targetint.div
| "%direct_int_mod", _ -> int_binop l Targetint.rem
| "%int_mod", [ _; Int i ] when not (Targetint.is_zero i) ->
int_binop l Targetint.rem
| "%int_and", _ -> int_binop l Targetint.logand
| "%int_or", _ -> int_binop l Targetint.logor
| "%int_xor", _ -> int_binop l Targetint.logxor
| "%int_lsl", _ -> shift_op l Targetint.shift_left
| "%int_lsr", _ -> shift_op l Targetint.shift_right_logical
| "%int_asr", _ -> shift_op l Targetint.shift_right
| "%int_neg", _ -> int_unop l Targetint.neg
| "caml_int_compare", _ ->
int_binop l Targetint.(fun i j -> of_int_exn (compare i j))
(* float *)
| "caml_eq_float", _ -> float_binop_bool l Float.( = )
| "caml_neq_float", _ -> float_binop_bool l Float.( <> )
| "caml_ge_float", _ -> float_binop_bool l Float.( >= )
| "caml_le_float", _ -> float_binop_bool l Float.( <= )
| "caml_gt_float", _ -> float_binop_bool l Float.( > )
| "caml_lt_float", _ -> float_binop_bool l Float.( < )
| "caml_add_float", _ -> float_binop l ( +. )
| "caml_sub_float", _ -> float_binop l ( -. )
| "caml_mul_float", _ -> float_binop l ( *. )
| "caml_div_float", _ -> float_binop l ( /. )
| "caml_fmod_float", _ -> float_binop l mod_float
| "caml_int_of_float", [ Float f ] -> (
match Targetint.of_float_opt (Int64.float_of_bits f) with
| None -> None
| Some f -> Some (Int f))
| "caml_float_of_int", [ Int i ] -> Some (float (Targetint.to_float i))
(* Math *)
| "caml_neg_float", _ -> float_unop l ( ~-. )
| "caml_abs_float", _ -> float_unop l abs_float
| "caml_acos_float", _ -> float_unop l acos
| "caml_asin_float", _ -> float_unop l asin
| "caml_atan_float", _ -> float_unop l atan
| "caml_atan2_float", _ -> float_binop l atan2
| "caml_hypot_float", _ -> float_binop l hypot
| "caml_ceil_float", _ -> float_unop l ceil
| "caml_floor_float", _ -> float_unop l floor
| "caml_trunc_float", _ -> float_unop l Float.trunc
| "caml_round_float", _ -> float_unop l Float.round
| "caml_cos_float", _ -> float_unop l cos
| "caml_exp_float", _ -> float_unop l exp
| "caml_exp2_float", _ -> float_unop l Float.exp2
| "caml_expm1_float", _ -> float_unop l expm1
| "caml_log_float", _ -> float_unop l log
| "caml_log1p_float", _ -> float_unop l log1p
| "caml_log2_float", _ -> float_unop l Float.log2
| "caml_log10_float", _ -> float_unop l log10
| "caml_cosh_float", _ -> float_unop l cosh
| "caml_sinh_float", _ -> float_unop l sinh
| "caml_tanh_float", _ -> float_unop l tanh
| "caml_acosh_float", _ -> float_unop l Float.acosh
| "caml_asinh_float", _ -> float_unop l Float.asinh
| "caml_atanh_float", _ -> float_unop l Float.atanh
| "caml_power_float", _ -> float_binop l ( ** )
| "caml_sin_float", _ -> float_unop l sin
| "caml_sqrt_float", _ -> float_unop l sqrt
| "caml_cbrt_float", _ -> float_unop l Float.cbrt
| "caml_tan_float", _ -> float_unop l tan
| "caml_copysign_float", _ -> float_binop l copysign
| "caml_signbit_float", _ -> float_unop_bool l Float.sign_bit
| "caml_erf_float", _ -> float_unop l Float.erf
| "caml_erfc_float", _ -> float_unop l Float.erfc
| "caml_nextafter_float", _ -> float_binop l Float.next_after
| "caml_float_compare", [ Float i; Float j ] ->
Some
(Int
(Targetint.of_int_exn
(Float.compare (Int64.float_of_bits i) (Int64.float_of_bits j))))
| "caml_ldexp_float", [ Float f; Int i ] ->
Some (float (ldexp (Int64.float_of_bits f) (Targetint.to_int_exn i)))
(* int32 *)
| "caml_int32_bits_of_float", [ Float f ] ->
int32 (Int32.bits_of_float (Int64.float_of_bits f))
| "caml_int32_float_of_bits", [ Int32 i ] -> Some (float (Int32.float_of_bits i))
| "caml_int32_of_float", [ Float f ] ->
int32 (Int32.of_float (Int64.float_of_bits f))
| "caml_int32_to_float", [ Int32 i ] -> Some (float (Int32.to_float i))
| "caml_int32_neg", _ -> int32_unop l Int32.neg
| "caml_int32_add", _ -> int32_binop l Int32.add
| "caml_int32_sub", _ -> int32_binop l Int32.sub
| "caml_int32_mul", _ -> int32_binop l Int32.mul
| "caml_int32_and", _ -> int32_binop l Int32.logand
| "caml_int32_or", _ -> int32_binop l Int32.logor
| "caml_int32_xor", _ -> int32_binop l Int32.logxor
| "caml_int32_div", [ _; Int32 i ] when not (Int32.equal i 0l) ->
int32_binop l Int32.div
| "caml_int32_mod", [ _; Int32 i ] when not (Int32.equal i 0l) ->
int32_binop l Int32.rem
| "caml_int32_shift_left", _ -> int32_shiftop l Int32.shift_left
| "caml_int32_shift_right", _ -> int32_shiftop l Int32.shift_right
| "caml_int32_shift_right_unsigned", _ -> int32_shiftop l Int32.shift_right_logical
| "caml_int32_compare", [ Int32 i; Int32 j ] ->
Some (Int (Targetint.of_int_exn (Int32.compare i j)))
| "caml_int32_to_int", [ Int32 i ] -> Some (Int (Targetint.of_int32_truncate i))
| "caml_int32_of_int", [ Int i ] -> int32 (Targetint.to_int32 i)
| "caml_nativeint_of_int32", [ Int32 i ] -> Some (NativeInt i)
| "caml_nativeint_to_int32", [ NativeInt i ] -> Some (Int32 i)
(* nativeint *)
| "caml_nativeint_bits_of_float", [ Float f ] ->
nativeint (Int32.bits_of_float (Int64.float_of_bits f))
| "caml_nativeint_float_of_bits", [ NativeInt i ] ->
Some (float (Int32.float_of_bits i))
| "caml_nativeint_of_float", [ Float f ] ->
nativeint (Int32.of_float (Int64.float_of_bits f))
| "caml_nativeint_to_float", [ NativeInt i ] -> Some (float (Int32.to_float i))
| "caml_nativeint_neg", _ -> nativeint_unop l Int32.neg
| "caml_nativeint_add", _ -> nativeint_binop l Int32.add
| "caml_nativeint_sub", _ -> nativeint_binop l Int32.sub
| "caml_nativeint_mul", _ -> nativeint_binop l Int32.mul
| "caml_nativeint_and", _ -> nativeint_binop l Int32.logand
| "caml_nativeint_or", _ -> nativeint_binop l Int32.logor
| "caml_nativeint_xor", _ -> nativeint_binop l Int32.logxor
| "caml_nativeint_div", [ _; NativeInt i ] when not (Int32.equal i 0l) ->
nativeint_binop l Int32.div
| "caml_nativeint_mod", [ _; NativeInt i ] when not (Int32.equal i 0l) ->
nativeint_binop l Int32.rem
| "caml_nativeint_shift_left", _ -> nativeint_shiftop l Int32.shift_left
| "caml_nativeint_shift_right", _ -> nativeint_shiftop l Int32.shift_right
| "caml_nativeint_shift_right_unsigned", _ ->
nativeint_shiftop l Int32.shift_right_logical
| "caml_nativeint_compare", [ NativeInt i; NativeInt j ] ->
Some (Int (Targetint.of_int_exn (Int32.compare i j)))
| "caml_nativeint_to_int", [ Int32 i ] -> Some (Int (Targetint.of_int32_truncate i))
| "caml_nativeint_of_int", [ Int i ] -> nativeint (Targetint.to_int32 i)
(* int64 *)
| "caml_int64_bits_of_float", [ Float f ] -> int64 f
| "caml_int64_float_of_bits", [ Int64 i ] -> Some (Float i)
| "caml_int64_of_float", [ Float f ] ->
int64 (Int64.of_float (Int64.float_of_bits f))
| "caml_int64_to_float", [ Int64 i ] -> Some (float (Int64.to_float i))
| "caml_int64_neg", _ -> int64_unop l Int64.neg
| "caml_int64_add", _ -> int64_binop l Int64.add
| "caml_int64_sub", _ -> int64_binop l Int64.sub
| "caml_int64_mul", _ -> int64_binop l Int64.mul
| "caml_int64_and", _ -> int64_binop l Int64.logand
| "caml_int64_or", _ -> int64_binop l Int64.logor
| "caml_int64_xor", _ -> int64_binop l Int64.logxor
| "caml_int64_div", [ _; Int64 i ] when not (Int64.equal i 0L) ->
int64_binop l Int64.div
| "caml_int64_mod", [ _; Int64 i ] when not (Int64.equal i 0L) ->
int64_binop l Int64.rem
| "caml_int64_shift_left", _ -> int64_shiftop l Int64.shift_left
| "caml_int64_shift_right", _ -> int64_shiftop l Int64.shift_right
| "caml_int64_shift_right_unsigned", _ -> int64_shiftop l Int64.shift_right_logical
| "caml_int64_compare", [ Int64 i; Int64 j ] ->
Some (Int (Targetint.of_int_exn (Int64.compare i j)))
| "caml_int64_to_int", [ Int64 i ] ->
Some (Int (Targetint.of_int32_truncate (Int64.to_int32 i)))
| "caml_int64_of_int", [ Int i ] -> int64 (Int64.of_int32 (Targetint.to_int32 i))
| "caml_int64_to_int32", [ Int64 i ] -> int32 (Int64.to_int32 i)
| "caml_int64_of_int32", [ Int32 i ] -> int64 (Int64.of_int32 i)
| "caml_int64_to_nativeint", [ Int64 i ] -> nativeint (Int64.to_int32 i)
| "caml_int64_of_nativeint", [ NativeInt i ] -> int64 (Int64.of_int32 i)
(* others *)
| ("caml_string_get" | "caml_string_unsafe_get"), [ String s; Int pos ] ->
let pos = Targetint.to_int_exn pos in
if Config.Flag.safe_string () && pos >= 0 && pos < String.length s
then Some (Int (Targetint.of_int_exn (Char.code s.[pos])))
else None
| "caml_string_equal", [ String s1; String s2 ] -> bool (String.equal s1 s2)
| "caml_string_notequal", [ String s1; String s2 ] ->
bool (not (String.equal s1 s2))
| "caml_sys_getenv", [ String s ] -> (
match get_static_env s with
| Some env -> Some (String env)
| None -> None)
| "caml_sys_const_word_size", [ _ ] -> Some (Int (Targetint.of_int_exn 32))
| "caml_sys_const_int_size", [ _ ] ->
Some (Int (Targetint.of_int_exn (Targetint.num_bits ())))
| "caml_sys_const_big_endian", [ _ ] -> Some (Int Targetint.zero)
| "caml_sys_const_naked_pointers_checked", [ _ ] -> Some (Int Targetint.zero)
| _ -> None)
| _ -> None
let the_length_of info x =
get_approx
info
(fun x ->
match Flow.Info.def info x with
| Some (Constant (String s)) -> Some (Targetint.of_int_exn (String.length s))
| Some (Prim (Extern "caml_create_string", [ arg ]))
| Some (Prim (Extern "caml_create_bytes", [ arg ])) -> the_int info arg
| None | Some _ -> None)
None
(fun u v ->
match u, v with
| Some l, Some l' when Targetint.(l = l') -> Some l
| _ -> None)
x
type is_int =
| Y
| N
| Unknown
let is_int info x =
match x with
| Pv x ->
get_approx
info
(fun x ->
match Flow.Info.def info x with
| Some (Constant (Int _)) -> Y
| Some (Block (_, _, _, _) | Constant _) -> N
| None | Some _ -> Unknown)
Unknown
(fun u v ->
match u, v with
| Y, Y -> Y
| N, N -> N
| _ -> Unknown)
x
| Pc (Int _) -> Y
| Pc _ -> N
let the_tag_of info x get equal =
match x with
| Pv x ->
get_approx
info
(fun x ->
match Flow.Info.def info x with
| Some (Block (j, _, _, mut)) ->
if Flow.Info.possibly_mutable info x
then (
assert (
match mut with
| Maybe_mutable -> true
| Immutable -> false);
None)
else get j
| Some (Constant (Tuple (j, _, _))) -> get j
| None | Some _ -> None)
None
(fun u v ->
match u, v with
| Some i, Some j when equal i j -> u
| _ -> None)
x
| Pc (Tuple (j, _, _)) -> get j
| _ -> None
let the_cont_of info x (a : cont array) =
(* The value of [x] might be meaningless when we're inside a dead code.
The proper fix would be to remove the deadcode entirely.
Meanwhile, add guards to prevent Invalid_argument("index out of bounds")
see https://github.com/ocsigen/js_of_ocaml/issues/485 *)
let get i = if i >= 0 && i < Array.length a then Some a.(i) else None in
get_approx
info
(fun x ->
match Flow.Info.def info x with
| Some (Prim (Extern "%direct_obj_tag", [ b ])) -> the_tag_of info b get cont_equal
| Some (Constant (Int j)) -> get (Targetint.to_int_exn j)
| None | Some _ -> None)
None
(fun u v ->
match u, v with
| Some i, Some j when cont_equal i j -> u
| _ -> None)
x
let rec int_predicate deep info pred x (i : Targetint.t) =
if deep > 2
then None
else
(* The value of [x] might be meaningless when we're inside a dead code.
The proper fix would be to remove the deadcode entirely.
Meanwhile, add guards to prevent Invalid_argument("index out of bounds")
see https://github.com/ocsigen/js_of_ocaml/issues/485 *)
get_approx
info
(fun x ->
match Flow.Info.def info x with
| Some (Prim (Extern "%direct_obj_tag", [ b ])) ->
the_tag_of info b (fun j -> Some (pred (Targetint.of_int_exn j) i)) Bool.equal
| Some (Prim (Extern "%int_sub", [ Pv a; Pc (Int b) ])) ->
int_predicate (deep + 1) info (fun x y -> pred (Targetint.sub x b) y) a i
| Some (Prim (Extern "%int_add", [ Pv a; Pc (Int b) ])) ->
int_predicate (deep + 1) info (fun x y -> pred (Targetint.add x b) y) a i
| Some (Constant (Int j)) -> Some (pred j i)
| None | Some _ -> None)
None
(fun u v ->
match u, v with
| Some i, Some j when Bool.equal i j -> u
| _ -> None)
x
(* If [constant_js_equal a b = Some v], then [caml_js_equals a b = v]). *)
let constant_js_equal a b =
match a, b with
| Int i, Int j -> Some (Targetint.equal i j)
| Float a, Float b ->
Some (Float.ieee_equal (Int64.float_of_bits a) (Int64.float_of_bits b))
| NativeString a, NativeString b -> Some (Native_string.equal a b)
| String a, String b when Config.Flag.use_js_string () -> Some (String.equal a b)
| Int _, Float _ | Float _, Int _ -> None
(* All other values may be distinct objects and thus different by [caml_js_equals]. *)
| String _, _
| _, String _
| NativeString _, _
| _, NativeString _
| Float_array _, _
| _, Float_array _
| Int64 _, _
| _, Int64 _
| Int32 _, _
| _, Int32 _
| NativeInt _, _
| _, NativeInt _
| Tuple _, _
| _, Tuple _ -> None
(* [eval_prim] does not distinguish the two constants *)
let constant_equal a b =
match a, b with
| Int i, Int j -> Targetint.equal i j
| Float a, Float b -> Int64.equal a b
| NativeString a, NativeString b -> Native_string.equal a b
| String a, String b -> String.equal a b
| Int32 a, Int32 b -> Int32.equal a b
| NativeInt a, NativeInt b -> Int32.equal a b
| Int64 a, Int64 b -> Int64.equal a b
(* We don't need to compare other constants, so let's just return false. *)
| Tuple _, Tuple _ -> false
| Float_array _, Float_array _ -> false
| (Int _ | Float _ | Int64 _ | Int32 _ | NativeInt _), _ -> false
| (String _ | NativeString _), _ -> false
| (Float_array _ | Tuple _), _ -> false
let eval_instr update_count inline_constant ~target info i =
match i with
| Let (x, Prim (Extern (("caml_equal" | "caml_notequal") as prim), [ y; z ])) -> (
let eq e1 e2 =
match Code.Constant.ocaml_equal e1 e2 with
| None -> false
| Some e -> e
in
match the_const_of ~eq info y, the_const_of ~eq info z with
| Some e1, Some e2 -> (
match Code.Constant.ocaml_equal e1 e2 with
| None -> [ i ]
| Some c ->
let c =
match prim with
| "caml_equal" -> c
| "caml_notequal" -> not c
| _ -> assert false
in
let c = Constant (bool' c) in
Flow.Info.update_def info x c;
incr update_count;
[ Let (x, c) ])
| _ -> [ i ])
| Let (x, Prim (Extern ("caml_js_equals" | "caml_js_strict_equals"), [ y; z ])) -> (
let eq e1 e2 =
match constant_js_equal e1 e2 with
| None -> false
| Some e -> e
in
match the_const_of ~eq info y, the_const_of ~eq info z with
| Some e1, Some e2 -> (
match constant_js_equal e1 e2 with
| None -> [ i ]
| Some c ->
let c = Constant (bool' c) in
Flow.Info.update_def info x c;
incr update_count;
[ Let (x, c) ])
| _ -> [ i ])
| Let (x, Prim (Extern "caml_ml_string_length", [ s ])) -> (
let c =
match s with
| Pc (String s) -> Some (Targetint.of_int_exn (String.length s))
| Pv v -> the_length_of info v
| _ -> None
in
match c with
| None -> [ i ]
| Some c ->
let c = Constant (Int c) in
Flow.Info.update_def info x c;
incr update_count;
[ Let (x, c) ])
| Let
( _
, Prim
( ( Extern
( "caml_array_unsafe_get"
| "caml_array_unsafe_set"
| "caml_floatarray_unsafe_get"
| "caml_floatarray_unsafe_set"
| "caml_array_unsafe_set_addr" )
| Array_get )
, _ ) ) ->
(* Fresh parameters can be introduced for these primitives
in Specialize_js, which would make the call to [the_const_of]
below fail. *)
[ i ]
| Let (x, Prim (Extern "caml_atomic_load_field", [ Pv o; f ])) -> (
match the_int info f with
| None -> [ i ]
| Some i -> [ Let (x, Field (o, Targetint.to_int_exn i, Non_float)) ])
| Let (x, Prim (IsInt, [ y ])) -> (
match is_int info y with
| Unknown -> [ i ]
| Y ->
let c = Constant (bool' true) in
Flow.Info.update_def info x c;
[ Let (x, c) ]
| N ->
let c = Constant (bool' false) in
Flow.Info.update_def info x c;
incr update_count;
[ Let (x, c) ])
| Let
( x
, Prim
( ((Eq | Neq | Lt | Le | Ult) as prim)
, ([ (Pv y as fst); Pc (Int j) ] | [ (Pc (Int j) as fst); Pv y ]) ) ) -> (
let pred =
match prim with
| Eq -> fun a b -> Targetint.equal a b
| Neq -> fun a b -> not (Targetint.equal a b)
| Lt -> fun a b -> Targetint.( < ) a b
| Le -> fun a b -> Targetint.( <= ) a b
| Ult -> fun a b -> Targetint.unsigned_lt a b
| _ -> assert false
in
let pred =
match fst with
| Pv _ -> pred
| Pc _ -> fun a b -> pred b a
in
match int_predicate 0 info pred y j with
| Some b ->
let c = Constant (bool' b) in
Flow.Info.update_def info x c;
incr update_count;
[ Let (x, c) ]
| None -> [ i ])
| Let (x, Prim (Extern "%direct_obj_tag", [ y ])) -> (
match the_tag_of info y (fun x -> Some x) ( = ) with
| Some tag ->
let c = Constant (Int (Targetint.of_int_exn tag)) in
Flow.Info.update_def info x c;
incr update_count;
[ Let (x, c) ]
| None -> [ i ])
| Let (x, Prim (Extern "caml_sys_const_backend_type", [ _ ])) ->
let jsoo = Code.Var.fresh () in
let backend_name =
match target with
| `JavaScript -> "js_of_ocaml"
| `Wasm -> "wasm_of_ocaml"
in
incr update_count;
[ Let (jsoo, Constant (String backend_name))
; Let (x, Block (0, [| jsoo |], NotArray, Immutable))
]
| Let (_, Prim (Extern ("%resume" | "%perform" | "%reperform"), _)) ->
[ i ] (* We need that the arguments to this primitives remain variables *)
| Let (x, Prim (prim, prim_args)) -> (
let prim_args' =
List.map prim_args ~f:(fun x -> the_const_of ~eq:constant_equal info x)
in
let res =
if
List.for_all prim_args' ~f:(function
| Some _ -> true
| _ -> false)
then
eval_prim
( prim
, List.map prim_args' ~f:(function
| Some c -> c
| None -> assert false) )
else None
in
match res with
| Some c ->
let c = Constant c in
Flow.Info.update_def info x c;
incr update_count;
[ Let (x, c) ]
| _ ->
[ Let
( x
, Prim
( prim
, List.map2 prim_args prim_args' ~f:(fun arg (c : constant option) ->
match arg with
| Pc _ -> arg
| Pv _ -> (
match c, target with
| Some (Int _ as c), _ ->
incr inline_constant;
Pc c
| Some (Int32 _ | NativeInt _ | NativeString _), `Wasm ->
(* Avoid duplicating the constant here as it would cause an
allocation *)
arg
| Some ((Int32 _ | NativeInt _) as c), `JavaScript ->
incr inline_constant;
Pc c
| Some ((Float _ | NativeString _) as c), `JavaScript ->
incr inline_constant;
Pc c
| Some (String _ as c), `JavaScript
when Config.Flag.use_js_string () ->
incr inline_constant;
Pc c
| Some _, _
(* do not be duplicated other constant as
they're not represented with constant in javascript. *)
| None, _ -> arg)) ) )
])
| _ -> [ i ]
type cond_of =
| Zero
| Non_zero
| Unknown
let the_cond_of info x =
get_approx
info
(fun x ->
match Flow.Info.def info x with
| Some (Constant (Int x)) -> if Targetint.is_zero x then Zero else Non_zero
| Some
(Constant
( Int32 _
| NativeInt _
| Float _
| Tuple _
| String _
| NativeString _
| Float_array _
| Int64 _ )) -> Non_zero
| Some (Block (_, _, _, _)) -> Non_zero
| Some (Field _ | Closure _ | Prim _ | Apply _ | Special _) -> Unknown
| None -> Unknown)
Unknown
(fun u v ->
match u, v with
| Zero, Zero -> Zero
| Non_zero, Non_zero -> Non_zero
| _ -> Unknown)
x
let eval_branch update_branch info l =
match l with
| Cond (x, ftrue, ffalse) as b -> (
match the_cond_of info x with
| Zero ->
incr update_branch;
Branch ffalse
| Non_zero ->
incr update_branch;
Branch ftrue
| Unknown -> b)
| Switch (x, a) as b -> (
match the_cont_of info x a with
| Some cont ->
incr update_branch;
Branch cont
| None -> b)
| _ as b -> b
exception May_raise
let rec do_not_raise pc visited rewrite blocks =
if Addr.Set.mem pc visited
then visited, rewrite
else
let visited = Addr.Set.add pc visited in
let b = Addr.Map.find pc blocks in
List.iter b.body ~f:(fun i ->
match i with
| Event _
| Array_set (_, _, _)
| Offset_ref (_, _)
| Set_field (_, _, _, _)
| Assign _ -> ()
| Let (_, e) -> (
match e with
| Block (_, _, _, _) | Field (_, _, _) | Constant _ | Closure _ -> ()
| Apply _ -> raise May_raise
| Special _ -> ()
| Prim (Extern name, _) when Primitive.is_pure name -> ()
| Prim (Extern _, _) -> raise May_raise
| Prim (_, _) -> ()));
match b.branch with
| Raise _ -> raise May_raise
| Stop | Return _ -> visited, rewrite
| Poptrap _ -> visited, pc :: rewrite
| Branch (pc, _) -> do_not_raise pc visited rewrite blocks
| Cond (_, (pc1, _), (pc2, _)) ->
let visited, rewrite = do_not_raise pc1 visited rewrite blocks in
let visited, rewrite = do_not_raise pc2 visited rewrite blocks in
visited, rewrite
| Switch (_, a1) ->
let visited, rewrite =
Array.fold_left
a1
~init:(visited, rewrite)
~f:(fun (visited, rewrite) (pc, _) -> do_not_raise pc visited rewrite blocks)
in
visited, rewrite
| Pushtrap _ -> raise May_raise
let drop_exception_handler drop_count blocks =
Addr.Map.fold
(fun pc _ blocks ->
match Addr.Map.find pc blocks with
| { branch = Pushtrap (((addr, _) as cont1), _x, _cont2); _ } as b -> (
match do_not_raise addr Addr.Set.empty [] blocks with
| exception May_raise -> blocks
| _visited, rewrite ->
incr drop_count;
let b = { b with branch = Branch cont1 } in
let blocks = Addr.Map.add pc b blocks in
let blocks =
List.fold_left
~f:(fun blocks pc2 ->
Addr.Map.update
pc2
(function
| Some ({ branch = Poptrap cont; _ } as b) ->
Some { b with branch = Branch cont }
| None | Some _ -> assert false)
blocks)
rewrite
~init:blocks
in
blocks)
| _ -> blocks)
blocks
blocks
let eval update_count update_branch inline_constant ~target info blocks =
Addr.Map.map
(fun block ->
let body =
List.concat_map
block.body
~f:(eval_instr update_count inline_constant ~target info)
in
let branch = eval_branch update_branch info block.branch in
{ block with Code.body; Code.branch })
blocks
let f info p =
Code.invariant p;
let previous_p = p in
let update_count = ref 0 in
let update_branch = ref 0 in
let inline_constant = ref 0 in
let drop_count = ref 0 in
let t = Timer.make () in
let blocks =
eval
update_count
update_branch
inline_constant
~target:(Config.target ())
info
p.blocks
in
let blocks = drop_exception_handler drop_count blocks in
let p = { p with blocks } in
if times () then Format.eprintf " eval: %a@." Timer.print t;
if stats ()
then
Format.eprintf
"Stats - eval: %d optimizations, %d inlined cst, %d dropped exception handlers, %d \
branch updated@."
!update_count
!inline_constant
!drop_count
!update_branch;
if debug_stats ()
then
Code.check_updates
~name:"eval"
previous_p
p
~updates:(!update_count + !inline_constant + !drop_count + !update_branch);
let p = Deadcode.remove_unused_blocks p in
Code.invariant p;
p
|