1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
(* Js_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
* Copyright (C) 2010 Jérôme Vouillon
* Laboratoire PPS - CNRS Université Paris Diderot
* Copyright (C) 2013 Hugo Heuzard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
open Code
open Flow
let times = Debug.find "times"
let stats = Debug.find "stats"
let debug_stats = Debug.find "stats-debug"
let specialize_instr opt_count ~target info i =
match i, target with
| Let (x, Prim (Extern "caml_format_int", [ y; z ])), `JavaScript -> (
(* We can implement the special case where the format string is "%s" in JavaScript
in a concise and efficient way with [""+x]. It does not make as much sense in
Wasm to have a special case for this. *)
match the_string_of info y with
| Some "%d" -> (
incr opt_count;
match the_int info z with
| Some i -> Let (x, Constant (String (Targetint.to_string i)))
| None -> Let (x, Prim (Extern "%caml_format_int_special", [ z ])))
| _ -> i)
| Let (x, Prim (Extern "%caml_format_int_special", [ z ])), `JavaScript -> (
match the_int info z with
| Some i ->
incr opt_count;
Let (x, Constant (String (Targetint.to_string i)))
| None -> i)
(* inline the String constant argument so that generate.ml can attempt to parse it *)
| ( Let
( x
, Prim
( Extern (("caml_js_var" | "caml_js_expr" | "caml_pure_js_expr") as prim)
, [ (Pv _ as y) ] ) )
, _ ) -> (
match the_string_of info y with
| Some s ->
incr opt_count;
Let (x, Prim (Extern prim, [ Pc (String s) ]))
| _ -> i)
| Let (x, Prim (Extern ("caml_register_named_value" as prim), [ (Pv _ as y); z ])), _
-> (
match the_string_of info y with
| Some s when Primitive.need_named_value s ->
incr opt_count;
Let (x, Prim (Extern prim, [ Pc (String s); z ]))
| Some _ ->
incr opt_count;
Let (x, Constant (Int Targetint.zero))
| None -> i)
| Let (x, Prim (Extern "caml_js_call", [ f; o; a ])), _ -> (
match the_block_contents_of info a with
| Some a ->
incr opt_count;
let a = Array.map a ~f:(fun x -> Pv x) in
Let (x, Prim (Extern "%caml_js_opt_call", f :: o :: Array.to_list a))
| _ -> i)
| Let (x, Prim (Extern "caml_js_fun_call", [ f; a ])), _ -> (
match the_block_contents_of info a with
| Some a ->
incr opt_count;
let a = Array.map a ~f:(fun x -> Pv x) in
Let (x, Prim (Extern "%caml_js_opt_fun_call", f :: Array.to_list a))
| _ -> i)
| Let (x, Prim (Extern "caml_js_meth_call", [ o; m; a ])), _ -> (
match the_string_of info m with
| Some m when Javascript.is_ident m -> (
match the_block_contents_of info a with
| Some a ->
incr opt_count;
let a = Array.map a ~f:(fun x -> Pv x) in
Let
( x
, Prim
( Extern "%caml_js_opt_meth_call"
, o
:: Pc (NativeString (Native_string.of_string m))
:: Array.to_list a ) )
| None -> i)
| _ -> i)
| Let (x, Prim (Extern "caml_js_new", [ c; a ])), _ -> (
match the_block_contents_of info a with
| Some a ->
incr opt_count;
let a = Array.map a ~f:(fun x -> Pv x) in
Let (x, Prim (Extern "%caml_js_opt_new", c :: Array.to_list a))
| _ -> i)
| Let (x, Prim (Extern "caml_js_object", [ a ])), _ -> (
try
let a =
match the_def_of info a with
| Some (Block (_, a, _, _)) -> a
| _ -> raise Exit
in
let a =
Array.map a ~f:(fun x ->
match the_def_of info (Pv x) with
| Some (Block (_, [| k; v |], _, _)) ->
let k =
match the_string_of info (Pv k) with
| Some s when String.is_valid_utf_8 s ->
Pc (NativeString (Native_string.of_string s))
| Some _ | None -> raise Exit
in
[ k; Pv v ]
| Some (Constant (Tuple (0, [| String k; v |], (NotArray | Unknown))))
when String.is_valid_utf_8 k ->
[ Pc (NativeString (Native_string.of_string k)); Pc v ]
| Some _ | None -> raise Exit)
in
incr opt_count;
Let (x, Prim (Extern "%caml_js_opt_object", List.flatten (Array.to_list a)))
with Exit -> i)
| Let (x, Prim (Extern "caml_js_get", [ o; (Pv _ as f) ])), _ -> (
match the_native_string_of info f with
| Some s ->
incr opt_count;
Let (x, Prim (Extern "caml_js_get", [ o; Pc (NativeString s) ]))
| _ -> i)
| Let (x, Prim (Extern "caml_js_set", [ o; (Pv _ as f); v ])), _ -> (
match the_native_string_of info f with
| Some s ->
incr opt_count;
Let (x, Prim (Extern "caml_js_set", [ o; Pc (NativeString s); v ]))
| _ -> i)
| Let (x, Prim (Extern "caml_js_delete", [ o; (Pv _ as f) ])), _ -> (
match the_native_string_of info f with
| Some s ->
incr opt_count;
Let (x, Prim (Extern "caml_js_delete", [ o; Pc (NativeString s) ]))
| _ -> i)
| Let (x, Prim (Extern ("caml_jsstring_of_string" | "caml_js_from_string"), [ y ])), _
-> (
match the_string_of info y with
| Some s when String.is_valid_utf_8 s ->
incr opt_count;
Let (x, Constant (NativeString (Native_string.of_string s)))
| Some _ | None -> i)
| Let (x, Prim (Extern "caml_jsbytes_of_string", [ y ])), _ -> (
match the_string_of info y with
| Some s ->
incr opt_count;
Let (x, Constant (NativeString (Native_string.of_bytestring s)))
| None -> i)
| Let (x, Prim (Extern "%int_mul", [ y; z ])), `JavaScript -> (
let limit = Targetint.of_int_exn 0x200000 in
(* Using * to multiply integers in JavaScript yields a float; and if the
float is large enough, some bits can be lost. So, in the general case,
we have to use Math.imul. There is no such issue in Wasm. *)
match the_int info y, the_int info z with
| Some j, _ when Targetint.(abs j < limit) ->
incr opt_count;
Let (x, Prim (Extern "%direct_int_mul", [ y; z ]))
| _, Some j when Targetint.(abs j < limit) ->
incr opt_count;
Let (x, Prim (Extern "%direct_int_mul", [ y; z ]))
| _ -> i)
| Let (x, Prim (Extern "%int_div", [ y; z ])), _ -> (
match the_int info z with
| Some j when not (Targetint.is_zero j) ->
incr opt_count;
Let (x, Prim (Extern "%direct_int_div", [ y; z ]))
| _ -> i)
| Let (x, Prim (Extern "%int_mod", [ y; z ])), _ -> (
match the_int info z with
| Some j when not (Targetint.is_zero j) ->
incr opt_count;
Let (x, Prim (Extern "%direct_int_mod", [ y; z ]))
| _ -> i)
| _, _ -> i
let skip_event cont (Event _ :: l | l) = cont l
let recognize_string_length cont =
skip_event
@@ fun l ->
match l with
| (Let (len, Prim (Extern "caml_ml_string_length", [ Pv str ])) as i) :: l ->
cont i ~len ~str l
| _ -> None
let recognize_int_add ~x ~y cont =
skip_event
@@ fun l ->
match l with
| (Let (res, Prim (Extern "%int_add", [ Pv x'; Pv y' ])) as i) :: l
when Code.Var.equal x x' && Code.Var.equal y y' -> cont i ~res l
| _ -> None
let recognize_create_bytes ~len cont =
skip_event
@@ fun l ->
match l with
| Let (bytes, Prim (Extern "caml_create_bytes", [ Pv len' ])) :: l
when Code.Var.equal len len' -> cont ~bytes l
| _ -> None
let recognize_blit_string ~str ~bytes ~ofs ~len cont =
skip_event
@@ fun l ->
match l with
| Let
( _
, Prim
(Extern "caml_blit_string", [ Pv str'; Pc (Int zero); Pv bytes'; ofs'; Pv len' ])
)
:: l
when Code.Var.equal str str'
&& Targetint.is_zero zero
&& Code.Var.equal bytes bytes'
&& Code.Var.equal len len'
&&
match ofs, ofs' with
| Pc (Int ofs), Pc (Int ofs') -> Targetint.equal ofs ofs'
| Pv ofs, Pv ofs' -> Code.Var.equal ofs ofs'
| _ -> false -> cont l
| _ -> None
let recognize_string_of_bytes ~bytes cont =
skip_event
@@ fun l ->
match l with
| Let (str, Prim (Extern "caml_string_of_bytes", [ Pv bytes' ])) :: l
when Code.Var.equal bytes bytes' -> cont ~str l
| _ -> None
let recognize_empty_body cont =
skip_event @@ fun l -> if List.is_empty l then cont () else None
let specialize_string_concat opt_count l =
Option.value
~default:l
(l
|> recognize_string_length
@@ fun len1 ~len:alen ~str:a ->
recognize_string_length
@@ fun len2 ~len:blen ~str:b ->
recognize_int_add ~x:alen ~y:blen
@@ fun len3 ~res:len ->
recognize_create_bytes ~len
@@ fun ~bytes ->
recognize_blit_string ~str:a ~bytes ~ofs:(Pc (Int Targetint.zero)) ~len:alen
@@ recognize_blit_string ~str:b ~bytes ~ofs:(Pv alen) ~len:blen
@@ recognize_string_of_bytes ~bytes
@@ fun ~str ->
recognize_empty_body
@@ fun () ->
incr opt_count;
Some
[ len1
; len2
; len3
; Let (str, Prim (Extern "caml_string_concat", [ Pv a; Pv b ]))
; Let (bytes, Prim (Extern "caml_bytes_of_string", [ Pv str ]))
])
let idx_equal (v1, c1) (v2, c2) =
Code.Var.equal v1 v2
&&
match c1, c2 with
| `Cst a, `Cst b -> Targetint.equal a b
| `Var a, `Var b -> Code.Var.equal a b
| `Cst _, `Var _ | `Var _, `Cst _ -> false
let specialize_instrs ~target opt_count info l =
let rec aux info checks l acc =
match l with
| [] -> List.rev acc
| i :: r -> (
(* We make bound checking explicit. Then, we can remove duplicated
bound checks. Also, it appears to be more efficient to inline
the array access. The bound checking function returns the array,
which allows to produce more compact code. *)
match i with
| Let
( x
, Prim
( Extern
(( "caml_array_get"
| "caml_array_get_float"
| "caml_floatarray_get"
| "caml_array_get_addr" ) as prim)
, [ Pv y; z ] ) ) ->
let idx =
match the_int info z with
| Some idx -> `Cst idx
| None -> (
match z with
| Pv z -> `Var z
| Pc _ -> assert false)
in
let instr y =
let prim =
match prim with
| "caml_array_get" -> Extern "caml_array_unsafe_get"
| "caml_array_get_float" | "caml_floatarray_get" ->
Extern "caml_floatarray_unsafe_get"
| "caml_array_get_addr" -> Array_get
| _ -> assert false
in
Let (x, Prim (prim, [ Pv y; z ]))
in
if List.mem ~eq:idx_equal (y, idx) checks
then (
incr opt_count;
let acc = instr y :: acc in
aux info checks r acc)
else
let check =
match prim with
| "caml_array_get" -> "caml_check_bound_gen"
| "caml_array_get_float" | "caml_floatarray_get" ->
"caml_check_bound_float"
| "caml_array_get_addr" -> "caml_check_bound"
| _ -> assert false
in
let y' = Code.Var.fresh () in
incr opt_count;
let acc = instr y' :: Let (y', Prim (Extern check, [ Pv y; z ])) :: acc in
aux info ((y, idx) :: checks) r acc
| Let
( x
, Prim
( Extern
(( "caml_array_set"
| "caml_array_set_float"
| "caml_floatarray_set"
| "caml_array_set_addr" ) as prim)
, [ Pv y; z; t ] ) ) ->
let idx =
match the_int info z with
| Some idx -> `Cst idx
| None -> (
match z with
| Pv z -> `Var z
| Pc _ -> assert false)
in
let instr y =
let prim =
match prim with
| "caml_array_set" -> "caml_array_unsafe_set"
| "caml_array_set_float" | "caml_floatarray_set" ->
"caml_floatarray_unsafe_set"
| "caml_array_set_addr" -> "caml_array_unsafe_set_addr"
| _ -> assert false
in
Let (x, Prim (Extern prim, [ Pv y; z; t ]))
in
if List.mem ~eq:idx_equal (y, idx) checks
then (
incr opt_count;
let acc = instr y :: acc in
aux info checks r acc)
else
let check =
match prim with
| "caml_array_set" -> "caml_check_bound_gen"
| "caml_array_set_float" | "caml_floatarray_set" ->
"caml_check_bound_float"
| "caml_array_set_addr" -> "caml_check_bound"
| _ -> assert false
in
let y' = Code.Var.fresh () in
let acc = instr y' :: Let (y', Prim (Extern check, [ Pv y; z ])) :: acc in
incr opt_count;
aux info ((y, idx) :: checks) r acc
| _ ->
let i = specialize_instr ~target opt_count info i in
aux info checks r (i :: acc))
in
aux info [] l []
let specialize_all_instrs ~target opt_count info p =
let blocks =
Addr.Map.map
(fun block ->
{ block with
Code.body =
specialize_instrs
~target
opt_count
info
(specialize_string_concat opt_count block.body)
})
p.blocks
in
{ p with blocks }
(****)
let f info p =
Code.invariant p;
let previous_p = p in
let t = Timer.make () in
let opt_count = ref 0 in
let p = specialize_all_instrs ~target:(Config.target ()) opt_count info p in
if times () then Format.eprintf " specialize_js: %a@." Timer.print t;
if stats () then Format.eprintf "Stats - specialize_js: %d@." !opt_count;
if debug_stats ()
then Code.check_updates ~name:"specialize_js" previous_p p ~updates:!opt_count;
Code.invariant p;
p
let f_once_before p =
let rec loop acc l =
match l with
| [] -> List.rev acc
| i :: r -> (
match i with
| Let
( x
, (Prim
( Extern
( "caml_array_set"
| "caml_array_unsafe_set"
| "caml_array_set_float"
| "caml_floatarray_set"
| "caml_array_set_addr"
| "caml_array_unsafe_set_float"
| "caml_floatarray_unsafe_set" )
, [ _; _; _ ] ) as p) ) ->
let x' = Code.Var.fork x in
let acc = Let (x', p) :: Let (x, Constant (Int Targetint.zero)) :: acc in
loop acc r
| _ -> loop (i :: acc) r)
in
let blocks =
Addr.Map.map (fun block -> { block with Code.body = loop [] block.body }) p.blocks
in
let p = { p with blocks } in
Code.invariant p;
p
let rec args_equal xs ys =
match xs, ys with
| [], [] -> true
| x :: xs, Pv y :: ys -> Code.Var.compare x y = 0 && args_equal xs ys
| _ -> false
let f_once_after p =
let first_class_primitives =
match Config.target (), Config.effects () with
| `JavaScript, `Disabled -> true
| `JavaScript, (`Cps | `Double_translation) | `Wasm, _ -> false
| `JavaScript, `Jspi -> assert false
in
let f = function
| Let (x, Closure (l, (pc, []), _)) as i -> (
let block = Addr.Map.find pc p.blocks in
match block with
| { body =
( [ Let (y, Prim (Extern prim, args)) ]
| [ Event _; Let (y, Prim (Extern prim, args)) ]
| [ Event _; Let (y, Prim (Extern prim, args)); Event _ ] )
; branch = Return y'
; params = []
} ->
let len = List.length l in
if
Code.Var.compare y y' = 0
&& Primitive.has_arity prim len
&& args_equal l args
then Let (x, Special (Alias_prim prim))
else i
| _ -> i)
| i -> i
in
if first_class_primitives
then (
let blocks =
Addr.Map.map
(fun block -> { block with Code.body = List.map block.body ~f })
p.blocks
in
let p = Deadcode.remove_unused_blocks { p with blocks } in
Code.invariant p;
p)
else p
|