File: inline.ml

package info (click to toggle)
js-of-ocaml 6.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 37,932 kB
  • sloc: ml: 135,957; javascript: 58,364; ansic: 437; makefile: 422; sh: 12; perl: 4
file content (731 lines) | stat: -rw-r--r-- 24,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
(* Js_of_ocaml compiler
 * http://www.ocsigen.org/js_of_ocaml/
 * Copyright (C) 2010 Jérôme Vouillon
 * Laboratoire PPS - CNRS Université Paris Diderot
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, with linking exception;
 * either version 2.1 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *)

open! Stdlib
open Code

let debug = Debug.find "inlining"

let times = Debug.find "times"

let stats = Debug.find "stats"

let debug_stats = Debug.find "stats-debug"

(****)

(*
We try to find a good order to traverse the code:
- when a function calls another function or contains another function,
  we process it after the other function
- in case of recursive cycles, we process functions called only once
  first
*)

let collect_closures p =
  let closures = Var.Hashtbl.create 128 in
  let rec traverse p enclosing pc =
    Code.traverse
      { fold = Code.fold_children }
      (fun pc () ->
        let block = Addr.Map.find pc p.blocks in
        List.iter
          ~f:(fun i ->
            match i with
            | Let (f, Closure (params, ((pc', _) as cont), _)) ->
                Var.Hashtbl.add closures f (params, cont, enclosing);
                traverse p (Some f) pc'
            | _ -> ())
          block.body)
      pc
      p.blocks
      ()
  in
  traverse p None p.start;
  closures

let collect_deps p closures =
  let deps = Var.Hashtbl.create (Var.Hashtbl.length closures) in
  Var.Hashtbl.iter (fun f _ -> Var.Hashtbl.add deps f (ref Var.Set.empty)) closures;
  let traverse p g pc =
    let add_dep f =
      if Var.Hashtbl.mem closures f
      then
        let s = Var.Hashtbl.find deps f in
        s := Var.Set.add g !s
    in
    Code.traverse
      { fold = Code.fold_children }
      (fun pc () ->
        let block = Addr.Map.find pc p.blocks in
        Freevars.iter_block_free_vars add_dep block;
        List.iter
          ~f:(fun i ->
            match i with
            | Let (f, Closure _) -> add_dep f
            | _ -> ())
          block.body)
      pc
      p.blocks
      ()
  in
  Var.Hashtbl.iter (fun f (_, (pc, _), _) -> traverse p f pc) closures;
  Var.Hashtbl.fold (fun f s m -> Var.Map.add f !s m) deps Var.Map.empty

module Var_SCC = Strongly_connected_components.Make (Var)

let visit_closures p ~live_vars f acc =
  let closures = collect_closures p in
  let deps = collect_deps p closures in
  let f' ~recursive acc g =
    let params, cont, enclosing_function = Var.Hashtbl.find closures g in
    f ~recursive ~enclosing_function ~current_function:(Some g) ~params ~cont acc
  in
  let rec visit ~recursive deps acc =
    let scc = Var_SCC.connected_components_sorted_from_roots_to_leaf deps in
    Array.fold_left
      scc
      ~f:(fun acc group ->
        match group with
        | Var_SCC.No_loop g -> f' ~recursive acc g
        | Has_loop l ->
            let set = Var.Set.of_list l in
            let deps' =
              List.fold_left
                ~f:(fun deps' g ->
                  Var.Map.add
                    g
                    (Var.Set.inter
                       (if recursive || live_vars.(Var.idx g) > 1
                        then
                          (* Make sure that inner closures are
                             processed before their enclosing
                             closure *)
                          let _, _, enclosing = Var.Hashtbl.find closures g in
                          match enclosing with
                          | None -> Var.Set.empty
                          | Some enclosing -> Var.Set.singleton enclosing
                        else Var.Map.find g deps)
                       set)
                    deps')
                ~init:Var.Map.empty
                l
            in
            visit ~recursive:true deps' acc)
      ~init:acc
  in
  let acc = visit ~recursive:false deps acc in
  f
    ~recursive:false
    ~enclosing_function:None
    ~current_function:None
    ~params:[]
    ~cont:(p.start, [])
    acc

(****)

module SCC = Strongly_connected_components.Make (Addr)

let blocks_in_loop p pc =
  let g =
    Code.traverse
      { fold = Code.fold_children }
      (fun pc g ->
        Addr.Map.add pc (Code.fold_children p.blocks pc Addr.Set.add Addr.Set.empty) g)
      pc
      p.blocks
      Addr.Map.empty
  in
  let scc = SCC.component_graph g in
  Array.fold_left
    ~f:(fun s (c, _) ->
      match c with
      | SCC.No_loop _ -> s
      | Has_loop l -> List.fold_left ~f:(fun s x -> Addr.Set.add x s) l ~init:s)
    ~init:Addr.Set.empty
    scc

(****)

type 'a cache = 'a option ref

(* Information about a function candidate for inlining. Some
   information / statistics about this function are computed lazily
   and stored there. *)

type info =
  { f : Var.t
  ; params : Var.t list
  ; cont : Code.cont
  ; enclosing_function : Var.t option
  ; recursive : bool
  ; loops : bool cache
  ; body_size : int cache
  ; full_size : int cache
  ; closure_count : int cache
  ; init_code : int cache
  ; returns_a_block : bool cache
  ; interesting_params : (Var.t * int) list cache
  }

type context =
  { profile : Profile.t  (** Aggressive inlining? *)
  ; p : program
  ; live_vars : int array  (** Occurence count of all variables *)
  ; inline_count : int ref  (** Inlining statistics *)
  ; env : info Var.Map.t  (** Functions that are candidate for inlining *)
  ; in_loop : bool Lazy.t  (** Whether the current block is in a loop *)
  ; has_closures : bool Lazy.t ref  (** Whether the current function contains closures *)
  ; current_function : Var.t option  (** Name of the current function *)
  ; enclosing_function : Var.t option
        (** Name of the function enclosing the current function *)
  }
(** Current context into which we consider inlining some functions. *)

let cache ~info:{ cont = pc, _; _ } ref f =
  match !ref with
  | Some v -> v
  | None ->
      let v = f pc in
      ref := Some v;
      v

(** Does the function contain a loop? *)
let contains_loop ~context info =
  cache ~info info.loops (fun pc ->
      let rec traverse pc ((visited, loop) as accu) : _ * bool =
        if loop
        then accu
        else if Addr.Map.mem pc visited
        then visited, Addr.Map.find pc visited
        else
          let visited, loop =
            Code.fold_children
              context.p.blocks
              pc
              traverse
              (Addr.Map.add pc true visited, false)
          in
          Addr.Map.add pc false visited, loop
      in
      snd (traverse pc (Addr.Map.empty, false)))

let sum ~context f pc =
  let blocks = context.p.blocks in
  Code.traverse
    { fold = fold_children }
    (fun pc acc -> f (Addr.Map.find pc blocks) + acc)
    pc
    blocks
    0

let rec block_size ~recurse ~context { branch; body; _ } =
  List.fold_left
    ~f:(fun n i ->
      match i with
      | Event _ -> n
      | Let (f, Closure (_, (pc, _), _)) ->
          if recurse
          then
            match Var.Map.find f context.env with
            | exception Not_found -> size ~recurse ~context pc + n + 1
            | info -> cache ~info info.full_size (size ~recurse:true ~context) + n + 1
          else n + 1
      | _ -> n + 1)
    ~init:
      (match branch with
      | Cond _ | Raise _ -> 2
      | Switch (_, a1) -> Array.length a1
      | _ -> 0)
    body

and size ~recurse ~context = sum ~context (block_size ~recurse ~context)

(** Size of the function body *)
let body_size ~context info = cache ~info info.body_size (size ~recurse:false ~context)

(** Size of the function, including the size of the closures it contains *)
let full_size ~context info = cache ~info info.full_size (size ~recurse:true ~context)

let closure_count_uncached ~context =
  sum ~context (fun { body; _ } ->
      List.fold_left
        ~f:(fun n i ->
          match i with
          | Let (_, Closure _) -> n + 1
          | _ -> n)
        ~init:0
        body)

(** Number of closures contained in the function *)
let closure_count ~context info =
  cache ~info info.closure_count (closure_count_uncached ~context)

(** Number of instructions in the function which look like
    initialization code. *)
let count_init_code ~context info =
  cache
    ~info
    info.init_code
    (sum ~context
    @@ fun { body; _ } ->
    List.fold_left
      ~f:(fun n i ->
        match i with
        | Let (_, (Closure _ | Field _ | Constant _ | Block _)) -> n + 1
        | Let (_, (Apply _ | Prim _ | Special _))
        | Assign _ | Set_field _ | Offset_ref _ | Array_set _ | Event _ -> n)
      ~init:0
      body)

(** Whether the function returns a block. *)
let returns_a_block ~context info =
  cache ~info info.returns_a_block (fun pc ->
      let blocks = context.p.blocks in
      Code.traverse
        { fold = fold_children }
        (fun pc acc ->
          acc
          &&
          let block = Addr.Map.find pc blocks in
          match block.branch with
          | Return x -> (
              match Code.last_instr block.body with
              | Some (Let (x', Block _)) -> Var.equal x x'
              | _ -> false)
          | Raise _ | Stop | Branch _ | Cond _ | Switch _ | Pushtrap _ | Poptrap _ -> true)
        pc
        blocks
        true)

(** List of parameters that corresponds to functions called once in
    the function body. *)
let interesting_parameters ~context info =
  let params = info.params in
  cache ~info info.interesting_params (fun pc ->
      let params = List.filter ~f:(fun x -> context.live_vars.(Var.idx x) = 1) params in
      if List.is_empty params
      then []
      else
        let blocks = context.p.blocks in
        Code.traverse
          { fold = fold_children }
          (fun pc lst ->
            let block = Addr.Map.find pc blocks in
            List.fold_left
              ~f:(fun lst i ->
                match i with
                | Let (_, Apply { f; args; _ }) when List.mem ~eq:Var.equal f params ->
                    (f, List.length args) :: lst
                | _ -> lst)
              ~init:lst
              block.body)
          pc
          blocks
          [])

(*
   We are very aggressive at optimizing functor-like code, even if
   this might duplicate quite a lot of code, since this is likely to
   allow other optimizations: direct function calls, more precise dead
   code elimination, ...
*)
let functor_like ~context info =
  (match Config.target (), context.profile with
  | `Wasm, (O2 | O3) -> true
  | `Wasm, O1 -> body_size ~context info <= 15
  | `JavaScript, (O1 | O2) -> false
  | `JavaScript, O3 -> body_size ~context info <= 15)
  && (not info.recursive)
  && (not (contains_loop ~context info))
  && returns_a_block ~context info
  && count_init_code ~context info * 2 > body_size ~context info
  (* A large portion of the body is initialization code *)
  &&
  (* The closures defined in this function are small on average *)
  full_size ~context info - body_size ~context info <= 20 * closure_count ~context info

let trivial_function ~context info =
  (not info.recursive) && body_size ~context info <= 1 && closure_count ~context info = 0

(*
  We inline small functions which are simple (no closure, no
  recursive) when one of the argument is a function that would get
  inlined afterwards.
*)
let rec small_function ~context info args =
  (not info.recursive)
  && body_size ~context info <= 15
  && closure_count ~context info = 0
  && (not (List.is_empty args))
  && not (Var.Map.is_empty (relevant_arguments ~context info args))

and relevant_arguments ~context info args =
  let relevant_params = interesting_parameters ~context info in
  List.fold_left2
    args
    info.params
    ~f:(fun m arg param ->
      if
        Var.Map.mem arg context.env
        && List.exists ~f:(fun (p, _) -> Var.equal p param) relevant_params
      then
        let info' = Var.Map.find arg context.env in
        let _, arity = List.find ~f:(fun (p, _) -> Var.equal p param) relevant_params in
        if
          List.compare_length_with info'.params ~len:arity = 0
          && should_inline
               ~context:
                 { context with
                   in_loop =
                     lazy (Lazy.force context.in_loop || contains_loop ~context info)
                 }
               info'
               []
        then Var.Map.add param arg m
        else m
      else m)
    ~init:Var.Map.empty

and should_inline ~context info args =
  (* Typically, in JavaScript implementations, a closure contains a
     pointer to (recursively) the contexts of its enclosing functions.
     The context of a function contains the variables bound in this
     function which are referred to from one of the enclosed function.
     To limit the risk of memory leaks, we try to avoid inlining functions
     containing closures if this makes these closures capture
     additional contexts shared with other closures.
     We still inline into toplevel functions ([Option.is_none
     context.enclosing_function]) since this results in significant
     performance improvements. *)
  (match Config.target (), Config.effects () with
  | `JavaScript, (`Disabled | `Cps) ->
      closure_count ~context info = 0
      || Option.is_none context.enclosing_function
      || Option.equal Var.equal info.enclosing_function context.current_function
      || (not (Lazy.force !(context.has_closures)))
         && Option.equal Var.equal info.enclosing_function context.enclosing_function
  | `Wasm, _ | `JavaScript, `Double_translation -> true
  | `JavaScript, `Jspi -> assert false)
  && (functor_like ~context info
     || (context.live_vars.(Var.idx info.f) = 1
        &&
        match Config.target () with
        | `Wasm when Lazy.force context.in_loop ->
            (* Avoid inlining in a loop since, if the loop is not hot,
               the code might never get optimized *)
            body_size ~context info < 30 && not (contains_loop ~context info)
        | `JavaScript
          when Option.is_none context.current_function && contains_loop ~context info ->
            (* Avoid inlining loops at toplevel since the toplevel
               code is less likely to get optimized *)
            false
        | _ -> body_size ~context info < Config.Param.inlining_limit ())
     || trivial_function ~context info
     || small_function ~context info args)

let trace_inlining ~context info x args =
  if debug ()
  then
    let sz = body_size ~context info in
    let sz' = full_size ~context info in
    Format.eprintf
      "%a <- %a%s: %b uses:%d size:%d/%d loop:%b rec:%b closures:%d init:%d \
       return_block:%b functor:%b small:%b@."
      Var.print
      x
      Var.print
      info.f
      (match Var.get_name info.f with
      | Some s -> "(" ^ s ^ ")"
      | None -> "")
      (should_inline ~context info args)
      context.live_vars.(Var.idx info.f)
      sz
      sz'
      (contains_loop ~context info)
      info.recursive
      (closure_count ~context info)
      (count_init_code ~context info)
      (returns_a_block ~context info)
      (functor_like ~context info)
      (small_function ~context info args)

(****)

(* Inlining a function used only once will leave an unused closure
   with an initial continuation pointing to a block belonging to
   another function. This removes these closures. *)

let remove_dead_closures_from_block ~live_vars p pc block =
  let is_dead_closure i =
    match i with
    | Let (f, Closure _) ->
        let f = Var.idx f in
        f < Array.length live_vars && live_vars.(f) = 0
    | _ -> false
  in
  if List.exists ~f:is_dead_closure block.body
  then
    { p with
      blocks =
        Addr.Map.add
          pc
          { block with
            body =
              List.fold_left block.body ~init:[] ~f:(fun acc i ->
                  match i, acc with
                  | Event _, Event _ :: prev ->
                      (* Avoid consecutive events (keep just the last one) *)
                      i :: prev
                  | _ -> if is_dead_closure i then acc else i :: acc)
              |> List.rev
          }
          p.blocks
    }
  else p

let remove_dead_closures ~live_vars p pc =
  Code.traverse
    { fold = fold_children }
    (fun pc p ->
      let block = Addr.Map.find pc p.blocks in
      remove_dead_closures_from_block ~live_vars p pc block)
    pc
    p.blocks
    p

(****)

let rewrite_block pc' pc blocks =
  let block = Addr.Map.find pc blocks in
  let block =
    match block.branch, pc' with
    | Return y, Some pc' -> { block with branch = Branch (pc', [ y ]) }
    | _ -> block
  in
  Addr.Map.add pc block blocks

let rewrite_closure blocks cont_pc clos_pc =
  Code.traverse
    { fold = Code.fold_children_skip_try_body }
    (rewrite_block cont_pc)
    clos_pc
    blocks
    blocks

let rewrite_inlined_function p rem branch x params cont args =
  let blocks, cont_pc, free_pc =
    match rem, branch with
    | [], Return y when Var.equal x y ->
        (* We do not need a continuation block for tail calls *)
        p.blocks, None, p.free_pc
    | _ ->
        let fresh_addr = p.free_pc in
        let free_pc = fresh_addr + 1 in
        ( Addr.Map.add fresh_addr { params = [ x ]; body = rem; branch } p.blocks
        , Some fresh_addr
        , free_pc )
  in
  let blocks = rewrite_closure blocks cont_pc (fst cont) in
  (* We do not really need this intermediate block.
     It just avoids the need to find which function
     parameters are used in the function body. *)
  let fresh_addr = free_pc in
  let free_pc = fresh_addr + 1 in
  assert (List.compare_lengths args params = 0);
  let blocks =
    Addr.Map.add fresh_addr { params; body = []; branch = Branch cont } blocks
  in
  [], (Branch (fresh_addr, args), { p with blocks; free_pc })

let rec inline_recursively ~context ~info p params (pc, _) args =
  let relevant_args = relevant_arguments ~context info args in
  if Var.Map.is_empty relevant_args
  then p
  else
    let subst =
      List.fold_left2
        params
        info.params
        ~f:(fun m param param' ->
          if Var.Map.mem param' relevant_args
          then Var.Map.add param (Var.Map.find param' relevant_args) m
          else m)
        ~init:Var.Map.empty
    in
    Code.traverse
      { fold = Code.fold_children }
      (fun pc p ->
        let block = Addr.Map.find pc p.blocks in
        let body, (branch, p) =
          List.fold_right
            ~f:(fun i (rem, state) ->
              match i with
              | Let (x, Apply { f; args; _ }) when Var.Map.mem f subst ->
                  (* The [exact] field might not be accurate since it
                     considers all possible values of [f], before the
                     current function is inlined, not just the one
                     called after inlining. We have checked in
                     [relevant_arguments] that the call was exact.
                     We have also checked that it made sense to inline
                     this call. In particular, this function is
                     applied only once. *)
                  let f = Var.Map.find f subst in
                  inline_function ~context i x f args rem state
              | _ -> i :: rem, state)
            ~init:([], (block.branch, p))
            block.body
        in
        { p with blocks = Addr.Map.add pc { block with body; branch } p.blocks })
      pc
      p.blocks
      p

and inline_function ~context i x f args rem state =
  let info = Var.Map.find f context.env in
  let { params; cont; _ } = info in
  trace_inlining ~context info x args;
  if should_inline ~context info args
  then (
    let branch, p = state in
    incr context.inline_count;
    if closure_count ~context info > 0 then context.has_closures := lazy true;
    context.live_vars.(Var.idx f) <- context.live_vars.(Var.idx f) - 1;
    let p, params, cont =
      if context.live_vars.(Var.idx f) > 0
      then (
        let p, _f, params, cont = Duplicate.closure p ~f ~params ~cont in
        (* It's ok to ignore the [_f] because the function is not recursive *)
        assert (not info.recursive);
        p, params, cont)
      else p, params, cont
    in
    let p = inline_recursively ~context ~info p params cont args in
    rewrite_inlined_function p rem branch x params cont args)
  else i :: rem, state

let inline_in_block ~context pc block p =
  let body, (branch, p) =
    List.fold_right
      ~f:(fun i (rem, state) ->
        match i with
        | Let (x, Apply { f; args; exact = true; _ }) when Var.Map.mem f context.env ->
            inline_function ~context i x f args rem state
        | _ -> i :: rem, state)
      ~init:([], (block.branch, p))
      block.body
  in
  { p with blocks = Addr.Map.add pc { block with body; branch } p.blocks }

let inline ~profile ~inline_count p ~live_vars =
  if debug () then Format.eprintf "====== inlining ======@.";
  (visit_closures
     p
     ~live_vars
     (fun ~recursive
          ~enclosing_function
          ~current_function
          ~params
          ~cont:((pc, _) as cont)
          (context : context)
        ->
       let p = context.p in
       let has_closures = ref (lazy (closure_count_uncached ~context pc > 0)) in
       let in_loop = lazy (blocks_in_loop p pc) in
       let context =
         { context with has_closures; enclosing_function; current_function }
       in
       let p =
         Code.traverse
           { fold = Code.fold_children }
           (fun pc p ->
             let block = Addr.Map.find pc p.blocks in
             if
               (* Skip blocks with no call of known function *)
               List.for_all
                 ~f:(fun i ->
                   match i with
                   | Let (_, Apply { f; _ }) -> not (Var.Map.mem f context.env)
                   | _ -> true)
                 block.body
             then p
             else
               inline_in_block
                 ~context:
                   { context with in_loop = lazy (Addr.Set.mem pc (Lazy.force in_loop)) }
                 pc
                 block
                 p)
           pc
           p.blocks
           p
       in
       let p = remove_dead_closures ~live_vars p pc in
       let env =
         match current_function with
         | Some f ->
             Var.Map.add
               f
               { f
               ; params
               ; cont
               ; enclosing_function
               ; recursive
               ; loops = ref None
               ; body_size = ref None
               ; full_size = ref None
               ; closure_count = ref None
               ; init_code = ref None
               ; returns_a_block = ref None
               ; interesting_params = ref None
               }
               context.env
         | None -> context.env
       in
       { context with p; env })
     { profile
     ; p
     ; live_vars
     ; inline_count
     ; env = Var.Map.empty
     ; in_loop = lazy false
     ; has_closures = ref (lazy false)
     ; current_function = None
     ; enclosing_function = None
     })
    .p

(****)

let f ~profile p live_vars =
  let previous_p = p in
  let inline_count = ref 0 in
  Code.invariant p;
  let t = Timer.make () in
  let p = inline ~profile ~inline_count p ~live_vars in
  if times () then Format.eprintf "  inlining: %a@." Timer.print t;
  if stats () then Format.eprintf "Stats - inlining: %d inlined functions@." !inline_count;
  if debug_stats ()
  then Code.check_updates ~name:"inline" previous_p p ~updates:!inline_count;
  let p = Deadcode.remove_unused_blocks p in
  Code.invariant p;
  p