1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
(* Js_of_ocaml compiler
* http://www.ocsigen.org/js_of_ocaml/
* Copyright (C) 2010 Jérôme Vouillon
* Laboratoire PPS - CNRS Université Paris Diderot
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, with linking exception;
* either version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open! Stdlib
open Code
let times = Debug.find "times"
let stats = Debug.find "stats"
let debug_stats = Debug.find "stats-debug"
let add_event loc instrs =
match loc with
| Some loc -> Event loc :: instrs
| None -> instrs
let unknown_apply = function
| Let (_, Apply { f = _; args = _; exact = false }) -> true
| _ -> false
let specialize_apply opt_count shape update_def =
let rec loop x f args shape loc (acc, free_pc, extra) =
match (shape : Shape.t) with
| Top | Block _ -> Let (x, Apply { f; args; exact = false }) :: acc, free_pc, extra
| Function { arity; res; _ } ->
let nargs = List.length args in
if arity = nargs
then (
incr opt_count;
let expr = Apply { f; args; exact = true } in
update_def x expr;
Let (x, expr) :: acc, free_pc, extra)
else if arity > nargs
then (
(* under application *)
incr opt_count;
let missing = Array.init (arity - nargs) ~f:(fun _ -> Code.Var.fresh ()) in
let missing = Array.to_list missing in
let block =
let params' = List.map missing ~f:Code.Var.fork in
let return' = Code.Var.fresh () in
let args = args @ params' in
assert (List.length args = arity);
{ params = params'
; body = add_event loc [ Let (return', Apply { f; args; exact = true }) ]
; branch = Return return'
}
in
let expr = Closure (missing, (free_pc, missing), None) in
update_def x expr;
Let (x, expr) :: acc, free_pc + 1, (free_pc, block) :: extra)
else (
assert (arity < nargs);
(* over application *)
incr opt_count;
let v = Code.Var.fresh () in
let args, rest = List.take arity args in
let exact_expr = Apply { f; args; exact = true } in
let body =
(* Reversed *)
add_event loc (Let (v, exact_expr) :: acc)
in
loop x v rest res loc (body, free_pc, extra))
in
fun i (((body_rev, free_pc, extra) as acc), loc) ->
match i with
| Let (x, Apply { f; args; exact = false }) -> loop x f args (shape f) loc acc
| _ -> i :: body_rev, free_pc, extra
let specialize_instrs ~shape ~update_def opt_count p =
let blocks, free_pc =
let specialize_instrs = specialize_apply opt_count shape update_def in
Addr.Map.fold
(fun pc block (blocks, free_pc) ->
if List.exists ~f:unknown_apply block.body
then
let (body_rev, free_pc, extra), _ =
List.fold_left
block.body
~init:(([], free_pc, []), None)
~f:(fun acc i ->
match i with
| Event loc ->
let (body_rev, free_pc, extra), _ = acc in
(i :: body_rev, free_pc, extra), Some loc
| _ -> specialize_instrs i acc, None)
in
let blocks =
List.fold_left extra ~init:blocks ~f:(fun blocks (pc, b) ->
Addr.Map.add pc b blocks)
in
Addr.Map.add pc { block with Code.body = List.rev body_rev } blocks, free_pc
else blocks, free_pc)
p.blocks
(p.blocks, p.free_pc)
in
{ p with blocks; free_pc }
let f ~shape ~update_def p =
Code.invariant p;
let previous_p = p in
let t = Timer.make () in
let opt_count = ref 0 in
let p =
if Config.Flag.optcall () then specialize_instrs ~shape ~update_def opt_count p else p
in
if times () then Format.eprintf " optcall: %a@." Timer.print t;
if stats () then Format.eprintf "Stats - optcall: %d@." !opt_count;
if debug_stats ()
then Code.check_updates ~name:"optcall" previous_p p ~updates:!opt_count;
Code.invariant p;
p
(***)
module Simple_block : sig
type t
val hash : t -> int
val equal : t -> t -> bool
val make : block -> t
end = struct
type t = block
let subst_cont s (pc, arg) = pc, List.map arg ~f:s
let expr s e =
match e with
| Constant _ -> e
| Apply { f; args; exact } -> Apply { f = s f; args = List.map args ~f:s; exact }
| Block (n, a, k, mut) -> Block (n, Array.map a ~f:s, k, mut)
| Field (x, n, typ) -> Field (s x, n, typ)
| Closure (l, pc, loc) -> Closure (l, subst_cont s pc, loc)
| Special _ -> e
| Prim (p, l) ->
Prim
( p
, List.map l ~f:(fun x ->
match x with
| Pv x -> Pv (s x)
| Pc _ -> x) )
let instr s d i =
match i with
| Let (x, e) ->
let x = d x in
Let (x, expr s e)
| Assign (x, y) -> Assign (s x, s y)
| Set_field (x, n, typ, y) -> Set_field (s x, n, typ, s y)
| Offset_ref (x, n) -> Offset_ref (s x, n)
| Array_set (x, y, z) -> Array_set (s x, s y, s z)
| Event _ -> Event Parse_info.zero
let instrs s d l = List.map l ~f:(fun i -> instr s d i)
let last s l =
match l with
| Stop -> l
| Branch cont -> Branch (subst_cont s cont)
| Pushtrap (cont1, x, cont2) -> Pushtrap (subst_cont s cont1, s x, subst_cont s cont2)
| Return x -> Return (s x)
| Raise (x, k) -> Raise (s x, k)
| Cond (x, cont1, cont2) -> Cond (s x, subst_cont s cont1, subst_cont s cont2)
| Switch (x, conts) -> Switch (s x, Array.map conts ~f:(fun cont -> subst_cont s cont))
| Poptrap cont -> Poptrap (subst_cont s cont)
let block s d block =
let params = List.map block.params ~f:s in
let body = instrs s d block.body in
let branch = last s block.branch in
{ params; body; branch }
let make blk =
let t = Var.Hashtbl.create 17 in
let s x =
match Var.Hashtbl.find_opt t x with
| None -> x
| Some x -> x
in
let d x =
let v = Var.of_idx (-Var.Hashtbl.length t) in
Var.Hashtbl.add t x v;
v
in
block s d blk
let instr_equal a b =
match a, b with
| Event _, Event _ -> true
| Event _, _ | _, Event _ -> false
| a, b -> Poly.equal a b
let equal a b =
List.equal ~eq:Var.equal a.params b.params
&& List.equal ~eq:instr_equal a.body b.body
&& Poly.equal a.branch b.branch
let hash (x : block) = Hashtbl.hash x
end
module SBT = Hashtbl.Make (Simple_block)
(* For switches, at this point, we know that this it is sufficient to
check the [pc]. *)
let equal (pc, _) (pc', _) = pc = pc'
type switch_to_cond =
[ `All_equals
| `Distinguished of int
| `Splitted of int
| `Splitted_shifted of int * int
]
let find_outlier_index arr : [ switch_to_cond | `Many_cases ] =
let len = Array.length arr in
let rec find w i =
if i >= len
then `All_equals
else if equal arr.(i) w
then find w (i + 1)
else `Distinguished i
in
let a0 = arr.(0) in
match find a0 0 with
| `All_equals as res -> res
| `Distinguished i -> (
match find arr.(i) i with
| `All_equals ->
if i = 1
then `Distinguished 0
else if i = len - 1
then `Distinguished i
else `Splitted i
| `Distinguished j -> (
match find a0 j with
| `All_equals -> if j = i + 1 then `Distinguished i else `Splitted_shifted (i, j)
| `Distinguished _ -> `Many_cases))
let optimize_switch_to_cond block x l (opt : switch_to_cond) =
match opt with
| `All_equals -> { block with branch = Branch l.(0) }
| `Distinguished i ->
let c = Var.fresh () in
{ block with
body =
block.body @ [ Let (c, Prim (Eq, [ Pc (Int (Targetint.of_int_exn i)); Pv x ])) ]
; branch = Cond (c, l.(i), l.((i + 1) mod Array.length l))
}
| `Splitted i ->
let c = Var.fresh () in
{ block with
body =
block.body @ [ Let (c, Prim (Lt, [ Pv x; Pc (Int (Targetint.of_int_exn i)) ])) ]
; branch = Cond (c, l.(i - 1), l.(i))
}
| `Splitted_shifted (i, j) ->
let shifted = Var.fresh () in
let c = Var.fresh () in
{ block with
body =
block.body
@ [ Let
( shifted
, Prim (Extern "%int_sub", [ Pv x; Pc (Int (Targetint.of_int_exn i)) ]) )
; Let (c, Prim (Ult, [ Pv shifted; Pc (Int (Targetint.of_int_exn (j - i))) ]))
]
; branch = Cond (c, l.(i), l.(j))
}
let switches p =
let previous_p = p in
let t = Timer.make () in
let opt_count = ref 0 in
let p =
{ p with
blocks =
Addr.Map.fold
(fun pc block blocks ->
match block.branch with
| Switch (x, l) -> (
match find_outlier_index l with
| #switch_to_cond as opt ->
incr opt_count;
let block = optimize_switch_to_cond block x l opt in
Addr.Map.add pc block blocks
| `Many_cases ->
let t = SBT.create 0 in
let rewrite = ref Addr.Set.empty in
let l =
Array.map l ~f:(fun ((pc, _) as cont) ->
let block = Code.Addr.Map.find pc blocks in
if List.compare_length_with block.body ~len:7 <= 0
then (
let sb = Simple_block.make block in
match SBT.find_opt t sb with
| Some cont' when not (equal cont' cont) ->
rewrite := Addr.Set.add (fst cont') !rewrite;
cont'
| Some _ | None ->
SBT.add t sb cont;
cont)
else cont)
in
if not (Addr.Set.is_empty !rewrite)
then (
incr opt_count;
let blocks =
Addr.Set.fold
(fun pc blocks ->
let block = Code.Addr.Map.find pc blocks in
Addr.Map.add
pc
{ block with
body =
List.filter
~f:(function
| Event _ -> false
| _ -> true)
block.body
}
blocks)
!rewrite
blocks
in
match find_outlier_index l with
| #switch_to_cond as opt ->
let block = optimize_switch_to_cond block x l opt in
Addr.Map.add pc block blocks
| `Many_cases ->
Addr.Map.add pc { block with branch = Switch (x, l) } blocks)
else blocks)
| _ -> blocks)
p.blocks
p.blocks
}
in
if times () then Format.eprintf " switches: %a@." Timer.print t;
if stats () then Format.eprintf "Stats - switches: %d@." !opt_count;
if debug_stats ()
then Code.check_updates ~name:"switches" previous_p p ~updates:!opt_count;
Deadcode.remove_unused_blocks p
|