1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
(* TEST *)
let list_range start len : _ list =
Seq.ints start |> Seq.take len |> List.of_seq
module A = Dynarray
(** {1:dynarrays Dynamic arrays} *)
(** create, add_last *)
let () =
let a = A.create() in
A.add_last a 1;
A.add_last a 2;
assert (A.length a = 2);
assert (A.to_list a = [1;2]);;
(** make *)
let () =
let a = A.make 3 5 in
A.add_last a 6;
assert (A.to_list a = [5; 5; 5; 6]);;
(** init *)
let () =
let test_init n f =
assert (A.init n f |> A.to_array = Array.init n f) in
for i = 0 to 1024 do
test_init i Fun.id
done;;
(** is_empty *)
let () =
let a = A.create () in
assert (A.is_empty a);
A.ensure_capacity a 256;
assert (A.is_empty a);;
(** length is tested below *)
(** get_last, find_last *)
let () =
let a = A.of_list [1; 2] in
assert (A.get_last a = 2);
assert (A.find_last a = Some 2);
A.remove_last a;
assert (A.to_list a = [1]);
assert (A.get_last a = 1);
assert (A.find_last a = Some 1);
A.remove_last a;
assert (A.to_list a = []);
assert (match A.get_last a with exception _ -> true | _ -> false);
assert (A.find_last a = None)
(** copy, add_last *)
let () =
assert (A.of_list [1;2;3] |> A.copy |> A.to_list = [1;2;3]);;
let () =
let a = A.create() in
for i=0 to 20 do A.add_last a i; done;
assert (A.to_list (A.copy a) = list_range 0 21);;
let () =
assert (A.create() |> A.copy |> A.is_empty);;
let () =
let a = A.of_list [1; 2; 3] in
let b = A.copy a in
for i = 4 to 1024 do
A.add_last b i
done;
assert (A.fold_left (+) 0 a = (1 + 2 + 3));
assert (A.fold_left (+) 0 b = (1024 * 1025) / 2);;
let () =
let a = A.of_list [1; 2; 3] in
assert (A.fold_right List.cons a [] = [1; 2; 3]);;
(** {1:adding Adding elements} *)
(** add_last was tested above *)
(** append *)
let () =
let a1 = A.init 5 (fun i->i)
and a2 = A.init 5 (fun i->i+5) in
A.append a1 a2;
assert (A.to_list a1 = list_range 0 10);;
let () =
let empty = A.create ()
and a2 = A.init 5 (fun i->i) in
A.append empty a2;
assert (A.to_list empty = list_range 0 5);;
let () =
let a1 = A.init 5 (fun i->i) and empty = A.create () in
A.append a1 empty;
assert (A.to_list a1 = list_range 0 5);;
let () =
let a = A.init 3 (fun i->i) in
A.append a (A.copy a);
(** Note: [A.append a a] is unspecified, and in particular it
loops infinitely with the following natural implementation:
{[
let append a b =
append_iter a iter b
let iter f a =
let i = ref 0 in
while !i < length a do
f (get a !i);
incr i
done
]}
*)
assert (A.to_list a = [0; 1; 2; 0; 1; 2]);;
let() =
let empty = A.create () in
A.append empty empty;
assert (A.to_list empty = []);;
(** dynarrays with floats *)
let () =
let a = A.create() in
A.add_last a 0.; A.add_last a 1.;
assert (0. = A.get a 0);
assert (1. = A.get a 1);
assert (1. = A.fold_left (+.) 0. a);
A.clear a;
A.add_last a 0.; A.add_last a 1.; A.add_last a 7.; A.add_last a 10.; A.add_last a 12.;
A.truncate a 2;
assert (1. = A.fold_left (+.) 0. a);
A.clear a;
assert (0 = A.length a);
A.add_last a 0.; A.add_last a 1.; A.add_last a 7.; A.add_last a 10.; A.add_last a 12.;
A.set a 2 8.;
assert (0. +. 1. +. 8. +. 10. +. 12. = A.fold_left (+.) 0. a);;
(** blit *)
let () =
let () =
(* normal blit works ok *)
let a = A.of_list [1; 2; 3; 4; 5; 6] in
let b = A.of_list [7; 8; 9; 10; 11] in
A.blit ~src:b ~src_pos:1 ~dst:a ~dst_pos:2 ~len:3;
assert (A.to_list a = [1; 2; 8; 9; 10; 6])
in
let () =
(* source range overflows source array: error *)
let a = A.of_list [1; 2] in
let b = A.of_list [3; 4] in
assert (match
A.blit ~src:b ~src_pos:2 ~dst:a ~dst_pos:0 ~len:2
with exception _ -> true | _ -> false)
in
let () =
(* target range overflows target array: extend the array *)
let a = A.of_list [1; 2] in
let b = A.of_list [3; 4; 5] in
A.blit ~src:b ~src_pos:0 ~dst:a ~dst_pos:1 ~len:3;
assert (A.to_list a = [1; 3; 4; 5]);
(* call [fit_capacity] to test the resize logic later on. *)
A.fit_capacity a;
(* this works even at the end *)
A.blit ~src:b ~src_pos:0 ~dst:a ~dst_pos:4 ~len:2;
assert (A.to_list a = [1; 3; 4; 5; 3; 4]);
(* ... but it fails if the extension would leave a gap *)
assert (A.length a = 6);
assert (match
A.blit ~src:b ~src_pos:0 ~dst:a ~dst_pos:7 ~len:2
with exception _ -> true | _ -> false)
in
let () =
(* self-blitting scenarios *)
(* src_pos > dst_pos *)
let a = A.of_list [1; 2; 3] in
A.blit ~src:a ~src_pos:1 ~dst:a ~dst_pos:0 ~len:2;
assert (A.to_list a = [2; 3; 3]);
A.blit ~src:a ~src_pos:0 ~dst:a ~dst_pos:2 ~len:3;
assert (A.to_list a = [2; 3; 2; 3; 3]);
let b = A.of_list [1; 2; 3; 4] in
(* src_pos = dst_pos *)
A.blit ~src:b ~src_pos:1 ~dst:b ~dst_pos:1 ~len:2;
assert (A.to_list b = [1; 2; 3; 4]);
(* src_pos < dst_pos *)
A.blit ~src:b ~src_pos:0 ~dst:b ~dst_pos:2 ~len:2;
assert (A.to_list b = [1; 2; 1; 2]);
in
()
(** {1:removing Removing elements} *)
(** pop_last_opt, length *)
let () =
let seq = Seq.(ints 0 |> take 10_000) in
let a = A.of_seq seq in
assert (Some 9999 = A.pop_last_opt a);
assert (Some 9998 = A.pop_last_opt a);
assert (Some 9997 = A.pop_last_opt a);
assert (9997 = A.length a);
();;
let () =
let a = A.of_list [1;2] in
assert (Some 2 = A.pop_last_opt a);
assert (Some 1 = A.pop_last_opt a);
assert (None = A.pop_last_opt a);
assert (None = A.pop_last_opt a);
();;
(** truncate *)
let () =
let a = A.create() in
let max_length = 20_000 in
for i = 0 to max_length - 1 do A.add_last a i; done;
List.iter
(fun size ->
A.truncate a size;
let result_size = min max_length size in
assert (A.to_list a = list_range 0 result_size))
[ 30_000; 20_000; 19_999; 2000; 100; 50; 4; 4; 3; 2; 1; 0];;
(** {1:iteration Iteration} *)
(** map *)
let () =
let a = A.of_list [1;2;3] in
assert (A.to_list @@ A.map string_of_int a = ["1"; "2"; "3"]);;
(** mapi *)
let () =
let a = A.of_list [1;2;3] in
let a = A.mapi (fun i e -> Printf.sprintf "%i %i" i e) a in
assert (A.to_list a = ["0 1"; "1 2"; "2 3"]);;
(** mem *)
let () =
let a = A.of_list [1;2;3;4;5] in
assert (A.mem 1 a = true);
assert (A.mem 7 a = false)
(** memq *)
let () =
let five = 5 in
let a = A.of_list [five; 6; 7] in
assert (A.memq five a = true)
(** find_opt *)
let () =
let a = A.of_list [1;4;9] in
assert (A.find_opt (fun x -> x / 2 = 2) a = Some 4);
assert (A.find_opt (fun x -> x = 5) a = None)
(** find_index *)
let () =
let a = A.of_list [1;2;3] in
assert (A.find_index (fun x -> x = 1) a = Some 0);
assert (A.find_index (fun x -> x = 5) a = None)
(** find_map *)
let () =
let a = A.of_list [1;2;3;4;5] in
let b = A.of_list [1;2;3] in
let go x = if x > 3 then Some x else None in
assert (A.find_map go a = Some 4);
assert (A.find_map go b = None)
(** find_mapi *)
let () =
let a = A.of_list [1;1;3] in
let b = A.of_list [3;2;1] in
let go i x = if i = x then Some (i, x) else None in
assert (A.find_mapi go a = Some (1,1));
assert (A.find_mapi go b = None)
(** Iterator invalidation *)
let raises_invalid_argument f =
match f () with
| exception Invalid_argument _ -> true
| exception _ | _ -> false
let () =
let a = A.of_list [1; 2; 3] in
assert (raises_invalid_argument (fun () ->
A.append a a
))
let () =
let a = A.of_list [1; 2; 3] in
assert (raises_invalid_argument (fun () ->
a |> A.iter (fun i ->
A.add_last a (10 + i)
)
))
let () =
let a = A.of_list [1; 2; 3] in
assert (raises_invalid_argument (fun () ->
a |> A.iter (fun i ->
if i >= 2 then A.remove_last a
)
))
let does_not_raise_invalid_argument f =
not (raises_invalid_argument f)
(* The spec says that this is a programming error, but currently we accept
the following without an error. *)
let () =
let a = A.of_list [1; 2; 3] in
A.ensure_capacity a 10;
assert (does_not_raise_invalid_argument (fun () ->
a |> A.iter (fun i ->
A.add_last a i;
A.remove_last a
)
))
(* Even with a capacity increase in the middle,
we still accept this although the spec would let us reject. *)
let () =
let a = A.of_list [1; 2; 3] in
A.fit_capacity a;
assert (does_not_raise_invalid_argument (fun () ->
a |> A.iter (fun i ->
A.add_last a i;
A.remove_last a
)
))
(** {1:comparison Comparison functions} *)
let () =
let a = A.of_list [1; 2; 3] in
A.ensure_capacity a 1000;
let b = A.of_list [1; 2; 3] in
assert (A.equal (=) a a);
assert (A.compare Int.compare a a = 0);
assert (A.equal (=) a b);
assert (A.compare Int.compare a b = 0);
()
let () =
let same eq l1 l2 = A.equal eq (A.of_list l1) (A.of_list l2) in
assert (not (same (=) [1; 2; 3] [1; 3; 2]));
assert (not (same (=) [1; 2; 3] [1; 2]));
assert (not (same (=) [1] [1; 2]));
assert (not (same (=) [] [1; 2]));
assert (same (fun _ _ -> true) [1; 2] [3; 4]);
assert (not (same (fun _ _ -> true) [1; 2] [3]));
()
let () =
let compare cmp l1 l2 = A.compare cmp (A.of_list l1) (A.of_list l2) in
assert (compare Int.compare [] [] = 0);
assert (compare Int.compare [1; 2] [1; 2] = 0);
assert (compare Int.compare [min_int] [max_int] < 0);
assert (compare Int.compare [10] [0; 1] < 0);
assert (compare Int.compare [10] [0] > 0);
assert (compare (Fun.flip Int.compare) [10] [0] < 0);
()
(** {1:conversions Conversions to other data structures} *)
(** {of,to}_{list,array,seq{,_rev}{,_rentrant}} *)
let () =
for i = 0 to 1024 do
let ints = List.init i Fun.id in
assert ((ints |> A.of_list |> A.to_list) = ints);
let arr = Array.of_list ints in
assert ((arr |> A.of_array |> A.to_array) = arr);
let seq = Array.to_seq arr in
[A.to_seq; A.to_seq_reentrant] |> List.iter (fun dynarray_to_seq ->
assert ((seq |> A.of_seq |> dynarray_to_seq) |> Array.of_seq = arr)
);
[A.to_seq_rev; A.to_seq_rev_reentrant] |> List.iter (fun dynarray_to_seq_rev ->
assert ((seq |> A.of_seq |> dynarray_to_seq_rev)
|> List.of_seq |> List.rev
= ints)
);
done;;
(** reentrancy for to_seq{,_rev}_reentrant *)
let () =
let a = A.of_list [1; 2; 3; 4] in
let seq = A.to_seq a in
let srq = A.to_seq_reentrant a in
let elems_a = A.to_seq_reentrant a in
let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 1);
let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 1);
(* setting an element in the middle is observed by both versions *)
A.set a 1 12;
assert (List.of_seq elems_a = [1; 12; 3; 4]);
let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 12);
let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 12);
(* adding or removing elements invalidates [seq] but works with [srq] *)
A.remove_last a;
assert (List.of_seq elems_a = [1; 12; 3]);
assert (match Seq.uncons seq with
| exception (Invalid_argument _) -> true
| _ -> false
);
let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 3);
A.add_last a 4;
assert (List.of_seq elems_a = [1; 12; 3; 4]);
let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 4);
assert (Seq.is_empty srq)
let () =
let a = A.of_list [1; 2; 3; 4; 5] in
let seq = A.to_seq_rev a in
let srq = A.to_seq_rev_reentrant a in
let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 5);
let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 5);
(* setting an element in the middle is observed by both versions *)
A.set a 3 14;
assert (A.to_list a = [1; 2; 3; 14; 5]);
let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 14);
let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 14);
(* adding elements invalidates [seq] but is ignored by [srq] *)
A.add_last a 6;
assert (A.to_list a = [1; 2; 3; 14; 5; 6]);
assert (match Seq.uncons seq with
| exception (Invalid_argument _) -> true
| _ -> false
);
(* just check the head, no popping *)
let (i, _) = Option.get (Seq.uncons srq) in assert (i = 3);
let (i, _) = Option.get (Seq.uncons srq) in assert (i = 3);
(* [srq] skips removed elements *)
A.truncate a 1;
assert (A.to_list a = [1]);
let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 1);
assert (Seq.is_empty srq)
(** {1:advanced Advanced topics for performance} *)
(** set_capacity *)
let () =
let a = A.create() in
let max_length = 20_000 in
for i = 0 to max_length - 1 do A.add_last a i; done;
List.iter
(fun size ->
A.set_capacity a size;
let result_size = min max_length size in
assert (A.to_list a = list_range 0 result_size))
[ 30_000; 20_000; 19_999; 2000; 100; 50; 4; 4; 3; 2; 1; 0];;
(** fit_capacity, capacity *)
let () =
let a = A.create() in
for i = 0 to 200 do
A.add_last a i;
done;
A.fit_capacity a;
assert (A.length a = 201);
assert (A.length a = A.capacity a);;
(** check that comparisons and marshalling-with-sharing work as
expected. *)
let () =
(** Comparison.
We expect physically-equal dynarrays to be found equal,
and structurally-distinct dynarrays to be found distinct.
*)
let a = A.of_list [42] in
let b = A.of_list [21] in
assert (Stdlib.compare a a = 0);
assert (Stdlib.compare a b <> 0);
assert (a = a);
assert (a <> b);
(** On the other hand, we do not specify that comparison is fully
structural, it may find structurally-equal values distinct, and
in fact it does.
This is not part of our specification, but we document the
current behavior through tests below. *)
let a' = A.create () in
A.ensure_capacity a' 10000;
A.append_list a' [42];
assert (A.to_list a = A.to_list a');
assert (a <> a');
assert (Stdlib.compare a a' <> 0);
();;
let () =
(** Marshalling. *)
let a = A.of_list [42] in
let buf = Marshal.to_string a [] in
let c = Marshal.from_string buf 0 in
(* Note: currently the equality of dynarrays is *not* stable by
marshalling-unmarshalling. *)
assert (Stdlib.compare a c <> 0);
assert (a <> c);
();;
|