File: test.ml

package info (click to toggle)
js-of-ocaml 6.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 37,932 kB
  • sloc: ml: 135,957; javascript: 58,364; ansic: 437; makefile: 422; sh: 12; perl: 4
file content (542 lines) | stat: -rw-r--r-- 14,236 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
(* TEST *)

let list_range start len : _ list =
  Seq.ints start |> Seq.take len |> List.of_seq

module A = Dynarray

(** {1:dynarrays Dynamic arrays} *)

(** create, add_last *)

let () =
  let a = A.create() in
  A.add_last a 1;
  A.add_last a 2;
  assert (A.length a = 2);
  assert (A.to_list a = [1;2]);;


(** make *)

let () =
  let a = A.make 3 5 in
  A.add_last a 6;
  assert (A.to_list a = [5; 5; 5; 6]);;


(** init *)

let () =
  let test_init n f =
    assert (A.init n f |> A.to_array = Array.init n f) in
  for i = 0 to 1024 do
    test_init i Fun.id
  done;;


(** is_empty *)

let () =
  let a = A.create () in
  assert (A.is_empty a);
  A.ensure_capacity a 256;
  assert (A.is_empty a);;

(** length is tested below *)

(** get_last, find_last *)
let () =
  let a = A.of_list [1; 2] in
  assert (A.get_last a = 2);
  assert (A.find_last a = Some 2);

  A.remove_last a;
  assert (A.to_list a = [1]);
  assert (A.get_last a = 1);
  assert (A.find_last a = Some 1);

  A.remove_last a;
  assert (A.to_list a = []);
  assert (match A.get_last a with exception _ -> true | _ -> false);
  assert (A.find_last a = None)

(** copy, add_last *)

let () =
  assert (A.of_list [1;2;3] |> A.copy |> A.to_list = [1;2;3]);;

let () =
  let a = A.create() in
  for i=0 to 20 do A.add_last a i; done;
  assert (A.to_list (A.copy a) = list_range 0 21);;

let () =
  assert (A.create() |> A.copy |> A.is_empty);;

let () =
  let a = A.of_list [1; 2; 3] in
  let b = A.copy a in
  for i = 4 to 1024 do
    A.add_last b i
  done;
  assert (A.fold_left (+) 0 a = (1 + 2 + 3));
  assert (A.fold_left (+) 0 b = (1024 * 1025) / 2);;

let () =
  let a = A.of_list [1; 2; 3] in
  assert (A.fold_right List.cons a [] = [1; 2; 3]);;

(** {1:adding Adding elements} *)

(** add_last was tested above *)

(** append *)

let () =
  let a1 = A.init 5 (fun i->i)
  and a2 = A.init 5 (fun i->i+5) in
  A.append a1 a2;
  assert (A.to_list a1 = list_range 0 10);;

let () =
  let empty = A.create ()
  and a2 = A.init 5 (fun i->i) in
  A.append empty a2;
  assert (A.to_list empty = list_range 0 5);;

let () =
  let a1 = A.init 5 (fun i->i) and empty = A.create () in
  A.append a1 empty;
  assert (A.to_list a1 = list_range 0 5);;

let () =
  let a = A.init 3 (fun i->i) in
  A.append a (A.copy a);
  (** Note: [A.append a a] is unspecified, and in particular it
     loops infinitely with the following natural implementation:
{[
     let append a b =
       append_iter a iter b

     let iter f a =
       let i = ref 0 in
       while !i < length a do
         f (get a !i);
         incr i
       done
]}
  *)
  assert (A.to_list a = [0; 1; 2; 0; 1; 2]);;

let() =
  let empty = A.create () in
  A.append empty empty;
  assert (A.to_list empty = []);;


(** dynarrays with floats *)

let () =
  let a = A.create() in
  A.add_last a 0.; A.add_last a 1.;
  assert (0. = A.get a 0);
  assert (1. = A.get a 1);
  assert (1. = A.fold_left (+.) 0. a);
  A.clear a;
  A.add_last a 0.; A.add_last a 1.; A.add_last a 7.; A.add_last a 10.; A.add_last a 12.;
  A.truncate a 2;
  assert (1. = A.fold_left (+.) 0. a);
  A.clear a;
  assert (0 = A.length a);
  A.add_last a 0.; A.add_last a 1.; A.add_last a 7.; A.add_last a 10.; A.add_last a 12.;
  A.set a 2 8.;
  assert (0. +. 1. +. 8. +. 10. +. 12. = A.fold_left (+.) 0. a);;


(** blit *)
let () =
  let () =
    (* normal blit works ok *)
    let a = A.of_list [1; 2; 3; 4; 5; 6] in
    let b = A.of_list [7; 8; 9; 10; 11] in
    A.blit ~src:b ~src_pos:1 ~dst:a ~dst_pos:2 ~len:3;
    assert (A.to_list a = [1; 2; 8; 9; 10; 6])
  in
  let () =
    (* source range overflows source array: error *)
    let a = A.of_list [1; 2] in
    let b = A.of_list [3; 4] in
    assert (match
              A.blit ~src:b ~src_pos:2 ~dst:a ~dst_pos:0 ~len:2
            with exception _ -> true | _ -> false)
  in
  let () =
    (* target range overflows target array: extend the array *)
    let a = A.of_list [1; 2] in
    let b = A.of_list [3; 4; 5] in
    A.blit ~src:b ~src_pos:0 ~dst:a ~dst_pos:1 ~len:3;
    assert (A.to_list a = [1; 3; 4; 5]);
    (* call [fit_capacity] to test the resize logic later on. *)
    A.fit_capacity a;
    (* this works even at the end *)
    A.blit ~src:b ~src_pos:0 ~dst:a ~dst_pos:4 ~len:2;
    assert (A.to_list a = [1; 3; 4; 5; 3; 4]);
    (* ... but it fails if the extension would leave a gap *)
    assert (A.length a = 6);
    assert (match
              A.blit ~src:b ~src_pos:0 ~dst:a ~dst_pos:7 ~len:2
            with exception _ -> true | _ -> false)
  in
  let () =
    (* self-blitting scenarios *)
    (* src_pos > dst_pos *)
    let a = A.of_list [1; 2; 3] in
    A.blit ~src:a ~src_pos:1 ~dst:a ~dst_pos:0 ~len:2;
    assert (A.to_list a = [2; 3; 3]);
    A.blit ~src:a ~src_pos:0 ~dst:a ~dst_pos:2 ~len:3;
    assert (A.to_list a = [2; 3; 2; 3; 3]);
    let b = A.of_list [1; 2; 3; 4] in
    (* src_pos = dst_pos *)
    A.blit ~src:b ~src_pos:1 ~dst:b ~dst_pos:1 ~len:2;
    assert (A.to_list b = [1; 2; 3; 4]);
    (* src_pos < dst_pos *)
    A.blit ~src:b ~src_pos:0 ~dst:b ~dst_pos:2 ~len:2;
    assert (A.to_list b = [1; 2; 1; 2]);
  in
  ()

(** {1:removing Removing elements} *)


(** pop_last_opt, length *)

let () =
  let seq = Seq.(ints 0 |> take 10_000) in
  let a = A.of_seq seq in
  assert (Some 9999 = A.pop_last_opt a);
  assert (Some 9998 = A.pop_last_opt a);
  assert (Some 9997 = A.pop_last_opt a);
  assert (9997 = A.length a);
  ();;

let () =
  let a = A.of_list [1;2] in
  assert (Some 2 = A.pop_last_opt a);
  assert (Some 1 = A.pop_last_opt a);
  assert (None = A.pop_last_opt a);
  assert (None = A.pop_last_opt a);
  ();;


(** truncate *)

let () =
  let a = A.create() in
  let max_length = 20_000 in
  for i = 0 to max_length - 1 do A.add_last a i; done;
  List.iter
    (fun size ->
      A.truncate a size;
      let result_size = min max_length size in
      assert (A.to_list a = list_range 0 result_size))
    [ 30_000; 20_000; 19_999; 2000; 100; 50; 4; 4; 3; 2; 1; 0];;



(** {1:iteration Iteration} *)

(** map *)

let () =
  let a = A.of_list [1;2;3] in
  assert (A.to_list @@ A.map string_of_int a = ["1"; "2"; "3"]);;


(** mapi *)

let () =
  let a = A.of_list [1;2;3] in
  let a = A.mapi (fun i e -> Printf.sprintf "%i %i" i e) a in
  assert (A.to_list a = ["0 1"; "1 2"; "2 3"]);;

(** mem *)
let () =
  let a = A.of_list [1;2;3;4;5] in
  assert (A.mem 1 a = true);
  assert (A.mem 7 a = false)

(** memq *)
let () =
  let five = 5 in
  let a = A.of_list [five; 6; 7] in
  assert (A.memq five a = true)

(** find_opt *)
let () =
  let a = A.of_list [1;4;9] in
  assert (A.find_opt (fun x -> x / 2 = 2) a = Some 4);
  assert (A.find_opt (fun x -> x = 5) a = None)

(** find_index *)
let () =
  let a = A.of_list [1;2;3] in
  assert (A.find_index (fun x -> x = 1) a = Some 0);
  assert (A.find_index (fun x -> x = 5) a = None)

(** find_map *)
let () =
  let a = A.of_list [1;2;3;4;5] in
  let b = A.of_list [1;2;3] in
  let go x = if x > 3 then Some x else None in
  assert (A.find_map go a = Some 4);
  assert (A.find_map go b = None)

(** find_mapi *)
let () =
  let a = A.of_list [1;1;3] in
  let b = A.of_list [3;2;1] in
  let go i x = if i = x then Some (i, x) else None in
  assert (A.find_mapi go a = Some (1,1));
  assert (A.find_mapi go b = None)

(** Iterator invalidation *)

let raises_invalid_argument f =
  match f () with
  | exception Invalid_argument _ -> true
  | exception _ | _ -> false

let () =
  let a = A.of_list [1; 2; 3] in
  assert (raises_invalid_argument (fun () ->
    A.append a a
  ))

let () =
  let a = A.of_list [1; 2; 3] in
  assert (raises_invalid_argument (fun () ->
    a |> A.iter (fun i ->
      A.add_last a (10 + i)
    )
  ))

let () =
  let a = A.of_list [1; 2; 3] in
  assert (raises_invalid_argument (fun () ->
    a |> A.iter (fun i ->
      if i >= 2 then A.remove_last a
    )
  ))

let does_not_raise_invalid_argument f =
  not (raises_invalid_argument f)

(* The spec says that this is a programming error, but currently we accept
   the following without an error. *)
let () =
  let a = A.of_list [1; 2; 3] in
  A.ensure_capacity a 10;
  assert (does_not_raise_invalid_argument (fun () ->
    a |> A.iter (fun i ->
      A.add_last a i;
      A.remove_last a
    )
  ))

(* Even with a capacity increase in the middle,
   we still accept this although the spec would let us reject. *)
let () =
  let a = A.of_list [1; 2; 3] in
  A.fit_capacity a;
  assert (does_not_raise_invalid_argument (fun () ->
    a |> A.iter (fun i ->
      A.add_last a i;
      A.remove_last a
    )
  ))


(** {1:comparison Comparison functions} *)

let () =
  let a = A.of_list [1; 2; 3] in
  A.ensure_capacity a 1000;
  let b = A.of_list [1; 2; 3] in
  assert (A.equal (=) a a);
  assert (A.compare Int.compare a a = 0);
  assert (A.equal (=) a b);
  assert (A.compare Int.compare a b = 0);
  ()

let () =
  let same eq l1 l2 = A.equal eq (A.of_list l1) (A.of_list l2) in
  assert (not (same (=) [1; 2; 3] [1; 3; 2]));
  assert (not (same (=) [1; 2; 3] [1; 2]));
  assert (not (same (=) [1] [1; 2]));
  assert (not (same (=) [] [1; 2]));
  assert (same (fun _ _ -> true) [1; 2] [3; 4]);
  assert (not (same (fun _ _ -> true) [1; 2] [3]));
  ()

let () =
  let compare cmp l1 l2 = A.compare cmp (A.of_list l1) (A.of_list l2) in
  assert (compare Int.compare [] [] = 0);
  assert (compare Int.compare [1; 2] [1; 2] = 0);
  assert (compare Int.compare [min_int] [max_int] < 0);
  assert (compare Int.compare [10] [0; 1] < 0);
  assert (compare Int.compare [10] [0] > 0);
  assert (compare (Fun.flip Int.compare) [10] [0] < 0);
  ()

(** {1:conversions Conversions to other data structures} *)

(** {of,to}_{list,array,seq{,_rev}{,_rentrant}} *)

let () =
  for i = 0 to 1024 do
    let ints = List.init i Fun.id in
    assert ((ints |> A.of_list |> A.to_list) = ints);
    let arr = Array.of_list ints in
    assert ((arr |> A.of_array |> A.to_array) = arr);
    let seq = Array.to_seq arr in
    [A.to_seq; A.to_seq_reentrant] |> List.iter (fun dynarray_to_seq ->
      assert ((seq |> A.of_seq |> dynarray_to_seq) |> Array.of_seq = arr)
    );
    [A.to_seq_rev; A.to_seq_rev_reentrant] |> List.iter (fun dynarray_to_seq_rev ->
      assert ((seq |> A.of_seq |> dynarray_to_seq_rev)
                |> List.of_seq |> List.rev
              = ints)
    );
  done;;

(** reentrancy for to_seq{,_rev}_reentrant *)
let () =
  let a = A.of_list [1; 2; 3; 4] in
  let seq = A.to_seq a in
  let srq = A.to_seq_reentrant a in
  let elems_a = A.to_seq_reentrant a in

  let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 1);
  let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 1);

  (* setting an element in the middle is observed by both versions *)
  A.set a 1 12;
  assert (List.of_seq elems_a = [1; 12; 3; 4]);
  let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 12);
  let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 12);

  (* adding or removing elements invalidates [seq] but works with [srq] *)
  A.remove_last a;
  assert (List.of_seq elems_a = [1; 12; 3]);
  assert (match Seq.uncons seq with
    | exception (Invalid_argument _) -> true
    | _ -> false
  );
  let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 3);

  A.add_last a 4;
  assert (List.of_seq elems_a = [1; 12; 3; 4]);
  let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 4);
  assert (Seq.is_empty srq)

let () =
  let a = A.of_list [1; 2; 3; 4; 5] in
  let seq = A.to_seq_rev a in
  let srq = A.to_seq_rev_reentrant a in

  let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 5);
  let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 5);

  (* setting an element in the middle is observed by both versions *)
  A.set a 3 14;
  assert (A.to_list a = [1; 2; 3; 14; 5]);
  let (i, seq) = Option.get (Seq.uncons seq) in assert (i = 14);
  let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 14);

  (* adding elements invalidates [seq] but is ignored by [srq] *)
  A.add_last a 6;
  assert (A.to_list a = [1; 2; 3; 14; 5; 6]);
  assert (match Seq.uncons seq with
    | exception (Invalid_argument _) -> true
    | _ -> false
  );
  (* just check the head, no popping *)
  let (i, _) = Option.get (Seq.uncons srq) in assert (i = 3);
  let (i, _) = Option.get (Seq.uncons srq) in assert (i = 3);

  (* [srq] skips removed elements *)
  A.truncate a 1;
  assert (A.to_list a = [1]);
  let (i, srq) = Option.get (Seq.uncons srq) in assert (i = 1);
  assert (Seq.is_empty srq)


(** {1:advanced Advanced topics for performance} *)

(** set_capacity *)

let () =
  let a = A.create() in
  let max_length = 20_000 in
  for i = 0 to max_length - 1 do A.add_last a i; done;
  List.iter
    (fun size ->
      A.set_capacity a size;
      let result_size = min max_length size in
      assert (A.to_list a = list_range 0 result_size))
    [ 30_000; 20_000; 19_999; 2000; 100; 50; 4; 4; 3; 2; 1; 0];;


(** fit_capacity, capacity *)

let () =
  let a = A.create() in
  for i = 0 to 200 do
    A.add_last a i;
  done;
  A.fit_capacity a;
  assert (A.length a = 201);
  assert (A.length a = A.capacity a);;


(** check that comparisons and marshalling-with-sharing work as
    expected. *)

let () =
  (** Comparison.

      We expect physically-equal dynarrays to be found equal,
      and structurally-distinct dynarrays to be found distinct.
  *)
  let a = A.of_list [42] in
  let b = A.of_list [21] in
  assert (Stdlib.compare a a = 0);
  assert (Stdlib.compare a b <> 0);
  assert (a = a);
  assert (a <> b);

  (** On the other hand, we do not specify that comparison is fully
      structural, it may find structurally-equal values distinct, and
      in fact it does.

      This is not part of our specification, but we document the
      current behavior through tests below. *)
  let a' = A.create () in
  A.ensure_capacity a' 10000;
  A.append_list a' [42];
  assert (A.to_list a = A.to_list a');
  assert (a <> a');
  assert (Stdlib.compare a a' <> 0);
  ();;

let () =
  (** Marshalling. *)
  let a = A.of_list [42] in
  let buf = Marshal.to_string a [] in
  let c = Marshal.from_string buf 0 in
  (* Note: currently the equality of dynarrays is *not* stable by
     marshalling-unmarshalling. *)
  assert (Stdlib.compare a c <> 0);
  assert (a <> c);
  ();;