1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
(* TEST *)
(* Translated to OCaml by Xavier Leroy *)
(* Original code written in SML by ... *)
type bdd = One | Zero | Node of bdd * int * int * bdd
let rec eval bdd vars =
match bdd with
Zero -> false
| One -> true
| Node(l, v, _, h) ->
if vars.(v) then eval h vars else eval l vars
let getId bdd =
match bdd with
Node(_,_,id,_) -> id
| Zero -> 0
| One -> 1
let initSize_1 = 8*1024 - 1
let nodeC = ref 1
let sz_1 = ref initSize_1
let htab = ref(Array.make (!sz_1+1) [])
let n_items = ref 0
let hashVal x y v = x lsl 1 + y + v lsl 2
let resize newSize =
let arr = !htab in
let newSz_1 = newSize-1 in
let newArr = Array.make newSize [] in
let rec copyBucket bucket =
match bucket with
[] -> ()
| n :: ns ->
match n with
| Node(l,v,_,h) ->
let ind = hashVal (getId l) (getId h) v land newSz_1
in
newArr.(ind) <- (n :: newArr.(ind));
copyBucket ns
| _ -> assert false
in
for n = 0 to !sz_1 do
copyBucket(arr.(n))
done;
htab := newArr;
sz_1 := newSz_1
let rec insert idl idh v ind bucket newNode =
if !n_items <= !sz_1
then ( (!htab).(ind) <- (newNode :: bucket);
incr n_items )
else ( resize(!sz_1 + !sz_1 + 2);
let ind = hashVal idl idh v land (!sz_1)
in
(!htab).(ind) <- newNode :: (!htab).(ind)
)
let resetUnique () = (
sz_1 := initSize_1;
htab := Array.make (!sz_1+1) [];
n_items := 0;
nodeC := 1
)
let mkNode low v high =
let idl = getId low in
let idh = getId high
in
if idl = idh
then low
else let ind = hashVal idl idh v land (!sz_1) in
let bucket = (!htab).(ind) in
let rec lookup b =
match b with
[] -> let n = Node(low, v, (incr nodeC; !nodeC), high)
in
insert (getId low) (getId high) v ind bucket n; n
| n :: ns ->
match n with
| Node(l,v',id,h) ->
if v = v' && idl = getId l && idh = getId h
then n else lookup ns
| _ -> assert false
in
lookup bucket
type ordering = LESS | EQUAL | GREATER
let cmpVar (x : int) (y : int) =
if x<y then LESS else if x>y then GREATER else EQUAL
let zero = Zero
let one = One
let mkVar x = mkNode zero x one
let cacheSize = 1999
let andslot1 = Array.make cacheSize 0
let andslot2 = Array.make cacheSize 0
let andslot3 = Array.make cacheSize zero
let xorslot1 = Array.make cacheSize 0
let xorslot2 = Array.make cacheSize 0
let xorslot3 = Array.make cacheSize zero
let notslot1 = Array.make cacheSize 0
let notslot2 = Array.make cacheSize one
let hash x y = ((x lsl 1)+y) mod cacheSize
let rec not n =
match n with
Zero -> One
| One -> Zero
| Node(l, v, id, r) -> let h = id mod cacheSize
in
if id=notslot1.(h) then notslot2.(h)
else let f = mkNode (not l) v (not r)
in
notslot1.(h) <- id; notslot2.(h) <- f; f
let rec and2 n1 n2 =
match n1 with
Node(l1, v1, i1, r1)
-> (match n2 with
Node(l2, v2, i2, r2)
-> let h = hash i1 i2
in
if i1=andslot1.(h) && i2=andslot2.(h) then andslot3.(h)
else let f = match cmpVar v1 v2 with
EQUAL -> mkNode (and2 l1 l2) v1 (and2 r1 r2)
| LESS -> mkNode (and2 l1 n2) v1 (and2 r1 n2)
| GREATER -> mkNode (and2 n1 l2) v2 (and2 n1 r2)
in
andslot1.(h) <- i1;
andslot2.(h) <- i2;
andslot3.(h) <- f;
f
| Zero -> Zero
| One -> n1)
| Zero -> Zero
| One -> n2
let rec xor n1 n2 =
match n1 with
Node(l1, v1, i1, r1)
-> (match n2 with
Node(l2, v2, i2, r2)
-> let h = hash i1 i2
in
if i1=andslot1.(h) && i2=andslot2.(h) then andslot3.(h)
else let f = match cmpVar v1 v2 with
EQUAL -> mkNode (xor l1 l2) v1 (xor r1 r2)
| LESS -> mkNode (xor l1 n2) v1 (xor r1 n2)
| GREATER -> mkNode (xor n1 l2) v2 (xor n1 r2)
in
andslot1.(h) <- i1;
andslot2.(h) <- i2;
andslot3.(h) <- f;
f
| Zero -> n1
| One -> not n1)
| Zero -> n2
| One -> not n2
let hwb n =
let rec h i j = if i=j
then mkVar i
else xor (and2 (not(mkVar j)) (h i (j-1)))
(and2 (mkVar j) (g i (j-1)))
and g i j = if i=j
then mkVar i
else xor (and2 (not(mkVar i)) (h (i+1) j))
(and2 (mkVar i) (g (i+1) j))
in
h 0 (n-1)
(* Testing *)
let seed = ref 0
let random() =
seed := !seed * 25173 + 17431; !seed land 1 > 0
let random_vars n =
let vars = Array.make n false in
for i = 0 to n - 1 do vars.(i) <- random() done;
vars
let test_hwb bdd vars =
(* We should have
eval bdd vars = vars.(n-1) if n > 0
eval bdd vars = false if n = 0
where n is the number of "true" elements in vars. *)
let ntrue = ref 0 in
for i = 0 to Array.length vars - 1 do
if vars.(i) then incr ntrue
done;
eval bdd vars = (if !ntrue > 0 then vars.(!ntrue-1) else false)
let main () =
let n =
if Array.length Sys.argv >= 2 then int_of_string Sys.argv.(1) else 20 in
let ntests =
if Array.length Sys.argv >= 3 then int_of_string Sys.argv.(2) else 10 in
let bdd = hwb n in
let succeeded = ref true in
for i = 1 to ntests do
succeeded := !succeeded && test_hwb bdd (random_vars n)
done;
if !succeeded
then print_string "OK\n"
else print_string "FAILED\n";
exit 0
let _ = main()
|