File: Geodesic.cpp

package info (click to toggle)
js8call 2.5.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,720 kB
  • sloc: cpp: 562,655; sh: 898; python: 132; ansic: 102; makefile: 4
file content (464 lines) | stat: -rw-r--r-- 17,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#include "Geodesic.h"
#include "JS8_Include/Maidenhead.h"
#include <QCache>
#include <QMutex>
#include <QMutexLocker>
#include <concepts>

/******************************************************************************/
// Constants
/******************************************************************************/

namespace {
// Epsilon values for Lat / Long comparisons; if we find after conversion
// to coordinates that a pair of grids are either identical or antipodes,
// within these limits, we'll return early rather than computing results.

constexpr auto LL_EPSILON_IDENTICAL = 0.02f;
constexpr auto LL_EPSILON_ANTIPODES = 1.e-6f;

// Table of compass directions, with arrows; available as an accessor on
// the Azimuth class. These are translatable, but translation is not our
// concern; we simply guarantee to the presentation layer that these are
// what we provide, deferring translation to somewhere above us.

constexpr QStringView COMPASS[] = {u"\u2191N",  u"\u2197NE", u"\u2192E",
                                   u"\u2198SE", u"\u2193S",  u"\u2199SW",
                                   u"\u2190W",  u"\u2196NW"};
} // namespace

/******************************************************************************/
// Input Normalization
/******************************************************************************/

namespace {
// Structure used to perform lookups; represents normalized, i.e.,
// validated, trimmed fore and aft, converted to upper case, grid
// identifiers, and an indication if either are only sufficiently
// long to contain square data, rather than subsquare or extended.

struct Data {
    QString origin;
    QString remote;
    bool square;
};

// Given a pair of strings that have passed validity checking, create
// and return normalized data.

auto normalize(QStringView const origin, QStringView const remote) {
    auto const normalizedOrigin = origin.trimmed().toString().toUpper();
    auto const normalizedRemote = remote.trimmed().toString().toUpper();

    return Data{normalizedOrigin, normalizedRemote,
                normalizedOrigin.length() < 6 || normalizedRemote.length() < 6};
}
} // namespace

/******************************************************************************/
// Grid Square to Coordinates
/******************************************************************************/

namespace {
// Grid to coordinate transformation, with results exactly matching those
// of the Fortran subroutine grid2deg() within the domain of grid2deg(),
// which is only up to subsquare. Input is a 4, 6, or 8 character grid
// square, validated and normalized by the functions above.

template <qsizetype Offset> auto gridData(QStringView const grid) {
    static_assert(Offset == 0 || Offset == 1);
    return std::array{
        grid[Offset].unicode() - u'A', grid[Offset + 2].unicode() - u'0',
        (grid.size() > 4 ? grid[Offset + 4].unicode() : u'M') - u'A',
        (grid.size() > 6 ? grid[Offset + 6].unicode() : u'4') - u'0'};
}

inline auto gridLat(QStringView const grid) {
    // 1: A-R,  10° each, field, one of 18 zones of latitude
    // 3: 0-9,   1° each, 100 squares within field
    // 5: A-X, 2.5' each, 576 subsquares within square
    // 7: 0-9,  15" each, 100 extended squares within subsquare

    auto const data = gridData<1>(grid);

    return (-90 + 10 * data[0]) + data[1] +
           ((2.5f * (data[2] + 0.5f)) / 60.0f) +
           ((15 * (data[3] + 0.5f)) / 3600.0f);
}

inline auto gridLon(QStringView const grid) {
    // 0: A-R, 20° each, field, one of 18 zones of longitude
    // 2: 0-9,  2° each, 100 squares within field
    // 4: A-X,  5' each, 576 subsquares within square
    // 6: 0-9, 30" each, 100 extended squares within subsquare

    auto const data = gridData<0>(grid);

    return (180 - 20 * data[0]) - (2 * data[1]) -
           ((5 * (data[2] + 0.5f)) / 60.0f) -
           ((30 * (data[3] + 0.5f)) / 3600.0f);
}

class Coords {
  private:
    // Data members

    float m_lat;
    float m_lon;

  public:
    // Inline Accessors

    auto lat() const { return m_lat; }
    auto lon() const { return m_lon; }

    // Constructor

    Coords(QStringView const grid)
        : m_lat(gridLat(grid)), m_lon(gridLon(grid)) {}

    // Determine if these coordinates are identical to those provided,
    // within the defined epsilon limit.

    bool isIdenticalTo(Coords const other) const {
        auto const latValue = std::abs(lat() - other.lat());
        auto const lonValue = std::abs(lon() - other.lon());

        return ((latValue < LL_EPSILON_IDENTICAL) &&
                (lonValue < LL_EPSILON_IDENTICAL));
    }

    // Determine if these coordinates are antipodes of those provided,
    // within the defined epsilon limit.

    bool isAntipodesOf(Coords const other) const {
        // We subtract the longitudes and add 720 degrees to ensure
        // a positive result; modulo 360 of that results in a value
        // in the range [-180, 180].

        auto const range = std::fmod(lon() - other.lon() + 720.0f, 360.0f);
        auto const latValue = std::abs(lat() + other.lat());
        auto const lonValue = std::abs(range - 180.0f);

        return ((latValue < LL_EPSILON_ANTIPODES) &&
                (lonValue < LL_EPSILON_ANTIPODES));
    }
};
} // namespace

/******************************************************************************/
// Coordinates to Azimuth / Distance
/******************************************************************************/

namespace {
// Collapsed and simplified versions of two of JHT's original Fortran
// subroutines, azdist() and geodist(). Given normalized data, return
// the azimuth in degrees and the distance in kilometers.
//
// While in a perfect world, we could use the Haversine distance, a
// perfect world is a sphere, and ours is an ellipsoid, flattened at
// the poles. Thus, there is...math.
//
// Boy howdy, there is math.
//
// Note that as with the original routines, West longitude is positive.

auto azdist(Data const &data) {
    // If they've given us the same grids, reward them appropriately.

    if (data.origin == data.remote)
        return std::make_pair(0.0f, 0.0f);

    // Convert the grids to coordinates.

    auto const origin = Coords{data.origin};
    auto const remote = Coords{data.remote};

    // Grids that looked different prior to conversion to coordinates
    // can nevertheless be practically on top of one another; we can't
    // go there, because we're already there.
    //
    // Grids that are antipodes of one another aren't worth calculating;
    // you can't get farther away without leaving the planet, moving in
    // any direction will take you there, and it's the same distance no
    // matter what direction you go.

    if (origin.isIdenticalTo(remote))
        return std::make_pair(0.0f, 0.0f);
    if (origin.isAntipodesOf(remote))
        return std::make_pair(0.0f, 204000.0f);

    // Sanity checks complete; let's do some math. JHT took this algorithm
    // from:
    //
    //   Thomas, P.D., 1970,
    //   Spheroidal Geodesics, Reference Systems, & Local Geometry,
    //   U.S. Naval Oceanographic Office SP-138, 165 pp.
    //
    //    "A discussion of the geodesic on the oblate spheroid (reference
    //     ellipsoid) is given with formulae of geodetic accuracy (second
    //     order in the flattening, distance and azimuths) for the non-
    //     iterative direct and inverse solutions over the hemispheroid,
    //     requiring no root extraction and no tabular data except 3-place
    //     tables of the natural trigonometric functions."
    //
    // This is a C++ translation of the original Fortran-63 algorithm, pages
    // 162 and 163 of the publication, description on page 161.
    //
    // Note that the original routine uses single-precision real values, so
    // we've done the same here. The degrees to radians and Tau constants
    // used by JHT's version are slightly different than those used by the
    // Thomas algorithm; we've used the JHT versions.
    //
    // Constants and derived constants:
    //
    //   AL:  Semi-major axis of the Earth, Clarke 1866 ellipsoid, in km.
    //   BL:  Semi-minor axis of the Earth, Clarke 1866 ellipsoid, in km.
    //   D2R: Degrees to radians conversion factor.
    //   TAU: Tau constant, the ratio of the circumference to the radius
    //        of a circle, i.e, 2Pi;

    constexpr auto AL = 6378206.4f;
    constexpr auto BL = 6356583.8f;
    constexpr auto D2R = 0.01745329251994f;
    constexpr auto TAU = 6.28318530718f;
    constexpr auto BOA = BL / AL;
    constexpr auto F = 1.0f - BOA;
    constexpr auto FF64 = F * F / 64.0f;

    // Convert degrees of latitude and longitude to radians and compute the
    // delta longitude in radians.

    auto const P1R = origin.lat() * D2R;
    auto const P2R = remote.lat() * D2R;
    auto const L1R = origin.lon() * D2R;
    auto const L2R = remote.lon() * D2R;
    auto const DLR = L2R - L1R;

    // And away we go; see page 162 of the publication.

    auto const T1R = std::atan(BOA * std::tan(P1R));
    auto const T2R = std::atan(BOA * std::tan(P2R));
    auto const TM = (T1R + T2R) / 2.0f;
    auto const DTM = (T2R - T1R) / 2.0f;
    auto const STM = std::sin(TM);
    auto const CTM = std::cos(TM);
    auto const SDTM = std::sin(DTM);
    auto const CDTM = std::cos(DTM);
    auto const KL = STM * CDTM;
    auto const KK = SDTM * CTM;
    auto const SDLMR = std::sin(DLR / 2.0f);
    auto const L = SDTM * SDTM + SDLMR * SDLMR * (CDTM * CDTM - STM * STM);
    auto const CD = 1.0f - 2.0f * L;
    auto const DL = std::acos(CD);
    auto const SD = std::sin(DL);
    auto const T = DL / SD;
    auto const U = 2.0f * KL * KL / (1.0f - L);
    auto const V = 2.0f * KK * KK / L;
    auto const D = 4.0f * T * T;
    auto const X = U + V;
    auto const E = -2.0f * CD;
    auto const Y = U - V;
    auto const A = -D * E;
    auto const dist = AL * SD *
                      (T - (F / 4.0f) * (T * X - Y) +
                       FF64 * (X * (A + (T - (A + E) / 2.0f) * X) +
                               Y * (-2.0f * D + E * Y) + D * X * Y)) /
                      1000.0f;
    auto const TDLPM = std::tan(
        (DLR + (-((E * (4.0f - X) + 2.0f * Y) *
                  ((F / 2.0f) * T + FF64 * (32.0f * T + (A - 20.0f * T) * X -
                                            2.0f * (D + 2.0f) * Y)) /
                  4.0f) *
                std::tan(DLR))) /
        2.0f);
    auto const HAPBR = std::atan2(SDTM, (CTM * TDLPM));
    auto const HAMBR = std::atan2(CDTM, (STM * TDLPM));

    // This should be the net effect of the somewhat gnarly goto loops
    // in the original Fortran. Even as a former 370 assembler guy, ew,
    // just...ew.

    auto A1M2 = TAU + HAMBR - HAPBR;
    while (A1M2 < 0.0f || A1M2 >= TAU) {
        if (A1M2 < 0.0f)
            A1M2 += TAU;
        else if (A1M2 >= TAU)
            A1M2 -= TAU;
    }

    return std::make_pair(360.0f - (A1M2 / D2R), dist);
}
} // namespace

/******************************************************************************/
// Local Utilities
/******************************************************************************/

namespace {
// Displayable units. No need to translate these; the SI units are
// universal, and the standard units are only used in English.

constexpr QStringView UNITS_KM = u"km";
constexpr QStringView UNITS_MI = u"mi";

// In the spirit of the Fortran NINT() function, round and convert the
// provided floating-point value to an integer, for display purposes.

template <std::floating_point T> auto nint(T const value) {
    return static_cast<int>(std::round(value));
}
} // namespace

/******************************************************************************/
// Public Implementation
/******************************************************************************/

namespace Geodesic {
// Return as a compass direction, i.e., directional arrow and cardinal
// direction, or an empty string view if invalid.

QStringView Azimuth::compass() const {
    return isValid() ? COMPASS[static_cast<int>((m_value + 22.5f) / 45.0f) % 8]
                     : QStringView{};
}

// Return azimuth as a numeric string, to the nearest whole degree.
// If the caller requests units, we'll append a degree symbol.

QString Azimuth::toString(bool const units) const {
    if (!isValid())
        return QString{};

    return units ? QString("%1°").arg(nint(m_value))
                 : QString::number(nint(m_value));
}

// Return distance as a numeric string, to the nearest whole kilometer
// or mile. If we're close and either of the grids that gave rise to us
// to us was only of square magnitude, rather than subsquare or extended,
// prepend a '<' to indicate that we're close, but we're not sure just
// how close, and the actual distance is somewhere within the value.
//
// If the caller requests units, we'll append them.

QString Distance::toString(bool const miles, bool const units) const {
    if (!isValid())
        return QString{};

    auto value = isClose() ? CLOSE : m_value;
    if (miles)
        value /= 1.609344f;

    if (units && isClose())
        return QString("<%1 %2")
            .arg(nint(value))
            .arg(miles ? UNITS_MI : UNITS_KM);
    else if (units)
        return QString("%1 %2")
            .arg(nint(value))
            .arg(miles ? UNITS_MI : UNITS_KM);
    else if (isClose())
        return QString("<%1").arg(nint(value));
    else
        return QString::number(nint(value));
}

// The azdist() function is frankly something you don't want to run more
// than you have to. Additionally, while our contract defines the ability
// to compute a vector between any two valid grid identifiers, the fact is
// that the origin is going to be, practically speaking, always the local
// station.
//
// Vectors get looked up a lot, so caching them is of benefit. We use a
// two-level cache, the first level being a cache of origins, which will
// be reasonably persistent, the second level being an ephemeral cache of
// remotes.
//
// We're taking the default cache cost values of 100 here, so, rough math
// for the worst-case storage requirement here is:
//
//   - Keys are strings, and they're all short, so we'll see a
//     short string optimization, about 24 bytes per key.
//
//   - Vectors are the size of 2 floats, so 8 bytes per Vector.
//
//   - Key and associated Vector is therefore about 32 bytes.
//
//   - 100 elements per cache = 100 * 32 = 3.2K
//
//   - 100 caches of caches = ~3.2K * 100 = 320K. However, that's
//     worst case in the extreme; likely we'll never see more than
//     one origin, so likely only 3.2K total.
//
//   - Some overhead on top of that, but relatively speaking, not
//     much. We're therefore spending on the order of 4K of memory
//     here, along with some light integer math, in order to avoid
//     spending a lot of time repeating identical floating point
//     calculations.
//
// Note that the vector returned to the caller is theirs; it's always a
// copy of a cached version, or a new one that we create. They should be
// only 8 bytes in size (2 floats); so this should be very efficient; in
// theory, these return in a single 64-bit register.
//
// This function is reentrant, but practically speaking, it'd be unusual
// for this to be called from anything other than the GUI thread.

Vector vector(QStringView const origin, QStringView const remote) {
    using Cache = QCache<QString, Vector>;

    static QMutex mutex;
    static QCache<QString, Cache> caches;

    QMutexLocker lock(&mutex);

    // Caller is expected to hand us a lot of garbage; it's literally the
    // common case. Prior to getting too far into the weeds here, a quick
    // sanity check that what we've been handed could be expected to work.
    // If not, return a vector with invalid azimuth and invalid distance.

    if (!Maidenhead::valid(origin.trimmed()) ||
        !Maidenhead::valid(remote.trimmed())) {
        return Vector();
    }

    // Input data validated; we have a winner here; at this point we are
    // going to return a valid vector; get the data by which to create it.

    auto const data = normalize(origin, remote);

    // Perform first-level cache lookup; we should practically always hit
    // on this, other than the first time we're invoked.

    if (auto cache = caches.object(data.origin)) {
        // We've hit on the first level cache; if we hit on the second, then
        // return a copy of the cached vector to the caller, and we're outta
        // here. If we miss, create a vector, store a copy of it in the cache,
        // and return the original to the caller.

        if (auto const value = cache->object(data.remote)) {
            return *value;
        } else {
            auto const vector = Vector(azdist(data), data.square);
            cache->insert(data.remote, new Vector(vector));
            return vector;
        }
    }

    // We missed on the first-level cache; first time here for this origin.
    // Create a new second-level cache and a vector, storing a copy of the
    // vector in the cache, and then cache the cache. Return the original
    // vector to the caller.

    auto cache = new Cache();
    auto const vector = Vector(azdist(data), data.square);

    cache->insert(data.remote, new Vector(vector));
    caches.insert(data.origin, cache);

    return vector;
}
} // namespace Geodesic

/******************************************************************************/