1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
#include "Geodesic.h"
#include "JS8_Include/Maidenhead.h"
#include <QCache>
#include <QMutex>
#include <QMutexLocker>
#include <concepts>
/******************************************************************************/
// Constants
/******************************************************************************/
namespace {
// Epsilon values for Lat / Long comparisons; if we find after conversion
// to coordinates that a pair of grids are either identical or antipodes,
// within these limits, we'll return early rather than computing results.
constexpr auto LL_EPSILON_IDENTICAL = 0.02f;
constexpr auto LL_EPSILON_ANTIPODES = 1.e-6f;
// Table of compass directions, with arrows; available as an accessor on
// the Azimuth class. These are translatable, but translation is not our
// concern; we simply guarantee to the presentation layer that these are
// what we provide, deferring translation to somewhere above us.
constexpr QStringView COMPASS[] = {u"\u2191N", u"\u2197NE", u"\u2192E",
u"\u2198SE", u"\u2193S", u"\u2199SW",
u"\u2190W", u"\u2196NW"};
} // namespace
/******************************************************************************/
// Input Normalization
/******************************************************************************/
namespace {
// Structure used to perform lookups; represents normalized, i.e.,
// validated, trimmed fore and aft, converted to upper case, grid
// identifiers, and an indication if either are only sufficiently
// long to contain square data, rather than subsquare or extended.
struct Data {
QString origin;
QString remote;
bool square;
};
// Given a pair of strings that have passed validity checking, create
// and return normalized data.
auto normalize(QStringView const origin, QStringView const remote) {
auto const normalizedOrigin = origin.trimmed().toString().toUpper();
auto const normalizedRemote = remote.trimmed().toString().toUpper();
return Data{normalizedOrigin, normalizedRemote,
normalizedOrigin.length() < 6 || normalizedRemote.length() < 6};
}
} // namespace
/******************************************************************************/
// Grid Square to Coordinates
/******************************************************************************/
namespace {
// Grid to coordinate transformation, with results exactly matching those
// of the Fortran subroutine grid2deg() within the domain of grid2deg(),
// which is only up to subsquare. Input is a 4, 6, or 8 character grid
// square, validated and normalized by the functions above.
template <qsizetype Offset> auto gridData(QStringView const grid) {
static_assert(Offset == 0 || Offset == 1);
return std::array{
grid[Offset].unicode() - u'A', grid[Offset + 2].unicode() - u'0',
(grid.size() > 4 ? grid[Offset + 4].unicode() : u'M') - u'A',
(grid.size() > 6 ? grid[Offset + 6].unicode() : u'4') - u'0'};
}
inline auto gridLat(QStringView const grid) {
// 1: A-R, 10° each, field, one of 18 zones of latitude
// 3: 0-9, 1° each, 100 squares within field
// 5: A-X, 2.5' each, 576 subsquares within square
// 7: 0-9, 15" each, 100 extended squares within subsquare
auto const data = gridData<1>(grid);
return (-90 + 10 * data[0]) + data[1] +
((2.5f * (data[2] + 0.5f)) / 60.0f) +
((15 * (data[3] + 0.5f)) / 3600.0f);
}
inline auto gridLon(QStringView const grid) {
// 0: A-R, 20° each, field, one of 18 zones of longitude
// 2: 0-9, 2° each, 100 squares within field
// 4: A-X, 5' each, 576 subsquares within square
// 6: 0-9, 30" each, 100 extended squares within subsquare
auto const data = gridData<0>(grid);
return (180 - 20 * data[0]) - (2 * data[1]) -
((5 * (data[2] + 0.5f)) / 60.0f) -
((30 * (data[3] + 0.5f)) / 3600.0f);
}
class Coords {
private:
// Data members
float m_lat;
float m_lon;
public:
// Inline Accessors
auto lat() const { return m_lat; }
auto lon() const { return m_lon; }
// Constructor
Coords(QStringView const grid)
: m_lat(gridLat(grid)), m_lon(gridLon(grid)) {}
// Determine if these coordinates are identical to those provided,
// within the defined epsilon limit.
bool isIdenticalTo(Coords const other) const {
auto const latValue = std::abs(lat() - other.lat());
auto const lonValue = std::abs(lon() - other.lon());
return ((latValue < LL_EPSILON_IDENTICAL) &&
(lonValue < LL_EPSILON_IDENTICAL));
}
// Determine if these coordinates are antipodes of those provided,
// within the defined epsilon limit.
bool isAntipodesOf(Coords const other) const {
// We subtract the longitudes and add 720 degrees to ensure
// a positive result; modulo 360 of that results in a value
// in the range [-180, 180].
auto const range = std::fmod(lon() - other.lon() + 720.0f, 360.0f);
auto const latValue = std::abs(lat() + other.lat());
auto const lonValue = std::abs(range - 180.0f);
return ((latValue < LL_EPSILON_ANTIPODES) &&
(lonValue < LL_EPSILON_ANTIPODES));
}
};
} // namespace
/******************************************************************************/
// Coordinates to Azimuth / Distance
/******************************************************************************/
namespace {
// Collapsed and simplified versions of two of JHT's original Fortran
// subroutines, azdist() and geodist(). Given normalized data, return
// the azimuth in degrees and the distance in kilometers.
//
// While in a perfect world, we could use the Haversine distance, a
// perfect world is a sphere, and ours is an ellipsoid, flattened at
// the poles. Thus, there is...math.
//
// Boy howdy, there is math.
//
// Note that as with the original routines, West longitude is positive.
auto azdist(Data const &data) {
// If they've given us the same grids, reward them appropriately.
if (data.origin == data.remote)
return std::make_pair(0.0f, 0.0f);
// Convert the grids to coordinates.
auto const origin = Coords{data.origin};
auto const remote = Coords{data.remote};
// Grids that looked different prior to conversion to coordinates
// can nevertheless be practically on top of one another; we can't
// go there, because we're already there.
//
// Grids that are antipodes of one another aren't worth calculating;
// you can't get farther away without leaving the planet, moving in
// any direction will take you there, and it's the same distance no
// matter what direction you go.
if (origin.isIdenticalTo(remote))
return std::make_pair(0.0f, 0.0f);
if (origin.isAntipodesOf(remote))
return std::make_pair(0.0f, 204000.0f);
// Sanity checks complete; let's do some math. JHT took this algorithm
// from:
//
// Thomas, P.D., 1970,
// Spheroidal Geodesics, Reference Systems, & Local Geometry,
// U.S. Naval Oceanographic Office SP-138, 165 pp.
//
// "A discussion of the geodesic on the oblate spheroid (reference
// ellipsoid) is given with formulae of geodetic accuracy (second
// order in the flattening, distance and azimuths) for the non-
// iterative direct and inverse solutions over the hemispheroid,
// requiring no root extraction and no tabular data except 3-place
// tables of the natural trigonometric functions."
//
// This is a C++ translation of the original Fortran-63 algorithm, pages
// 162 and 163 of the publication, description on page 161.
//
// Note that the original routine uses single-precision real values, so
// we've done the same here. The degrees to radians and Tau constants
// used by JHT's version are slightly different than those used by the
// Thomas algorithm; we've used the JHT versions.
//
// Constants and derived constants:
//
// AL: Semi-major axis of the Earth, Clarke 1866 ellipsoid, in km.
// BL: Semi-minor axis of the Earth, Clarke 1866 ellipsoid, in km.
// D2R: Degrees to radians conversion factor.
// TAU: Tau constant, the ratio of the circumference to the radius
// of a circle, i.e, 2Pi;
constexpr auto AL = 6378206.4f;
constexpr auto BL = 6356583.8f;
constexpr auto D2R = 0.01745329251994f;
constexpr auto TAU = 6.28318530718f;
constexpr auto BOA = BL / AL;
constexpr auto F = 1.0f - BOA;
constexpr auto FF64 = F * F / 64.0f;
// Convert degrees of latitude and longitude to radians and compute the
// delta longitude in radians.
auto const P1R = origin.lat() * D2R;
auto const P2R = remote.lat() * D2R;
auto const L1R = origin.lon() * D2R;
auto const L2R = remote.lon() * D2R;
auto const DLR = L2R - L1R;
// And away we go; see page 162 of the publication.
auto const T1R = std::atan(BOA * std::tan(P1R));
auto const T2R = std::atan(BOA * std::tan(P2R));
auto const TM = (T1R + T2R) / 2.0f;
auto const DTM = (T2R - T1R) / 2.0f;
auto const STM = std::sin(TM);
auto const CTM = std::cos(TM);
auto const SDTM = std::sin(DTM);
auto const CDTM = std::cos(DTM);
auto const KL = STM * CDTM;
auto const KK = SDTM * CTM;
auto const SDLMR = std::sin(DLR / 2.0f);
auto const L = SDTM * SDTM + SDLMR * SDLMR * (CDTM * CDTM - STM * STM);
auto const CD = 1.0f - 2.0f * L;
auto const DL = std::acos(CD);
auto const SD = std::sin(DL);
auto const T = DL / SD;
auto const U = 2.0f * KL * KL / (1.0f - L);
auto const V = 2.0f * KK * KK / L;
auto const D = 4.0f * T * T;
auto const X = U + V;
auto const E = -2.0f * CD;
auto const Y = U - V;
auto const A = -D * E;
auto const dist = AL * SD *
(T - (F / 4.0f) * (T * X - Y) +
FF64 * (X * (A + (T - (A + E) / 2.0f) * X) +
Y * (-2.0f * D + E * Y) + D * X * Y)) /
1000.0f;
auto const TDLPM = std::tan(
(DLR + (-((E * (4.0f - X) + 2.0f * Y) *
((F / 2.0f) * T + FF64 * (32.0f * T + (A - 20.0f * T) * X -
2.0f * (D + 2.0f) * Y)) /
4.0f) *
std::tan(DLR))) /
2.0f);
auto const HAPBR = std::atan2(SDTM, (CTM * TDLPM));
auto const HAMBR = std::atan2(CDTM, (STM * TDLPM));
// This should be the net effect of the somewhat gnarly goto loops
// in the original Fortran. Even as a former 370 assembler guy, ew,
// just...ew.
auto A1M2 = TAU + HAMBR - HAPBR;
while (A1M2 < 0.0f || A1M2 >= TAU) {
if (A1M2 < 0.0f)
A1M2 += TAU;
else if (A1M2 >= TAU)
A1M2 -= TAU;
}
return std::make_pair(360.0f - (A1M2 / D2R), dist);
}
} // namespace
/******************************************************************************/
// Local Utilities
/******************************************************************************/
namespace {
// Displayable units. No need to translate these; the SI units are
// universal, and the standard units are only used in English.
constexpr QStringView UNITS_KM = u"km";
constexpr QStringView UNITS_MI = u"mi";
// In the spirit of the Fortran NINT() function, round and convert the
// provided floating-point value to an integer, for display purposes.
template <std::floating_point T> auto nint(T const value) {
return static_cast<int>(std::round(value));
}
} // namespace
/******************************************************************************/
// Public Implementation
/******************************************************************************/
namespace Geodesic {
// Return as a compass direction, i.e., directional arrow and cardinal
// direction, or an empty string view if invalid.
QStringView Azimuth::compass() const {
return isValid() ? COMPASS[static_cast<int>((m_value + 22.5f) / 45.0f) % 8]
: QStringView{};
}
// Return azimuth as a numeric string, to the nearest whole degree.
// If the caller requests units, we'll append a degree symbol.
QString Azimuth::toString(bool const units) const {
if (!isValid())
return QString{};
return units ? QString("%1°").arg(nint(m_value))
: QString::number(nint(m_value));
}
// Return distance as a numeric string, to the nearest whole kilometer
// or mile. If we're close and either of the grids that gave rise to us
// to us was only of square magnitude, rather than subsquare or extended,
// prepend a '<' to indicate that we're close, but we're not sure just
// how close, and the actual distance is somewhere within the value.
//
// If the caller requests units, we'll append them.
QString Distance::toString(bool const miles, bool const units) const {
if (!isValid())
return QString{};
auto value = isClose() ? CLOSE : m_value;
if (miles)
value /= 1.609344f;
if (units && isClose())
return QString("<%1 %2")
.arg(nint(value))
.arg(miles ? UNITS_MI : UNITS_KM);
else if (units)
return QString("%1 %2")
.arg(nint(value))
.arg(miles ? UNITS_MI : UNITS_KM);
else if (isClose())
return QString("<%1").arg(nint(value));
else
return QString::number(nint(value));
}
// The azdist() function is frankly something you don't want to run more
// than you have to. Additionally, while our contract defines the ability
// to compute a vector between any two valid grid identifiers, the fact is
// that the origin is going to be, practically speaking, always the local
// station.
//
// Vectors get looked up a lot, so caching them is of benefit. We use a
// two-level cache, the first level being a cache of origins, which will
// be reasonably persistent, the second level being an ephemeral cache of
// remotes.
//
// We're taking the default cache cost values of 100 here, so, rough math
// for the worst-case storage requirement here is:
//
// - Keys are strings, and they're all short, so we'll see a
// short string optimization, about 24 bytes per key.
//
// - Vectors are the size of 2 floats, so 8 bytes per Vector.
//
// - Key and associated Vector is therefore about 32 bytes.
//
// - 100 elements per cache = 100 * 32 = 3.2K
//
// - 100 caches of caches = ~3.2K * 100 = 320K. However, that's
// worst case in the extreme; likely we'll never see more than
// one origin, so likely only 3.2K total.
//
// - Some overhead on top of that, but relatively speaking, not
// much. We're therefore spending on the order of 4K of memory
// here, along with some light integer math, in order to avoid
// spending a lot of time repeating identical floating point
// calculations.
//
// Note that the vector returned to the caller is theirs; it's always a
// copy of a cached version, or a new one that we create. They should be
// only 8 bytes in size (2 floats); so this should be very efficient; in
// theory, these return in a single 64-bit register.
//
// This function is reentrant, but practically speaking, it'd be unusual
// for this to be called from anything other than the GUI thread.
Vector vector(QStringView const origin, QStringView const remote) {
using Cache = QCache<QString, Vector>;
static QMutex mutex;
static QCache<QString, Cache> caches;
QMutexLocker lock(&mutex);
// Caller is expected to hand us a lot of garbage; it's literally the
// common case. Prior to getting too far into the weeds here, a quick
// sanity check that what we've been handed could be expected to work.
// If not, return a vector with invalid azimuth and invalid distance.
if (!Maidenhead::valid(origin.trimmed()) ||
!Maidenhead::valid(remote.trimmed())) {
return Vector();
}
// Input data validated; we have a winner here; at this point we are
// going to return a valid vector; get the data by which to create it.
auto const data = normalize(origin, remote);
// Perform first-level cache lookup; we should practically always hit
// on this, other than the first time we're invoked.
if (auto cache = caches.object(data.origin)) {
// We've hit on the first level cache; if we hit on the second, then
// return a copy of the cached vector to the caller, and we're outta
// here. If we miss, create a vector, store a copy of it in the cache,
// and return the original to the caller.
if (auto const value = cache->object(data.remote)) {
return *value;
} else {
auto const vector = Vector(azdist(data), data.square);
cache->insert(data.remote, new Vector(vector));
return vector;
}
}
// We missed on the first-level cache; first time here for this origin.
// Create a new second-level cache and a vector, storing a copy of the
// vector in the cache, and then cache the cache. Return the original
// vector to the caller.
auto cache = new Cache();
auto const vector = Vector(azdist(data), data.square);
cache->insert(data.remote, new Vector(vector));
caches.insert(data.origin, cache);
return vector;
}
} // namespace Geodesic
/******************************************************************************/
|