1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
|
#include "plotter.h"
#include "DriftingDateTime.h"
#include "JS8_Include/commons.h"
#include "JS8_Mode/JS8Submode.h"
#include "moc_plotter.cpp"
#include <QDebug>
#include <QMouseEvent>
#include <QPainter>
#include <QPen>
#include <QToolTip>
#include <QWheelEvent>
#include <concepts>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <utility>
/******************************************************************************/
// Constants
/******************************************************************************/
namespace {
// The Qt Raster engine seems to have terrible performance when
// drawing large polylines; the size at which we should split
// drawing into smaller lines.
constexpr qsizetype POLYLINE_SIZE = 6;
// Debounce interval, in milliseconds; adjust to taste.
constexpr auto DEBOUNCE_INTERVAL = 100;
// Vertical divisions in the spectrum display.
constexpr std::size_t VERT_DIVS = 7;
// FFT bin width, as with NSPS, a constant; see the JT9 documentation
// for the reasoning behind the values used here, but in short, since
// NSPS is always 6912, 1500 for nsps2 and 2048 for nfft3 are optimal.
constexpr float FFT_BIN_WIDTH = 1500.0 / 2048.0;
// 30 meter band: 10.130-10.140 RTTY
// 10.140-10.150 Packet
constexpr float BAND_30M_START = 10.13f;
constexpr float BAND_30M_END = 10.15f;
// The WSPR range starts at 10.1401 MHz and runs for 200 Hz.
constexpr float WSPR_START = 10.1401f;
constexpr int WSPR_RANGE = 200;
// Band colors, always drawn with a 3-pixel pen.
constexpr auto BAND_EDGE = QColor{149, 165, 166}; // Gray
constexpr auto BAND_GOOD = QColor{46, 204, 113}; // Green
constexpr auto BAND_WARN = QColor{241, 196, 15}; // Yellow
constexpr auto BAND_WSPR = QColor{230, 126, 34}; // Orange
} // namespace
/******************************************************************************/
// Local Utilities
/******************************************************************************/
namespace {
// Given a floating point value, return the fractional portion of the
// value e.g., 42.7 -> 0.7.
template <std::floating_point T> constexpr auto fractionalPart(T const v) {
T integralPart;
return std::modf(v, &integralPart);
}
// Given the frequency span of the entire viewable plot region, return
// the frequency span that each division should occupy.
auto freqPerDiv(float const fSpan) {
if (fSpan > 2500) {
return 500;
}
if (fSpan > 1000) {
return 200;
}
if (fSpan > 500) {
return 100;
}
if (fSpan > 250) {
return 50;
}
if (fSpan > 100) {
return 20;
}
return 10;
}
} // namespace
/******************************************************************************/
// Implementation
/******************************************************************************/
CPlotter::CPlotter(QWidget *parent)
: QWidget{parent}, m_freqPerPixel{m_binsPerPixel * FFT_BIN_WIDTH},
m_scaler1D{m_waterfallAvg, m_binsPerPixel}, m_scaler2D{m_h2},
m_replotTimer{new QTimer(this)}, m_resizeTimer{new QTimer(this)} {
setFocusPolicy(Qt::StrongFocus);
setMouseTracking(true);
// Debounce resize events such that resize() doesn't actually get called
// until the debounce time has elapsed without any further resize events.
// Likewise, for control-initiated changes that would cause a replot.
m_replotTimer->setSingleShot(true);
m_resizeTimer->setSingleShot(true);
m_replotTimer->setInterval(DEBOUNCE_INTERVAL);
m_resizeTimer->setInterval(DEBOUNCE_INTERVAL);
connect(m_replotTimer, &QTimer::timeout, this, &CPlotter::replot);
connect(m_resizeTimer, &QTimer::timeout, this, &CPlotter::resize);
}
CPlotter::~CPlotter() = default;
QSize CPlotter::minimumSizeHint() const { return QSize(50, 50); }
QSize CPlotter::sizeHint() const { return QSize(180, 180); }
void CPlotter::paintEvent(QPaintEvent *) {
QPainter p(this);
p.drawPixmap(0, 0, m_ScalePixmap);
p.drawPixmap(0, 30, m_WaterfallPixmap);
p.drawPixmap(0, m_h1, m_SpectrumPixmap);
p.drawPixmap(xFromFreq(m_freq), 30, m_DialPixmap[0]);
if (m_lastMouseX >= 0) {
p.drawPixmap(m_lastMouseX, 30, m_DialPixmap[1]);
}
if (m_filterEnabled && m_filterWidth > 0) {
p.drawPixmap(0, 0, m_FilterPixmap[0]);
p.drawPixmap(m_w - m_FilterPixmap[1].deviceIndependentSize().width(), 0,
m_FilterPixmap[1]);
}
}
void CPlotter::resizeEvent(QResizeEvent *) { m_resizeTimer->start(); }
void CPlotter::drawLine(QString const &text) {
m_WaterfallPixmap.scroll(0, 1, m_WaterfallPixmap.rect());
QPainter p(&m_WaterfallPixmap);
// Draw a green line across the complete span.
p.setPen(Qt::green);
p.drawLine(0, 0, m_w, 0);
// Compute the number of lines required before we need to draw the
// text, and note the text to draw, saving it against a potential
// replot request.
m_text = text;
m_line = p.fontMetrics().height() * devicePixelRatio();
m_replot.push_front(m_text);
update();
}
void CPlotter::drawData(WF::SWide swide, WF::State const state) {
m_WaterfallPixmap.scroll(0, 1, m_WaterfallPixmap.rect());
// Flattening, we just process the visible width; tends to be the best
// approach in terms of what happens when resizing to a larger size.
m_flatten(swide.data(), m_w);
// Display the data in the waterfall, drawing only the displayed range.
QPainter p(&m_WaterfallPixmap);
for (auto x = 0; x < m_w; ++x) {
p.setPen(m_colors[m_scaler1D(swide[x])]);
p.drawPoint(x, 0);
}
// See if we've reached the point where we should draw previously computed
// line text.
if (--m_line == 0) {
m_line = std::numeric_limits<int>::max();
p.setPen(Qt::white);
p.drawText(5, p.fontMetrics().ascent(), m_text);
}
// A number of factors determine whether or not we should draw the spectrum.
if (shouldDrawSpectrum(state)) {
// We draw the spectrum by copying the overlay prototype and drawing our
// points into it.
m_SpectrumPixmap = m_OverlayPixmap.copy();
QPainter p(&m_SpectrumPixmap);
// Add a point to the polyline.
auto const addPoint = [this](int const x, float const y) {
m_points.emplace_back(x, m_scaler2D(y));
};
// Add points from one of the ranges of adjunct data instead of the
// spectrum data.
auto const addPoints =
[this, &addPoint](auto const begin, auto const value)
{
// Determine the starting bin offset of the adjunct data.
auto const start = begin + static_cast<std::size_t>(
m_startFreq / FFT_BIN_WIDTH + 0.5f);
// Average the values in each range of adjunct data bins
// and convert to points, passing the average through the
// supplied value function.
for (auto x = 0; x < m_w; ++x) {
auto const first = start + x * m_binsPerPixel;
addPoint(x, value(std::reduce(first, first + m_binsPerPixel) /
m_binsPerPixel));
}
};
// Clear the current points and ensure space exists to add all the
// points we require without reallocation.
m_points.clear();
m_points.reserve(m_w);
switch (m_spectrum) {
// Current spectrum is displayed as a green line. Find the minimum
// value within the displayed spectrum, then display each point as
// the delta above that value.
case Spectrum::Current: {
p.setPen(Qt::green);
auto const min =
*std::min_element(swide.begin(), swide.begin() + m_w);
for (auto x = 0; x < m_w; ++x)
addPoint(x, swide[x] - min);
} break;
// Cumulative spectrum is displayed as a cyan line; use the average
// data, which is power scaled and must be converted to dB scale.
case Spectrum::Cumulative: {
p.setPen(Qt::cyan);
addPoints(std::begin(specData.savg), [](auto const value) {
return 30.0f + 10.0f * std::log10(value);
});
} break;
// Linear Average spectrum is displayed as a yellow line; use the
// the precomputed linear average data.
case Spectrum::LinearAvg: {
p.setPen(Qt::yellow);
addPoints(std::begin(specData.slin),
[](auto const value) { return value; });
} break;
}
// Draw the spectrum line, reducing the resulting points prior to
// drawing them, but keeping the collection capacity. We also work
// around what seems to be a performance bug in all versions of Qt
// up to and including 6.8, when drawing large polylines; this was
// culled from the Qwt library's workaround for the issue. Doubles
// overall program performance, pretty much.
m_points.erase(m_rdp(m_points), m_points.end());
p.setRenderHint(QPainter::Antialiasing);
for (qsizetype i = 0; i < m_points.size(); i += POLYLINE_SIZE) {
p.drawPolyline(m_points.data() + i,
qMin(POLYLINE_SIZE + 1, m_points.size() - i));
}
}
// Save the data against a potential replot requirement.
m_replot.push_front(std::move(swide));
update();
}
void CPlotter::drawDecodeLine(QColor const &color, int const ia, int const ib) {
auto const x1 = xFromFreq(ia);
auto const x2 = xFromFreq(ib);
QPainter p(&m_WaterfallPixmap);
p.setPen(color);
p.drawLine(qMin(x1, x2), 4, qMax(x1, x2), 4);
p.drawLine(qMin(x1, x2), 0, qMin(x1, x2), 9);
p.drawLine(qMax(x1, x2), 0, qMax(x1, x2), 9);
}
void CPlotter::drawHorizontalLine(QColor const &color, int const x,
int const width) {
QPainter p(&m_WaterfallPixmap);
p.setPen(color);
p.drawLine(x, 0, width <= 0 ? m_w : x + width, 0);
}
void CPlotter::drawMetrics() {
if (m_ScalePixmap.isNull())
return;
m_ScalePixmap.fill(Qt::white);
QPainter p(&m_ScalePixmap);
p.setPen(Qt::black);
p.drawRect(0, 0, m_w, 30);
auto const fSpan = m_w * m_freqPerPixel;
auto const fpd = freqPerDiv(fSpan);
float const ppdV = fpd / m_freqPerPixel;
std::size_t const hdivs = fSpan / fpd + 1.9999f;
int const fOffset = ((m_startFreq + fpd - 1) / fpd) * fpd;
auto const xOffset = float(fOffset - m_startFreq) / fpd;
std::size_t const nMajor = hdivs - 1;
std::size_t const nMinor = fpd == 200 ? 4 : 5;
float const ppdVM = ppdV / nMinor;
float const ppdVL = ppdV / 2;
// Draw ticks and labels.
for (std::size_t iMajor = 0; iMajor < nMajor; iMajor++) {
auto const rMajor = (xOffset + iMajor) * ppdV;
auto const xMajor = static_cast<int>(rMajor);
p.drawLine(xMajor, 18, xMajor, 30);
for (std::size_t iMinor = 1; iMinor < nMinor; iMinor++) {
auto const xMinor = static_cast<int>(rMajor + iMinor * ppdVM);
p.drawLine(xMinor, 22, xMinor, 30);
}
if (xMajor > 70) {
p.drawText(QRect(xMajor - static_cast<int>(ppdVL), 0,
static_cast<int>(ppdV), 20),
Qt::AlignCenter,
QString::number(fOffset + iMajor * fpd));
}
}
// Given a starting frequency and range to cover, return corresponding
// X values for the sub-band.
auto const bandX = [this](float const start, int const range) {
return std::make_pair(xFromFreq(start), xFromFreq(start + range));
};
// Given a pair of X values, draw a band line, if visible.
auto const drawBand = [this, &p](auto const &bandX) {
auto const [x1, x2] = bandX;
if (x1 <= m_w && x2 > 0) {
p.drawLine(x1 + 1, 26, x2 - 2, 26);
p.drawLine(x1 + 1, 28, x2 - 2, 28);
}
};
// Colorize the JS8 sub-bands.
p.setPen(QPen(BAND_EDGE, 3));
drawBand(bandX(0.0f, 4000));
p.setPen(QPen(BAND_WARN, 3));
drawBand(bandX(500.0f, 2500));
p.setPen(QPen(BAND_GOOD, 3));
drawBand(bandX(1000.0f, 1500));
// If we're in the 30 meter band, we'd rather that the WSPR sub-band not
// get stomped on; draw an orange indicator in the scale to denote the
// WSPR portion of the band.
//
// Note that given the way xfromFreq() works, we're always going to see
// clamped X values here, either 0 or m_w, if the frequency is outside
// of the range, so we're always going to draw. If the WSPR range is not
// in the displayed range, the effect will be, given the pen size, that
// an orange indicator will indicate in which direction the WSPR range
// lies.
if (in30MBand()) {
auto const wspr = bandX(1.0e6f * (WSPR_START - m_dialFreq), WSPR_RANGE);
auto font = QFont();
font.setBold(true);
font.setPointSize(10);
p.setFont(font);
p.setPen(QPen(BAND_WSPR, 3));
drawBand(wspr);
p.drawText(QRect(wspr.first, 0, wspr.second - wspr.first, 25),
Qt::AlignHCenter | Qt::AlignBottom, "WSPR");
}
// Our spectrum might be of zero height, in which case our overlay pixmap
// isn't going to be usable; proceed only if it's usable.
if (!m_OverlayPixmap.isNull()) {
QLinearGradient gradient(0, 0, 0, m_h2);
gradient.setColorAt(1, Qt::black);
gradient.setColorAt(0, Qt::darkBlue);
QPainter p(&m_OverlayPixmap);
p.setBrush(gradient);
p.drawRect(0, 0, m_w, m_h2);
p.setBrush(Qt::SolidPattern);
p.setPen(QPen(Qt::darkGray, 1, Qt::DotLine));
// Draw vertical grids.
auto const x0 = static_cast<int>(
fractionalPart((float)m_startFreq / fpd) * ppdV + 0.5f);
for (std::size_t i = 1; i < hdivs; i++) {
if (auto const x = static_cast<int>(i * ppdV) - x0;
x >= 0 && x <= m_w) {
p.drawLine(x, 0, x, m_h2);
}
}
// Draw horizontal grids.
float const ppdH = (float)m_h2 / VERT_DIVS;
for (std::size_t i = 1; i < VERT_DIVS; i++) {
auto const y = static_cast<int>(i * ppdH);
p.drawLine(0, y, m_w, y);
}
}
}
// Draw the filter overlay pixmaps, if the filter is enabled and has a width
// greater than zero. Note that we could be more clever here and ensure the
// filter is actually visible prior to painting, but what we're doing here
// is reasonably trivial, so probably not worth the effort.
void CPlotter::drawFilter() {
if (m_filterEnabled && m_filterWidth > 0 && !size().isEmpty()) {
auto const filterPixmap =
[height = size().height(),
fill = QColor(0, 0, 0, std::clamp(m_filterOpacity, 0, 255)),
dpr = devicePixelRatio()](int const width, int const lineX) {
// Ending up with an unusable size here is expected, as in the
// case where the combination of the filter center and width
// shifts one or both ends of the filter out of the displayed
// range. Thus, no matter what, we're going to return a pixmap
// here, though it may be an empty one.
if (auto const size = QSize(width, height); size.isEmpty()) {
return QPixmap();
} else {
QPixmap pixmap = QPixmap(size * dpr);
pixmap.setDevicePixelRatio(dpr);
pixmap.fill(fill);
QPainter p(&pixmap);
p.setPen(Qt::yellow);
p.drawLine(lineX, 1, lineX, height);
return pixmap;
}
};
auto const width = m_filterWidth / 2.0f;
auto const start = xFromFreq(m_filterCenter - width);
auto const end = xFromFreq(m_filterCenter + width);
m_FilterPixmap = {filterPixmap(start, start),
filterPixmap(size().width() - end, 0)};
}
}
// Draw the two dials, the first of which will be used to display the selected
// offset and bandwith, the second prospective offset and bandwidth. These are
// not reliant on anything but height, submode, and bins per pixel.
void CPlotter::drawDials() {
if (auto const height = size().height() - 30; height > 0) {
auto const width = static_cast<int>(
JS8::Submode::bandwidth(m_nSubMode) / m_freqPerPixel + 0.5f);
auto const dialPixmap = [size = QSize(width, height),
rect = QRect(1, 1, width - 2, height - 2),
dpr = devicePixelRatio()](
QColor const &color, QBrush const &brush) {
QPixmap pixmap = QPixmap(size * dpr);
pixmap.setDevicePixelRatio(dpr);
pixmap.fill(Qt::transparent);
QPainter p(&pixmap);
p.setBrush(brush);
p.setPen(QPen(QBrush(color), 2, Qt::SolidLine, Qt::SquareCap,
Qt::MiterJoin));
p.drawRect(rect);
return pixmap;
};
m_DialPixmap = {dialPixmap(Qt::red, QBrush(QColor(255, 255, 255, 75),
Qt::Dense4Pattern)),
dialPixmap(Qt::white, Qt::transparent)};
}
}
// Replot the waterfall display, using the data present in the replot
// buffer, if any.
void CPlotter::replot() {
if (m_WaterfallPixmap.isNull())
return;
// Whack anything currently in the waterfall pixmap; we must do this
// before attaching a painter.
m_WaterfallPixmap.fill(Qt::black);
// We need to consider that entries have been added to the replot
// buffer at a rate proportional to the display pixel ratio, i.e.,
// it deals in device pixels, not logical pixels, so we must deal
// with scaling in the y dimension for this to work out.
QPainter p(&m_WaterfallPixmap);
p.scale(1, 1 / m_WaterfallPixmap.devicePixelRatio());
// Our draw routine pushed entries to the front of the buffer, so we
// can iterate in forward order here, the Qt coordinate system having
// (0, 0) as the upper-left point.
auto y = 0;
for (auto &&v : m_replot) {
std::visit(
[ratio = m_WaterfallPixmap.devicePixelRatio(),
width = m_WaterfallPixmap.size().width(),
extra = p.fontMetrics().descent(), &y = std::as_const(y),
&colors = std::as_const(m_colors),
&scaler = std::as_const(m_scaler1D), &p](auto const &v) {
// Note that a monostate is constructed as the default when we
// resize but have no backing data. There is nothing to in that
// case; just data that we didn't have when we were resized.
using T = std::decay_t<decltype(v)>;
// Line drawing; draw the usual green line across the width of
// the pixmap, annotated by the text provided.
if constexpr (std::is_same_v<T, QString>) {
p.setPen(Qt::white);
p.save();
p.scale(1, ratio);
p.drawText(5, y / ratio - extra, v);
p.restore();
p.setPen(Qt::green);
p.drawLine(0, y, width, y);
}
// Standard waterfall data display; run through the vector of
// data and color each corresponding point in the pixmap
// appropriately.
else if constexpr (std::is_same_v<T, WF::SWide>) {
auto const end =
std::min(width, static_cast<int>(v.size()));
for (auto x = 0; x < end; ++x) {
p.setPen(colors[scaler(v[x])]);
p.drawPoint(x, y);
}
}
},
v);
y++;
}
// The waterfall pixmap should now look as it did before, but with the
// current zero, gain, and color palette applied; schedule a repaint.
update();
}
// Called (indirectly, debounced) from our resize event handler and from
// setPercent2DScreen() after a change to the 2D screen percentage.
void CPlotter::resize() {
if (size().isValid()) {
auto const makePixmap = [dpr = devicePixelRatio()](QSize const &size,
QColor const &fill) {
auto pixmap = QPixmap(size * dpr);
pixmap.setDevicePixelRatio(dpr);
pixmap.fill(fill);
return pixmap;
};
m_w = size().width();
m_h2 = m_percent2D * (size().height() - 30) / 100.0;
m_h1 = size().height() - m_h2;
// We want our 3 main pixmaps sized to occupy our entire height,
// and to be completely filled with an opaque color, since we're
// going to take the opaque paint even optimization path. If this
// is a high-DPI display, scale the pixmaps to avoid text looking
// pixelated.
m_ScalePixmap = makePixmap({m_w, 30}, Qt::white);
m_WaterfallPixmap = makePixmap({m_w, m_h1}, Qt::black);
m_OverlayPixmap = makePixmap({m_w, m_h2}, Qt::black);
// The replot circular buffer should have capacity to hold the full
// height of the waterfall pixmap, in device, not logical, pixels.
// Since our variant lists std::monostate as the first alternative,
// if we get larger here, the added items will be constructed using
// std::monostate as the alternative.
m_replot.resize(m_WaterfallPixmap.size().height());
// Ensure the 2D scaler is working with the current spectrum height.
m_scaler2D.rescale();
// The dials, filter, scale and overlay pixmaps don't depend on
// inbound data, so we can draw them now.
drawDials();
drawFilter();
drawMetrics();
// The overlay pixmap acts as a prototype for the spectrum pixmap;
// each time we draw the spectrum, we do so by first making a copy
// of the overlay, then drawing the spectrum line into it.
m_SpectrumPixmap = m_OverlayPixmap.copy();
replot();
}
}
// If the overlay pixmap is null, then we definitely are not going to
// draw the spectrum. If it's non-null, then our need to draw depends
// on what the spectrum is displaying and the state.
bool CPlotter::shouldDrawSpectrum(WF::State const state) const {
if (m_OverlayPixmap.isNull())
return false;
return m_spectrum == Spectrum::Current ? state.testFlag(WF::Sink::Current)
: state.testFlag(WF::Sink::Summary);
}
bool CPlotter::in30MBand() const {
return (m_dialFreq >= BAND_30M_START && m_dialFreq <= BAND_30M_END);
}
int CPlotter::xFromFreq(float const f) const {
return std::clamp(
static_cast<int>((f - m_startFreq) / m_freqPerPixel + 0.5f), 0, m_w);
}
float CPlotter::freqFromX(int const x) const {
return m_startFreq + x * m_freqPerPixel;
}
void CPlotter::leaveEvent(QEvent *event) {
m_lastMouseX = -1;
event->ignore();
}
void CPlotter::wheelEvent(QWheelEvent *event) {
auto const y = event->angleDelta().y();
if (auto const d = ((y > 0) - (y < 0))) {
Q_EMIT changeFreq(event->modifiers() & Qt::ControlModifier
? freq() + d
: freq() / 10 * 10 + d * 10);
} else {
event->ignore();
}
}
void CPlotter::mouseMoveEvent(QMouseEvent *event) {
m_lastMouseX = std::clamp(static_cast<int>(event->position().x()), 0, m_w);
update();
event->ignore();
QToolTip::showText(
event->globalPosition().toPoint(),
QString::number(static_cast<int>(freqFromX(m_lastMouseX))));
}
void CPlotter::mouseReleaseEvent(QMouseEvent *event) {
if (Qt::LeftButton == event->button()) {
Q_EMIT changeFreq(static_cast<int>(freqFromX(m_lastMouseX)));
} else {
event->ignore();
}
}
void CPlotter::setBinsPerPixel(int const binsPerPixel) {
if (m_binsPerPixel != binsPerPixel) {
m_binsPerPixel = std::max(1, binsPerPixel);
m_freqPerPixel = m_binsPerPixel * FFT_BIN_WIDTH;
m_scaler1D.rescale();
drawMetrics();
drawFilter();
drawDials();
update();
}
}
void CPlotter::setColors(Colors const &colors) {
if (m_colors != colors) {
m_colors = colors;
replot();
}
}
void CPlotter::setDialFreq(float const dialFreq) {
if (m_dialFreq != dialFreq) {
m_dialFreq = dialFreq;
drawMetrics();
update();
}
}
void CPlotter::setFilter(int const filterCenter, int const filterWidth) {
if (m_filterCenter != filterCenter || m_filterWidth != filterWidth) {
m_filterCenter = filterCenter;
m_filterWidth = filterWidth;
drawFilter();
update();
}
}
void CPlotter::setFilterEnabled(bool const filterEnabled) {
if (m_filterEnabled != filterEnabled) {
m_filterEnabled = filterEnabled;
drawFilter();
update();
}
}
void CPlotter::setFilterOpacity(int const filterOpacity) {
if (m_filterOpacity != filterOpacity) {
m_filterOpacity = filterOpacity;
drawFilter();
update();
}
}
void CPlotter::setFreq(int const freq) {
if (m_freq != freq) {
m_freq = freq;
drawMetrics();
update();
}
}
void CPlotter::setPercent2D(int percent2D) {
if (m_percent2D != percent2D) {
m_percent2D = percent2D;
resize();
update();
}
}
void CPlotter::setPlotGain(int const plotGain) {
if (m_scaler1D.gain() != plotGain) {
m_scaler1D.setGain(plotGain);
m_replotTimer->start();
}
}
void CPlotter::setPlotZero(int const plotZero) {
if (m_scaler1D.zero() != plotZero) {
m_scaler1D.setZero(plotZero);
m_replotTimer->start();
}
}
void CPlotter::setStartFreq(int const startFreq) {
if (m_startFreq != startFreq) {
m_startFreq = startFreq;
drawMetrics();
drawFilter();
update();
}
}
void CPlotter::setSubMode(int const nSubMode) {
if (m_nSubMode != nSubMode) {
m_nSubMode = nSubMode;
drawDials();
update();
}
}
void CPlotter::setWaterfallAvg(int const waterfallAvg) {
if (m_waterfallAvg != waterfallAvg) {
m_waterfallAvg = waterfallAvg;
m_scaler1D.rescale();
}
}
/******************************************************************************/
|