1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
|
/**
* (C) 2025 Allan Bazinet <w6baz@arrl.net> - All Rights Reserved
**/
#include "JS8.h"
#include "JS8_Include/commons.h"
#include "JS8_Mode/kalman.h"
#include "JS8_Mode/whitening_processor.h"
#include "ldpc_feedback.h"
#include "soft_combiner.h"
#include <QDebug>
#include <QLoggingCategory>
#include <QtGlobal>
#include <algorithm>
#include <atomic>
#include <boost/crc.hpp>
#include <boost/math/ccmath/round.hpp>
#include <boost/multi_index/key.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/ranked_index.hpp>
#include <boost/multi_index_container.hpp>
#include <chrono>
#include <cmath>
#include <complex>
#include <concepts>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <fftw3.h>
#include <initializer_list>
#include <limits>
#include <memory>
#include <mutex>
#include <numbers>
#include <numeric>
#include <optional>
#include <sstream>
#include <stdexcept>
#include <string_view>
#include <unordered_map>
#include <utility>
#include <vector>
#include <Eigen/Dense>
Q_DECLARE_LOGGING_CATEGORY(decoder_js8);
// A C++ conversion of the Fortran JS8 encoding and decoder function.
// Some notes on the conversion:
//
// 1. Names of variables and functions as much as possible match those
// of the Fortran routines, for ease in cross-referencing during the
// debug comparison phase of testing. You don't have to like them; I
// don't like them either, frankly, but it's the reasonable approach
// to the problem as of this writing; we can make 'em pretty later.
//
// 2. The BP decoder should be a faithful reproduction of the Fortran
// version, albeit modified for the column-major vs. row-major
// differences between the two languages.
//
// 3. The OSD decoder is no longer used, and the depth is now fixed at
// 2, instead of being variable 1 to 4.
//
// 4. The Fortran version didn't compute the 40% rank consistently in
// syncjs8(); this version does. It wasn't typically off by much, but
// it was reliably not going to be at 40%. Hopefully, this change will
// result in more predictable first-pass candidate selection.
//
// 5. The Fortran version was very subject to Runge's phenomenon when
// computing the baseline in baselinejs8(), and was using a ton of
// data points below the 10% threshold for the polynomial determination.
// Neither of these seemed to be helpful, so in contrast we're using
// a number of Chebyshev nodes proportional to the desired polynomial
// terms.
//
// 6. The Fortran version normalized `s1` by dividing by the median in
// js8dec(), but did so in a naive manner, not checking for a median
// of zero. Testing indicates that the normalization does not appear
// to contribute to decoder yield, so it's been removed.
//
// 7. Translating array indices from the world of Fortran to that of C++
// is no one's fun task. If you see things that aren't behaving as
// expected, look at the Fortran code and compare the array indexing;
// would not be surprised in the least to have off-by-one errors here.
/******************************************************************************/
// Compilation Utilities
/******************************************************************************/
namespace {
// Full-range cosine function using symmetries of cos(x). std::cos
// isn't constexpr until C++20, and we're targeting C++17 at the
// moment. We only use this function during compilation; std::cos
// is the better choice at runtime. Once we move to requiring a
// C++20 compiler, we can just use std::cos.
constexpr double cos_approx(double x) {
constexpr auto RAD_360 = std::numbers::pi * 2;
constexpr auto RAD_180 = std::numbers::pi;
constexpr auto RAD_90 = std::numbers::pi / 2;
// Polynomial approximation of cos(x) for x in [0, RAD_90],
// Accuracy here in theory is 1e-18, but double precision
// itself is only 1-e16, so within the domain of doubles,
// this should be extremely accurate.
constexpr auto poly = [](double const x) {
constexpr std::array coefficients = {
1.0, // Coefficient for x^0
-0.49999999999999994, // Coefficient for x^2
0.041666666666666664, // Coefficient for x^4
-0.001388888888888889, // Coefficient for x^6
0.000024801587301587, // Coefficient for x^8
-0.00000027557319223986, // Coefficient for x^10
0.00000000208767569878681, // Coefficient for x^12
-0.00000000001147074513875176, // Coefficient for x^14
0.0000000000000477947733238733 // Coefficient for x^16
};
auto const x2 = x * x;
auto const x4 = x2 * x2;
auto const x6 = x4 * x2;
auto const x8 = x4 * x4;
auto const x10 = x8 * x2;
auto const x12 = x8 * x4;
auto const x14 = x12 * x2;
auto const x16 = x8 * x8;
return coefficients[0] + coefficients[1] * x2 + coefficients[2] * x4 +
coefficients[3] * x6 + coefficients[4] * x8 +
coefficients[5] * x10 + coefficients[6] * x12 +
coefficients[7] * x14 + coefficients[8] * x16;
};
// Reduce x to [0, RAD_360)
x -= static_cast<long long>(x / RAD_360) * RAD_360;
// Map x to [0, RAD_180]
if (x > RAD_180)
x = RAD_360 - x;
// Map x to [0, RAD_90] and evaluate the polynomial;
// flip the sign for angles in the second quadrant.
return x > RAD_90 ? -poly(RAD_180 - x) : poly(x);
};
} // end anonymous namespace
/******************************************************************************/
// Constants
/******************************************************************************/
namespace {
/* COMMON PARAMETERS */
// !Common
//
// parameter (KK=87) !Information bits (75 + CRC12)
// parameter (ND=58) !Data symbols
// parameter (NS=21) !Sync symbols (3 @ Costas 7x7)
// parameter (NN=NS+ND) !Total channel symbols (79)
// parameter (ASYNCMIN=1.5) !Minimum Sync
// parameter (NFSRCH=5) !Search frequency range in Hz (i.e.,
// +/- 2.5 Hz) parameter (NMAXCAND=300) !Maximum number of
// candidate signals
// Parameter Value Description
// KK 87 Number of information bits (75 message bits + 12 CRC bits).
// ND 58 Number of data symbols in the JS8 transmission.
// NS 21 Number of synchronization symbols (3 Costas arrays of size 7).
// NN 79 Total number of channel symbols (NN = NS + ND).
// ASYNCMIN 1.5 Minimum sync value for successful decoding.
// NFSRCH 5 Search frequency range in Hz (±2.5 Hz).
// NMAXCAND 300 Maximum number of candidate signals.
constexpr int N = 174; // Total bits
constexpr int K = 87; // Message bits
constexpr int M = N - K; // Check bits
constexpr int KK = 87; // Information bits (75 + CRC12)
constexpr int ND = 58; // Data symbols
constexpr int NS = 21; // Sync symbols (3 @ Costas 7x7)
constexpr int NN = NS + ND; // Total channel symbols (79)
constexpr float ASYNCMIN = 1.5f; // Minimum sync
constexpr int NFSRCH = 5; // Search frequency range in Hz (i.e., +/- 2.5 Hz)
constexpr std::size_t NMAXCAND = 300; // Maxiumum number of candidate signals
constexpr int NFILT = 1400; // Filter length
constexpr int NROWS = 8;
constexpr int NFOS = 2;
constexpr int NSSY = 4;
constexpr int NP = 3200;
constexpr int NP2 = 2812;
constexpr float TAU = 2.0f * std::numbers::pi_v<float>;
constexpr auto ZERO = std::complex<float>{0.0f, 0.0f};
// Key for the constants that follow:
// Key for the constants that follow:
//
// NSUBMODE - ID of the submode
// NCOSTAS - Which JS8 Costas Arrays to use
// NSPS - Number of samples per second
// NTXDUR - Duration of the transmission in seconds.
// NDOWNSPS - Number of samples per symbol after downsampling.
// NDD - Parameter used in waveform tapering and related calculations.
// XXX JZ - Range of symbol offsets considered during decoding. ASTART
// - Start delay in seconds for decoding. BASESUB - XXX NMAX - Samples in
// input wave NSTEP - Rough time-sync step size NHSYM - Number of symbol
// spectra (1/4-sym steps) NDOW - Downsample factor to 32 samples per
// symbol NQSYMBOL - Downsample factor of a quarter symbol
/* A MODE DECODER */
struct ModeA {
// Static constants
inline static constexpr int NSUBMODE = 0;
inline static constexpr auto NCOSTAS = JS8::Costas::Type::ORIGINAL;
inline static constexpr int NSPS = JS8A_SYMBOL_SAMPLES;
inline static constexpr int NTXDUR = JS8A_TX_SECONDS;
inline static constexpr int NDOWNSPS = 32;
inline static constexpr int NDD = 100;
inline static constexpr int JZ = 62;
inline static constexpr float ASTART = 0.5f;
inline static constexpr float BASESUB = 40.0f;
// Derived parameters
inline static constexpr float AZ = (12000.0f / NSPS) * 0.64f;
inline static constexpr int NMAX = NTXDUR * JS8_RX_SAMPLE_RATE;
inline static constexpr int NFFT1 = NSPS * NFOS;
inline static constexpr int NSTEP = NSPS / NSSY;
inline static constexpr int NHSYM = NMAX / NSTEP - 3;
inline static constexpr int NDOWN = NSPS / NDOWNSPS;
inline static constexpr int NQSYMBOL = NDOWNSPS / 4;
inline static constexpr int NDFFT1 = NSPS * NDD;
inline static constexpr int NDFFT2 = NDFFT1 / NDOWN;
inline static constexpr int NP2 = NN * NDOWNSPS;
inline static constexpr float TSTEP = NSTEP / 12000.0f;
inline static constexpr int JSTRT = ASTART / TSTEP;
inline static constexpr float DF = 12000.0f / NFFT1;
};
/* B MODE DECODER */
struct ModeB {
// Static constants
inline static constexpr int NSUBMODE = 1;
inline static constexpr auto NCOSTAS = JS8::Costas::Type::MODIFIED;
inline static constexpr int NSPS = JS8B_SYMBOL_SAMPLES;
inline static constexpr int NTXDUR = JS8B_TX_SECONDS;
inline static constexpr int NDOWNSPS = 20;
inline static constexpr int NDD = 100;
inline static constexpr int JZ = 144;
inline static constexpr float ASTART = 0.2f;
inline static constexpr float BASESUB = 39.0f;
// Derived parameters
inline static constexpr float AZ = (12000.0f / NSPS) * 0.8f;
inline static constexpr int NMAX = NTXDUR * JS8_RX_SAMPLE_RATE;
inline static constexpr int NFFT1 = NSPS * NFOS;
inline static constexpr int NSTEP = NSPS / NSSY;
inline static constexpr int NHSYM = NMAX / NSTEP - 3;
inline static constexpr int NDOWN = NSPS / NDOWNSPS;
inline static constexpr int NQSYMBOL = NDOWNSPS / 4;
inline static constexpr int NDFFT1 = NSPS * NDD;
inline static constexpr int NDFFT2 = NDFFT1 / NDOWN;
inline static constexpr int NP2 = NN * NDOWNSPS;
inline static constexpr float TSTEP = NSTEP / 12000.0f;
inline static constexpr int JSTRT = ASTART / TSTEP;
inline static constexpr float DF = 12000.0f / NFFT1;
};
/* C MODE DECODER */
struct ModeC {
// Static constants
inline static constexpr int NSUBMODE = 2;
inline static constexpr auto NCOSTAS = JS8::Costas::Type::MODIFIED;
inline static constexpr int NSPS = JS8C_SYMBOL_SAMPLES;
inline static constexpr int NTXDUR = JS8C_TX_SECONDS;
inline static constexpr int NDOWNSPS = 12;
inline static constexpr int NDD = 120;
inline static constexpr int JZ = 172;
inline static constexpr float ASTART = 0.1f;
inline static constexpr float BASESUB = 38.0f;
// Derived parameters
inline static constexpr float AZ = (12000.0f / NSPS) * 0.6f;
inline static constexpr int NMAX = NTXDUR * JS8_RX_SAMPLE_RATE;
inline static constexpr int NFFT1 = NSPS * NFOS;
inline static constexpr int NSTEP = NSPS / NSSY;
inline static constexpr int NHSYM = NMAX / NSTEP - 3;
inline static constexpr int NDOWN = NSPS / NDOWNSPS;
inline static constexpr int NQSYMBOL = NDOWNSPS / 4;
inline static constexpr int NDFFT1 = NSPS * NDD;
inline static constexpr int NDFFT2 = NDFFT1 / NDOWN;
inline static constexpr int NP2 = NN * NDOWNSPS;
inline static constexpr float TSTEP = NSTEP / 12000.0f;
inline static constexpr int JSTRT = ASTART / TSTEP;
inline static constexpr float DF = 12000.0f / NFFT1;
};
/* E MODE DECODER */
// Note that the original used 28 for NTXDUR and 90 for NDD, but the
// corresponding C++ mainline side used 30 for NTXDUR, so for the
// moment, we're matching that here, which seems logical at present.
struct ModeE {
// Static constants
inline static constexpr int NSUBMODE = 4;
inline static constexpr auto NCOSTAS = JS8::Costas::Type::MODIFIED;
inline static constexpr int NSPS = JS8E_SYMBOL_SAMPLES;
inline static constexpr int NTXDUR =
JS8E_TX_SECONDS; // XXX was 28 in Fortran
inline static constexpr int NDOWNSPS = 32;
inline static constexpr int NDD = 94; // XXX was 90 in Fortran
inline static constexpr int JZ = 32;
inline static constexpr float ASTART = 0.5f;
inline static constexpr float BASESUB = 42.0f;
// Derived parameters
inline static constexpr float AZ = (12000.0f / NSPS) * 0.64f;
inline static constexpr int NMAX = NTXDUR * JS8_RX_SAMPLE_RATE;
inline static constexpr int NFFT1 = NSPS * NFOS;
inline static constexpr int NSTEP = NSPS / NSSY;
inline static constexpr int NHSYM = NMAX / NSTEP - 3;
inline static constexpr int NDOWN = NSPS / NDOWNSPS;
inline static constexpr int NQSYMBOL = NDOWNSPS / 4;
inline static constexpr int NDFFT1 = NSPS * NDD;
inline static constexpr int NDFFT2 = NDFFT1 / NDOWN;
inline static constexpr int NP2 = NN * NDOWNSPS;
inline static constexpr float TSTEP = NSTEP / 12000.0f;
inline static constexpr int JSTRT = ASTART / TSTEP;
inline static constexpr float DF = 12000.0f / NFFT1;
};
/* I MODE DECODER */
struct ModeI {
// Static constants
inline static constexpr int NSUBMODE = 8;
inline static constexpr auto NCOSTAS = JS8::Costas::Type::MODIFIED;
inline static constexpr int NSPS = JS8I_SYMBOL_SAMPLES;
inline static constexpr int NTXDUR = JS8I_TX_SECONDS;
inline static constexpr int NDOWNSPS = 12;
inline static constexpr int NDD = 125;
inline static constexpr int JZ = 250;
inline static constexpr float ASTART = 0.1f;
inline static constexpr float BASESUB = 36.0f;
// Derived parameters
inline static constexpr float AZ = (12000.0f / NSPS) * 0.64f;
inline static constexpr int NMAX = NTXDUR * JS8_RX_SAMPLE_RATE;
inline static constexpr int NFFT1 = NSPS * NFOS;
inline static constexpr int NSTEP = NSPS / NSSY;
inline static constexpr int NHSYM = NMAX / NSTEP - 3;
inline static constexpr int NDOWN = NSPS / NDOWNSPS;
inline static constexpr int NQSYMBOL = NDOWNSPS / 4;
inline static constexpr int NDFFT1 = NSPS * NDD;
inline static constexpr int NDFFT2 = NDFFT1 / NDOWN;
inline static constexpr int NP2 = NN * NDOWNSPS;
inline static constexpr float TSTEP = NSTEP / 12000.0f;
inline static constexpr int JSTRT = ASTART / TSTEP;
inline static constexpr float DF = 12000.0f / NFFT1;
};
// Tunable settings; degree of the polynomial used for the baseline
// curve fit, and the percentile of the span at which to sample. In
// general, a 5th degree polynomial and the 10th percentile should
// be optimal.
constexpr auto BASELINE_DEGREE = 5;
constexpr auto BASELINE_SAMPLE = 10;
// Define the closed range in Hz that we'll consider to be the window
// for baseline determination.
constexpr auto BASELINE_MIN = 500;
constexpr auto BASELINE_MAX = 2500;
// We're going to do a pairwise Estrin's evaluation of the polynomial
// coefficients, so it's critical that the degree of the polynomial is
// odd, resulting in an even number of coefficients.
static_assert(BASELINE_DEGREE & 1, "Degree must be odd");
static_assert(BASELINE_SAMPLE >= 0 && BASELINE_SAMPLE <= 100,
"Sample must be a percentage");
// Since we know the degree of the polynomial, and thus the number of
// nodes that we're going to use, we can do all the trigonometry work
// required to calculate the Chebyshev nodes in advance, by computing
// them over the range [0, 1]; we can then scale these at runtime to
// a span of any size by simple multiplication.
//
// Downside to this with C++17 is that std::cos() is not yet constexpr,
// as it is in C++20, so we must provide our own implementation until
// then.
constexpr auto BASELINE_NODES = []() {
// Down to the actual business of generating Chebyshev nodes
// suitable for scaling; once we move to C++20 as the minimum
// compiler, we can remove the cos() function above and instead
// call std::cos() here, as it's required to be constexpr in
// C++20 and above, and presumably it'll be of high quality.
auto nodes = std::array<double, BASELINE_DEGREE + 1>{};
constexpr auto slice = std::numbers::pi / (2.0 * nodes.size());
for (std::size_t i = 0; i < nodes.size(); ++i) {
nodes[i] = 0.5 * (1.0 - cos_approx(slice * (2.0 * i + 1)));
}
return nodes;
}();
} // end anonymous namespace
/******************************************************************************/
// Local Types
/******************************************************************************/
namespace {
// Accumulation of rounding errors in IEEE 754 values can be a problem
// when summing large numbers of small values; a Kahan summation class
// by which to compensate for them.
//
// Fortran, or at least, gfortran, will use this technique under the
// covers in various scenarios. While it'd be reasonable to expect it
// to be used in sum(), that's typically not the case.
//
// However, for example, it'll use it here for the value that goes into
// win(i), and naive summation in C++ will as a result not produce the
// same values without using compensation.
//
// subroutine nuttal_window(win,n)
// real win(n)
// pi=4.0*atan(1.0)
// a0=0.3635819
// a1=-0.4891775;
// a2=0.1365995;
// a3=-0.0106411;
// do i=1,n
// win(i)=a0+a1*cos(2*pi*(i-1)/(n))+ &
// a2*cos(4*pi*(i-1)/(n))+ &
// a3*cos(6*pi*(i-1)/(n))
// enddo
// return
// end subroutine nuttal_window
template <std::floating_point T> class KahanSum {
T m_sum; // Accumulated sum
T m_compensation; // Compensation for lost low-order bits
public:
KahanSum(T sum = T(0)) : m_sum(sum), m_compensation(T(0)) {}
KahanSum &operator=(T const sum) {
m_sum = sum;
m_compensation = T(0);
return *this;
}
KahanSum &operator+=(T const value) {
T const y = value - m_compensation; // Correct the value
T const t = m_sum + y; // Perform the sum
m_compensation = (t - m_sum) - y; // Update compensation
m_sum = t; // Update the sum
return *this;
}
operator T() const { return m_sum; }
};
// Management of dynamic FFTW plan storage.
class FFTWPlanManager {
public:
enum class Type { DS, BB, CF, CB, SD, CS, count };
// Disallow copying and moving
FFTWPlanManager(FFTWPlanManager const &) = delete;
FFTWPlanManager &operator=(FFTWPlanManager const &) = delete;
FFTWPlanManager(FFTWPlanManager &&) = delete;
FFTWPlanManager &operator=(FFTWPlanManager &&) = delete;
// Constructor
FFTWPlanManager() { m_plans.fill(nullptr); }
// Destructor
~FFTWPlanManager() {
std::lock_guard<std::mutex> lock(fftw_mutex);
for (auto &plan : m_plans) {
if (plan)
fftwf_destroy_plan(plan);
}
}
// Accessor
fftwf_plan const &operator[](Type const type) const noexcept {
return m_plans[static_cast<std::size_t>(type)];
}
// Manipulator
fftwf_plan &operator[](Type const type) noexcept {
return m_plans[static_cast<std::size_t>(type)];
}
// Iteration support
auto begin() noexcept { return m_plans.begin(); }
auto end() noexcept { return m_plans.end(); }
auto begin() const noexcept { return m_plans.begin(); }
auto end() const noexcept { return m_plans.end(); }
private:
// Data members
std::array<fftwf_plan, static_cast<std::size_t>(Type::count)> m_plans;
};
// Encapsulates the first-order search results provided by syncjs8().
struct Sync {
float freq;
float step;
float sync;
// Constructor for convenience.
Sync(float const freq, float const step, float const sync)
: freq(freq), step(step), sync(sync) {}
};
// Tag structs so that we can refer to multi index container indices
// by a descriptive tag instead of by the index of the index. These
// don't need to be anything but a name.
namespace Tag {
struct Freq {};
struct Rank {};
struct Sync {};
} // namespace Tag
// Container indexing Sync objects in useful ways, used by syncjs8().
namespace MI = boost::multi_index;
using SyncIndex = MI::multi_index_container<
Sync, MI::indexed_by<
MI::ordered_non_unique<MI::tag<Tag::Freq>, MI::key<&Sync::freq>>,
MI::ranked_non_unique<MI::tag<Tag::Rank>, MI::key<&Sync::sync>>,
MI::ordered_non_unique<MI::tag<Tag::Sync>, MI::key<&Sync::sync>,
std::greater<>>>>;
// Represents a decoded message, i.e., the 3-bit message type
// and the 12 bytes that result from decoding a message.
class Decode {
public:
int type;
std::string data;
Decode(int type, std::string data) : type(type), data(std::move(data)) {}
bool operator==(Decode const &) const noexcept = default;
struct Hash {
std::size_t operator()(Decode const &decode) const noexcept {
std::size_t const h1 = std::hash<int>{}(decode.type);
std::size_t const h2 = std::hash<std::string>{}(decode.data);
return h1 ^ (h2 + 0x9e3779b9 + (h1 << 6) + (h1 >> 2));
}
};
using Map = std::unordered_map<Decode, int, Hash>;
};
/******************************************************************************/
// Belief Propagation Decoder
/******************************************************************************/
namespace {
constexpr int BP_MAX_ROWS = 7; // Max rows per column in Nm
constexpr int BP_MAX_CHECKS = 3; // Max checks per bit in Mn
constexpr int BP_MAX_ITERATIONS = 30; // Max iterations in BP decoder
constexpr std::array<std::array<int, BP_MAX_CHECKS>, N> Mn = {
{{0, 24, 68}, {1, 4, 72}, {2, 31, 67}, {3, 50, 60}, {5, 62, 69},
{6, 32, 78}, {7, 49, 85}, {8, 36, 42}, {9, 40, 64}, {10, 13, 63},
{11, 74, 76}, {12, 22, 80}, {14, 15, 81}, {16, 55, 65}, {17, 52, 59},
{18, 30, 51}, {19, 66, 83}, {20, 28, 71}, {21, 23, 43}, {25, 34, 75},
{26, 35, 37}, {27, 39, 41}, {29, 53, 54}, {33, 48, 86}, {38, 56, 57},
{44, 73, 82}, {45, 61, 79}, {46, 47, 84}, {58, 70, 77}, {0, 49, 52},
{1, 46, 83}, {2, 24, 78}, {3, 5, 13}, {4, 6, 79}, {7, 33, 54},
{8, 35, 68}, {9, 42, 82}, {10, 22, 73}, {11, 16, 43}, {12, 56, 75},
{14, 26, 55}, {15, 27, 28}, {17, 18, 58}, {19, 39, 62}, {20, 34, 51},
{21, 53, 63}, {23, 61, 77}, {25, 31, 76}, {29, 71, 84}, {30, 64, 86},
{32, 38, 50}, {36, 47, 74}, {37, 69, 70}, {40, 41, 67}, {44, 66, 85},
{45, 80, 81}, {48, 65, 72}, {57, 59, 65}, {60, 64, 84}, {0, 13, 20},
{1, 12, 58}, {2, 66, 81}, {3, 31, 72}, {4, 35, 53}, {5, 42, 45},
{6, 27, 74}, {7, 32, 70}, {8, 48, 75}, {9, 57, 63}, {10, 47, 67},
{11, 18, 44}, {14, 49, 60}, {15, 21, 25}, {16, 71, 79}, {17, 39, 54},
{19, 34, 50}, {22, 24, 33}, {23, 62, 86}, {26, 38, 73}, {28, 77, 82},
{29, 69, 76}, {30, 68, 83}, {21, 36, 85}, {37, 40, 80}, {41, 43, 56},
{46, 52, 61}, {51, 55, 78}, {59, 74, 80}, {0, 38, 76}, {1, 15, 40},
{2, 30, 53}, {3, 35, 77}, {4, 44, 64}, {5, 56, 84}, {6, 13, 48},
{7, 20, 45}, {8, 14, 71}, {9, 19, 61}, {10, 16, 70}, {11, 33, 46},
{12, 67, 85}, {17, 22, 42}, {18, 63, 72}, {23, 47, 78}, {24, 69, 82},
{25, 79, 86}, {26, 31, 39}, {27, 55, 68}, {28, 62, 65}, {29, 41, 49},
{32, 36, 81}, {34, 59, 73}, {37, 54, 83}, {43, 51, 60}, {50, 52, 71},
{57, 58, 66}, {46, 55, 75}, {0, 18, 36}, {1, 60, 74}, {2, 7, 65},
{3, 59, 83}, {4, 33, 38}, {5, 25, 52}, {6, 31, 56}, {8, 51, 66},
{9, 11, 14}, {10, 50, 68}, {12, 13, 64}, {15, 30, 42}, {16, 19, 35},
{17, 79, 85}, {20, 47, 58}, {21, 39, 45}, {22, 32, 61}, {23, 29, 73},
{24, 41, 63}, {26, 48, 84}, {27, 37, 72}, {28, 43, 80}, {34, 67, 69},
{40, 62, 75}, {44, 48, 70}, {49, 57, 86}, {47, 53, 82}, {12, 54, 78},
{76, 77, 81}, {0, 1, 23}, {2, 5, 74}, {3, 55, 86}, {4, 43, 52},
{6, 49, 82}, {7, 9, 27}, {8, 54, 61}, {10, 28, 66}, {11, 32, 39},
{13, 15, 19}, {14, 34, 72}, {16, 30, 38}, {17, 35, 56}, {18, 45, 75},
{20, 41, 83}, {21, 33, 58}, {22, 25, 60}, {24, 59, 64}, {26, 63, 79},
{29, 36, 65}, {31, 44, 71}, {37, 50, 85}, {40, 76, 78}, {42, 55, 67},
{46, 73, 81}, {39, 51, 77}, {53, 60, 70}, {45, 57, 68}}};
struct CheckNode {
int valid_neighbors;
std::array<int, BP_MAX_ROWS> neighbors;
};
constexpr std::array<CheckNode, M> Nm = {{{6, {0, 29, 59, 88, 117, 146, 0}},
{6, {1, 30, 60, 89, 118, 146, 0}},
{6, {2, 31, 61, 90, 119, 147, 0}},
{6, {3, 32, 62, 91, 120, 148, 0}},
{6, {1, 33, 63, 92, 121, 149, 0}},
{6, {4, 32, 64, 93, 122, 147, 0}},
{6, {5, 33, 65, 94, 123, 150, 0}},
{6, {6, 34, 66, 95, 119, 151, 0}},
{6, {7, 35, 67, 96, 124, 152, 0}},
{6, {8, 36, 68, 97, 125, 151, 0}},
{6, {9, 37, 69, 98, 126, 153, 0}},
{6, {10, 38, 70, 99, 125, 154, 0}},
{6, {11, 39, 60, 100, 127, 144, 0}},
{6, {9, 32, 59, 94, 127, 155, 0}},
{6, {12, 40, 71, 96, 125, 156, 0}},
{6, {12, 41, 72, 89, 128, 155, 0}},
{6, {13, 38, 73, 98, 129, 157, 0}},
{6, {14, 42, 74, 101, 130, 158, 0}},
{6, {15, 42, 70, 102, 117, 159, 0}},
{6, {16, 43, 75, 97, 129, 155, 0}},
{6, {17, 44, 59, 95, 131, 160, 0}},
{6, {18, 45, 72, 82, 132, 161, 0}},
{6, {11, 37, 76, 101, 133, 162, 0}},
{6, {18, 46, 77, 103, 134, 146, 0}},
{6, {0, 31, 76, 104, 135, 163, 0}},
{6, {19, 47, 72, 105, 122, 162, 0}},
{6, {20, 40, 78, 106, 136, 164, 0}},
{6, {21, 41, 65, 107, 137, 151, 0}},
{6, {17, 41, 79, 108, 138, 153, 0}},
{6, {22, 48, 80, 109, 134, 165, 0}},
{6, {15, 49, 81, 90, 128, 157, 0}},
{6, {2, 47, 62, 106, 123, 166, 0}},
{6, {5, 50, 66, 110, 133, 154, 0}},
{6, {23, 34, 76, 99, 121, 161, 0}},
{6, {19, 44, 75, 111, 139, 156, 0}},
{6, {20, 35, 63, 91, 129, 158, 0}},
{6, {7, 51, 82, 110, 117, 165, 0}},
{6, {20, 52, 83, 112, 137, 167, 0}},
{6, {24, 50, 78, 88, 121, 157, 0}},
{7, {21, 43, 74, 106, 132, 154, 171}},
{6, {8, 53, 83, 89, 140, 168, 0}},
{6, {21, 53, 84, 109, 135, 160, 0}},
{6, {7, 36, 64, 101, 128, 169, 0}},
{6, {18, 38, 84, 113, 138, 149, 0}},
{6, {25, 54, 70, 92, 141, 166, 0}},
{7, {26, 55, 64, 95, 132, 159, 173}},
{6, {27, 30, 85, 99, 116, 170, 0}},
{6, {27, 51, 69, 103, 131, 143, 0}},
{6, {23, 56, 67, 94, 136, 141, 0}},
{6, {6, 29, 71, 109, 142, 150, 0}},
{6, {3, 50, 75, 114, 126, 167, 0}},
{6, {15, 44, 86, 113, 124, 171, 0}},
{6, {14, 29, 85, 114, 122, 149, 0}},
{6, {22, 45, 63, 90, 143, 172, 0}},
{6, {22, 34, 74, 112, 144, 152, 0}},
{7, {13, 40, 86, 107, 116, 148, 169}},
{6, {24, 39, 84, 93, 123, 158, 0}},
{6, {24, 57, 68, 115, 142, 173, 0}},
{6, {28, 42, 60, 115, 131, 161, 0}},
{6, {14, 57, 87, 111, 120, 163, 0}},
{7, {3, 58, 71, 113, 118, 162, 172}},
{6, {26, 46, 85, 97, 133, 152, 0}},
{5, {4, 43, 77, 108, 140, 0, 0}},
{6, {9, 45, 68, 102, 135, 164, 0}},
{6, {8, 49, 58, 92, 127, 163, 0}},
{6, {13, 56, 57, 108, 119, 165, 0}},
{6, {16, 54, 61, 115, 124, 153, 0}},
{6, {2, 53, 69, 100, 139, 169, 0}},
{6, {0, 35, 81, 107, 126, 173, 0}},
{5, {4, 52, 80, 104, 139, 0, 0}},
{6, {28, 52, 66, 98, 141, 172, 0}},
{6, {17, 48, 73, 96, 114, 166, 0}},
{6, {1, 56, 62, 102, 137, 156, 0}},
{6, {25, 37, 78, 111, 134, 170, 0}},
{6, {10, 51, 65, 87, 118, 147, 0}},
{6, {19, 39, 67, 116, 140, 159, 0}},
{6, {10, 47, 80, 88, 145, 168, 0}},
{6, {28, 46, 79, 91, 145, 171, 0}},
{6, {5, 31, 86, 103, 144, 168, 0}},
{6, {26, 33, 73, 105, 130, 164, 0}},
{5, {11, 55, 83, 87, 138, 0, 0}},
{6, {12, 55, 61, 110, 145, 170, 0}},
{6, {25, 36, 79, 104, 143, 150, 0}},
{6, {16, 30, 81, 112, 120, 160, 0}},
{5, {27, 48, 58, 93, 136, 0, 0}},
{6, {6, 54, 82, 100, 130, 167, 0}},
{6, {23, 49, 77, 105, 142, 148, 0}}}};
// Belief Propagation Decoder
int bpdecode174(std::array<float, N> const &llr, std::array<int8_t, K> &decoded,
std::array<int8_t, N> &cw) {
// Initialize messages and variables
std::array<std::array<float, BP_MAX_CHECKS>, N> tov =
{}; // Messages to variable nodes
std::array<std::array<float, BP_MAX_ROWS>, M> toc =
{}; // Messages to check nodes
std::array<std::array<float, BP_MAX_ROWS>, M> tanhtoc =
{}; // Tanh of messages
std::array<float, N> zn = {}; // Bit log likelihood ratios
std::array<int, M> synd = {}; // Syndrome for checks
int ncnt = 0;
int nclast = 0;
// Initialize toc (messages from bits to checks)
for (int i = 0; i < M; ++i) {
for (int j = 0; j < Nm[i].valid_neighbors; ++j) {
toc[i][j] = llr[Nm[i].neighbors[j]];
}
}
// Iterative decoding
for (int iter = 0; iter <= BP_MAX_ITERATIONS; ++iter) {
// Update bit log likelihood ratios
for (int i = 0; i < N; ++i) {
zn[i] =
llr[i] + std::accumulate(tov[i].begin(),
tov[i].begin() + BP_MAX_CHECKS, 0.0f);
}
// Check if we have a valid codeword
for (int i = 0; i < N; ++i)
cw[i] = zn[i] > 0 ? 1 : 0;
int ncheck = 0;
for (int i = 0; i < M; ++i) {
synd[i] = 0;
for (int j = 0; j < Nm[i].valid_neighbors; ++j) {
synd[i] += cw[Nm[i].neighbors[j]];
}
if (synd[i] % 2 != 0)
++ncheck;
}
if (ncheck == 0) {
// Extract decoded bits (last N-M bits of codeword)
std::copy(cw.begin() + M, cw.end(), decoded.begin());
// Count errors
int nerr = 0;
for (int i = 0; i < N; ++i) {
if ((2 * cw[i] - 1) * llr[i] < 0.0f) {
++nerr;
}
}
return nerr;
}
// Early stopping criterion
if (iter > 0) {
int nd = ncheck - nclast;
ncnt = (nd < 0) ? 0 : ncnt + 1;
if (ncnt >= 5 && iter >= 10 && ncheck > 15) {
return -1;
}
}
nclast = ncheck;
// Send messages from bits to check nodes
for (int i = 0; i < M; ++i) {
for (int j = 0; j < Nm[i].valid_neighbors; ++j) {
int ibj = Nm[i].neighbors[j];
toc[i][j] = zn[ibj];
for (int k = 0; k < BP_MAX_CHECKS; ++k) {
if (Mn[ibj][k] == i) {
toc[i][j] -= tov[ibj][k];
}
}
}
}
// Send messages from check nodes to variable nodes
for (int i = 0; i < M; ++i) {
for (int j = 0; j < 7;
++j) { // Fixed range [0, 7) to match Fortran's 1:7, could be
// nrw[j], or 7 logically
tanhtoc[i][j] = std::tanh(-toc[i][j] / 2.0f);
}
}
for (int i = 0; i < N; ++i) {
for (int j = 0; j < BP_MAX_CHECKS; ++j) {
int ichk = Mn[i][j];
if (ichk >= 0) {
float Tmn = 1.0f;
for (int k = 0; k < Nm[ichk].valid_neighbors; ++k) {
if (Nm[ichk].neighbors[k] != i) {
Tmn *= tanhtoc[ichk][k];
}
}
tov[i][j] = 2.0f * std::atanh(-Tmn);
}
}
}
}
return -1; // Decoding failed
}
} // namespace
/******************************************************************************/
// Local Routines
/******************************************************************************/
namespace {
constexpr std::string_view alphabet =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz-+";
static_assert(alphabet.size() == 64);
// Function that either translates valid JS8 message characters to their
// corresponding 6-bit word value, or throws. This will end up doing a
// direct index operation into a 256-byte table, the creation of which
// must be constexpr under C++17.
constexpr auto alphabetWord = []() {
constexpr std::uint8_t invalid = 0xff;
constexpr auto words = []() {
std::array<std::uint8_t, 256> words{};
for (auto &word : words)
word = invalid;
for (std::size_t i = 0; i < alphabet.size(); ++i) {
words[static_cast<std::uint8_t>(alphabet[i])] =
static_cast<std::uint8_t>(i);
}
return words;
}();
return [words](char const value) {
if (auto const word = words[value]; word != invalid) {
return word;
}
throw std::runtime_error("Invalid character in message");
};
}();
// Sanity check key bounds of the 6-bit encoding table.
static_assert(alphabetWord('0') == 0);
static_assert(alphabetWord('A') == 10);
static_assert(alphabetWord('a') == 36);
static_assert(alphabetWord('-') == 62);
static_assert(alphabetWord('+') == 63);
template <typename T> std::uint16_t CRC12(T const &range) {
return boost::augmented_crc<12, 0xc06>(range.data(), range.size()) ^ 42;
}
bool checkCRC12(std::array<std::int8_t, KK> const &decoded) {
std::array<uint8_t, 11> bits = {};
for (std::size_t i = 0; i < decoded.size(); ++i) {
if (decoded[i])
bits[i / 8] |= (1 << (7 - (i % 8)));
}
// Extract the received CRC-12.
uint16_t crc = (static_cast<uint16_t>(bits[9] & 0x1F) << 7) |
(static_cast<uint16_t>(bits[10]) >> 1);
// Clear bits that correspond to the CRC in the last bytes.
bits[9] &= 0xE0;
bits[10] = 0x00;
// Compute CRC and indicate if we have a match.
return crc == CRC12(bits);
}
std::string extractmessage174(std::array<int8_t, KK> const &decoded) {
std::string message;
// Ensure received CRC matches computed CRC.
if (checkCRC12(decoded)) {
message.reserve(12);
// Decode the message from the 72 data bits
std::array<uint8_t, 12> words;
for (std::size_t i = 0; i < 12; ++i) {
words[i] = (decoded[i * 6 + 0] << 5) | (decoded[i * 6 + 1] << 4) |
(decoded[i * 6 + 2] << 3) | (decoded[i * 6 + 3] << 2) |
(decoded[i * 6 + 4] << 1) | (decoded[i * 6 + 5] << 0);
}
// Map 6-bit words to the alphabet
for (auto const word : words)
message += alphabet[word];
}
return message;
}
// Parity matrix for JS8 message generation.
//
// This should be 952 bytes in size; to store an 87x87 matrix of bits,
// you need 7569 bits, which requires 119 64-bit values, or 952 bytes.
//
// Background here is that this is a low-density parity check code (LDPC),
// generated using the PEG algorithm. In short, true values in a row i of
// the matrix define which of the 87 message bits must be summed, modulo
// 2, to produce the ith parity check bit. Decent references on this are:
//
// 1. https://wsjt.sourceforge.io/FT4_FT8_QEX.pdf
// 2. https://inference.org.uk/mackay/PEG_ECC.html
// 3. https://github.com/Lcrypto/classic-PEG-
//
// The data used was harvested from the original 'ldpc_174_87_params.f90',
// but you'll note that the rows have been reordered here, because this
// isn't Fortran; C++ is row-major, not column-major.
constexpr auto parity = []() {
constexpr std::size_t Rows = 87;
constexpr std::size_t Cols = 87;
using ElementType = std::uint64_t;
constexpr std::size_t ElementSize =
std::numeric_limits<ElementType>::digits;
constexpr auto matrix = []() {
constexpr std::array<std::string_view, Rows> Data = {
"23bba830e23b6b6f50982e", "1f8e55da218c5df3309052",
"ca7b3217cd92bd59a5ae20", "56f78313537d0f4382964e",
"6be396b5e2e819e373340c", "293548a138858328af4210",
"cb6c6afcdc28bb3f7c6e86", "3f2a86f5c5bd225c961150",
"849dd2d63673481860f62c", "56cdaec6e7ae14b43feeee",
"04ef5cfa3766ba778f45a4", "c525ae4bd4f627320a3974",
"41fd9520b2e4abeb2f989c", "7fb36c24085a34d8c1dbc4",
"40fc3e44bb7d2bb2756e44", "d38ab0a1d2e52a8ec3bc76",
"3d0f929ef3949bd84d4734", "45d3814f504064f80549ae",
"f14dbf263825d0bd04b05e", "db714f8f64e8ac7af1a76e",
"8d0274de71e7c1a8055eb0", "51f81573dd4049b082de14",
"d8f937f31822e57c562370", "b6537f417e61d1a7085336",
"ecbd7c73b9cd34c3720c8a", "3d188ea477f6fa41317a4e",
"1ac4672b549cd6dba79bcc", "a377253773ea678367c3f6",
"0dbd816fba1543f721dc72", "ca4186dd44c3121565cf5c",
"29c29dba9c545e267762fe", "1616d78018d0b4745ca0f2",
"fe37802941d66dde02b99c", "a9fa8e50bcb032c85e3304",
"83f640f1a48a8ebc0443ea", "3776af54ccfbae916afde6",
"a8fc906976c35669e79ce0", "f08a91fb2e1f78290619a8",
"cc9da55fe046d0cb3a770c", "d36d662a69ae24b74dcbd8",
"40907b01280f03c0323946", "d037db825175d851f3af00",
"1bf1490607c54032660ede", "0af7723161ec223080be86",
"eca9afa0f6b01d92305edc", "7a8dec79a51e8ac5388022",
"9059dfa2bb20ef7ef73ad4", "6abb212d9739dfc02580f2",
"f6ad4824b87c80ebfce466", "d747bfc5fd65ef70fbd9bc",
"612f63acc025b6ab476f7c", "05209a0abb530b9e7e34b0",
"45b7ab6242b77474d9f11a", "6c280d2a0523d9c4bc5946",
"f1627701a2d692fd9449e6", "8d9071b7e7a6a2eed6965e",
"bf4f56e073271f6ab4bf80", "c0fc3ec4fb7d2bb2756644",
"57da6d13cb96a7689b2790", "a9fa2eefa6f8796a355772",
"164cc861bdd803c547f2ac", "cc6de59755420925f90ed2",
"a0c0033a52ab6299802fd2", "b274db8abd3c6f396ea356",
"97d4169cb33e7435718d90", "81cfc6f18c35b1e1f17114",
"481a2a0df8a23583f82d6c", "081c29a10d468ccdbcecb6",
"2c4142bf42b01e71076acc", "a6573f3dc8b16c9d19f746",
"c87af9a5d5206abca532a8", "012dee2198eba82b19a1da",
"b1ca4ea2e3d173bad4379c", "b33ec97be83ce413f9acc8",
"5b0f7742bca86b8012609a", "37d8e0af9258b9e8c5f9b2",
"35ad3fb0faeb5f1b0c30dc", "6114e08483043fd3f38a8a",
"cd921fdf59e882683763f6", "95e45ecd0135aca9d6e6ae",
"2e547dd7a05f6597aac516", "14cd0f642fc0c5fe3a65ca",
"3a0a1dfd7eee29c2e827e0", "c8b5dffc335095dcdcaf2a",
"3dd01a59d86310743ec752", "8abdb889efbe39a510a118",
"3f231f212055371cf3e2a2"};
constexpr std::size_t Total = (Rows * Cols + ElementSize - 1);
constexpr std::size_t Count = Total / ElementSize;
constexpr std::array<std::uint8_t, 4> Masks = {0x8, 0x4, 0x2, 0x1};
std::array<ElementType, Count> data{};
for (std::size_t row = 0; row < Rows; ++row) {
std::size_t col = 0;
for (auto const c : Data[row]) {
std::uint8_t const value =
(c >= '0' && c <= '9') ? c - '0'
: (c >= 'a' && c <= 'f') ? c - 'a' + 10
: (c >= 'A' && c <= 'F') ? c - 'A' + 10
: throw "Invalid hex";
for (auto const mask : Masks) {
if (col >= Cols)
break;
if (value & mask) {
auto const index = row * Cols + col;
data[index / ElementSize] |=
(ElementType(1) << (index % ElementSize));
}
++col;
}
}
}
return data;
}();
return [matrix](std::size_t const row, std::size_t const col) {
auto const index = row * Cols + col;
return (matrix[index / ElementSize] >> (index % ElementSize)) & 1;
};
}();
} // namespace
/******************************************************************************/
// DecodeMode Template Class
/******************************************************************************/
// Mode-parameterized decode class.
namespace {
template <typename Mode> class DecodeMode {
// Data members
std::array<float, Mode::NFFT1> nuttal;
std::array<std::array<std::array<std::complex<float>, Mode::NDOWNSPS>, 7>,
3>
csyncs;
alignas(64) std::array<std::complex<float>, Mode::NDOWNSPS> csymb;
alignas(64) std::array<std::complex<float>, Mode::NMAX> filter;
alignas(64) std::array<std::complex<float>, Mode::NMAX> cfilt;
alignas(64) std::array<std::complex<float>, Mode::NDFFT1 / 2 + 1> ds_cx;
alignas(64) std::array<std::complex<float>, Mode::NFFT1 / 2 + 1> sd;
alignas(64) std::array<std::complex<float>, NP> cd0;
std::array<float, Mode::NMAX> dd;
std::array<std::array<float, Mode::NHSYM>, Mode::NSPS> s;
std::array<float, Mode::NSPS> savg;
FFTWPlanManager plans;
SyncIndex sync;
js8::SoftCombiner<N> m_softCombiner;
bool m_enableFreqTracking = true;
bool m_enableTimingTracking = true;
float m_llrErasureThreshold = js8::llrErasureThreshold();
bool m_enableLdpcFeedback = js8::ldpcFeedbackEnabled();
int m_maxLdpcPasses = js8::ldpcFeedbackMaxPasses();
using Plan = FFTWPlanManager::Type;
static constexpr auto Costas = JS8::Costas::array(Mode::NCOSTAS);
// Fore and aft tapers to reduce spectral leakage during the
// downsampling process. We can compute these at compile time.
static constexpr auto Taper = [] {
std::array<std::array<float, Mode::NDD + 1>, 2> taper{};
for (size_t i = 0; i <= Mode::NDD; ++i) {
float const value =
0.5f *
(1.0f + cos_approx(i * std::numbers::pi_v<float> / Mode::NDD));
taper[1][i] = value; // TailTaper (original taper)
taper[0][Mode::NDD - i] = value; // HeadTaper (reversed taper)
}
return taper;
}();
// Baseline computation support.
using Points = Eigen::Matrix<double, BASELINE_NODES.size(), 2>;
using Vandermonde =
Eigen::Matrix<double, BASELINE_NODES.size(), BASELINE_NODES.size()>;
using Coefficients = Eigen::Vector<double, BASELINE_NODES.size()>;
Points p;
Vandermonde V;
Coefficients c;
// Polynomial evaluation using Estrin's method, loop is unrolled at
// compile time. A compiler should emit SIMD instructions from what
// it sees here when the optimizer is involved, but even without it,
// we'll likely see fused multiply-add instructions.
inline auto evaluate(float const x) const {
return [this]<Eigen::Index... I>(
float const x, std::integer_sequence<Eigen::Index, I...>) {
auto baseline = 0.0;
auto exponent = 1.0;
((baseline += (c[I * 2] + c[I * 2 + 1] * x) * exponent,
exponent *= x * x),
...);
return static_cast<float>(baseline);
}(x, std::make_integer_sequence<Eigen::Index,
Coefficients::SizeAtCompileTime / 2>{});
}
std::optional<Decode> js8dec(bool const syncStats, bool const lsubtract,
float &f1, float &xdt, int &nharderrors,
float &xsnr, JS8::Event::Emitter emitEvent) {
constexpr float FR = 12000.0f / Mode::NFFT1; // Frequency resolution
constexpr float FS2 = 12000.0f / Mode::NDOWN;
constexpr float DT2 = 1.0f / FS2;
float const coarseStartHz = f1;
float const coarseStartDt = xdt;
auto const index =
static_cast<int>(std::round(f1 / FR)); // Closest index
float const scaled_value =
0.1f * (savg[index] - Mode::BASESUB); // Adjust and scale
float const xbase =
std::pow(10.0f, scaled_value); // Convert to linear scale
float delfbest = 0.0f;
int ibest = 0;
// Downsample the signal and prepare for processing.
js8_downsample(f1);
// Initial guess for the start of the signal.
int i0 = static_cast<int>(std::round((xdt + Mode::ASTART) * FS2));
float smax = 0.0f;
// Search for the best synchronization offset.
for (int idt = i0 - Mode::NQSYMBOL; idt <= i0 + Mode::NQSYMBOL; ++idt) {
float const sync = syncjs8d(idt, 0.0f);
if (sync > smax) {
smax = sync;
ibest = idt;
}
}
// Improved estimate for DT.
float const xdt2 = ibest * DT2;
// Fine frequency synchronization
i0 = static_cast<int>(std::round(xdt2 * FS2));
smax = 0.0f;
for (int ifr = -NFSRCH; ifr <= NFSRCH; ++ifr) {
float const delf = ifr * 0.5f;
float const sync = syncjs8d(i0, delf);
if (sync > smax) {
smax = sync;
delfbest = delf;
}
}
// Frequency tweaking.
float const dphi = -delfbest * ((2.0f * std::numbers::pi_v<float>) /
FS2); // Phase increment
std::complex<float> const wstep =
std::polar(1.0f, dphi); // Step for phase rotation
std::complex<float> w = {1.0f, 0.0f}; // Cumlative phase
for (int i = 0; i < NP2; ++i) {
w *= wstep; // Update cumulative phase
cd0[i] *= w; // Apply phase shift
}
// Adjust the frequency and time offset.
xdt = xdt2;
f1 += delfbest;
float const sync = syncjs8d(i0, 0.0f);
std::array<std::array<float, NN>, NROWS> s2;
js8::FrequencyTracker freqTracker;
if (m_enableFreqTracking) {
freqTracker.reset(0.0, FS2);
} else {
freqTracker.disable();
}
// Scale timing clamp relative to samples per symbol so short-symbol
// modes aren't allowed outsized shifts (e.g., 12-sample turbo).
double const timingMaxShift =
std::clamp(0.08 * static_cast<double>(Mode::NDOWNSPS), 0.5, 2.0);
js8::TimingTracker timingTracker;
if (m_enableTimingTracking) {
timingTracker.reset(0.0, 0.15, 0.35, timingMaxShift);
} else {
timingTracker.disable();
}
auto const estimateResidualHz =
[&](int expectedTone) -> std::optional<float> {
if (!freqTracker.enabled())
return std::nullopt;
if (expectedTone < 0 || expectedTone + 1 >= Mode::NDOWNSPS)
return std::nullopt;
float const m0 = std::norm(csymb[expectedTone]);
float const mplus = std::norm(csymb[expectedTone + 1]);
float const mminus =
expectedTone > 0 ? std::norm(csymb[expectedTone - 1]) : 0.0f;
if (m0 <= 0.0f)
return std::nullopt;
float const ratio = m0 / (mplus + mminus + 1e-12f);
if (ratio < 1.5f)
return std::nullopt;
float const denom = mminus - 2.0f * m0 + mplus;
if (std::abs(denom) < 1e-9f)
return std::nullopt;
float delta = 0.5f * (mminus - mplus) / denom;
delta = std::clamp(delta, -0.5f, 0.5f);
return delta * (FS2 / Mode::NDOWNSPS);
};
auto const logTracker = [&](char const *tag) {
if (decoder_js8().isDebugEnabled()) {
if (freqTracker.enabled()) {
qCDebug(decoder_js8)
<< "freqTracker" << tag << "coarseHz" << coarseStartHz
<< "fineHz" << f1 << "refinedHz"
<< f1 + static_cast<float>(freqTracker.currentHz())
<< "avgStepHz"
<< static_cast<float>(freqTracker.averageStepHz());
}
if (timingTracker.enabled()) {
qCDebug(decoder_js8)
<< "timingTracker" << tag << "coarseDt" << coarseStartDt
<< "fineDt" << xdt << "refinedDt"
<< xdt + static_cast<float>(
timingTracker.currentSamples() * DT2)
<< "avgStepSmpl"
<< static_cast<float>(
timingTracker.averageStepSamples());
}
}
};
auto const goertzelEnergy =
[&](int start, int expectedTone) -> std::optional<float> {
if (start < 0 || start + Mode::NDOWNSPS > NP2)
return std::nullopt;
std::array<std::complex<float>, Mode::NDOWNSPS> tmp;
std::copy(cd0.begin() + start, cd0.begin() + start + Mode::NDOWNSPS,
tmp.begin());
if (freqTracker.enabled()) {
freqTracker.apply(tmp.data(), Mode::NDOWNSPS);
}
auto const wstep = std::polar(
1.0f, static_cast<float>(-TAU * expectedTone / Mode::NDOWNSPS));
auto phase = std::complex<float>{1.0f, 0.0f};
std::complex<float> acc{0.0f, 0.0f};
for (auto const &sample : tmp) {
acc += sample * std::conj(phase);
phase *= wstep;
}
return std::norm(acc);
};
for (int k = 0; k < NN; ++k) {
// Calculate the starting index for the current symbol.
int const i1Base = ibest + k * Mode::NDOWNSPS;
int const timingShift = timingTracker.enabled()
? static_cast<int>(std::round(
timingTracker.currentSamples()))
: 0;
int i1 = i1Base + timingShift;
if (i1 < 0) {
i1 = 0;
} else if (i1 + Mode::NDOWNSPS > NP2) {
i1 = NP2 - Mode::NDOWNSPS;
}
csymb.fill(ZERO);
if (i1 >= 0 && i1 + Mode::NDOWNSPS <= NP2) {
std::copy(cd0.begin() + i1, cd0.begin() + i1 + Mode::NDOWNSPS,
csymb.begin());
if (freqTracker.enabled()) {
freqTracker.apply(csymb.data(), Mode::NDOWNSPS);
}
}
fftwf_execute(plans[Plan::CS]);
// Normalize and take the magnitude of the first 8 points.
for (int i = 0; i < NROWS; ++i) {
s2[i][k] = std::abs(csymb[i]) / 1000.0f;
}
if (freqTracker.enabled() || timingTracker.enabled()) {
bool const isPilot =
(k < 7) || (k >= 36 && k < 43) || (k >= 72 && k < 79);
if (isPilot) {
int costasBlock = 0;
int costasColumn = k;
if (k >= 36 && k < 43) {
costasBlock = 1;
costasColumn = k - 36;
} else if (k >= 72 && k < 79) {
costasBlock = 2;
costasColumn = k - 72;
}
int const expectedTone = Costas[costasBlock][costasColumn];
if (auto const residual =
estimateResidualHz(expectedTone)) {
freqTracker.update(*residual);
}
if (timingTracker.enabled()) {
auto const e0 = goertzelEnergy(i1, expectedTone);
auto const eEarly =
goertzelEnergy(i1 - 1, expectedTone);
auto const eLate = goertzelEnergy(i1 + 1, expectedTone);
float const toneMag = s2[expectedTone][k];
if (e0 && eEarly && eLate && toneMag > 1e-6f) {
float const denom = *e0 + 1e-6f;
float const grad = (*eLate - *eEarly) / denom;
// Smaller steps; favor stability.
double const weight = std::clamp(
static_cast<double>(toneMag / 5.0f), 0.0, 1.0);
double const errorSamples = std::clamp(
0.25 * static_cast<double>(grad), -1.0, 1.0);
timingTracker.update(errorSamples, weight);
}
}
}
}
}
// Sync quality check using Costas tone patterns.
int nsync = 0;
for (std::size_t costas = 0; costas < Costas.size(); ++costas) {
auto const offset = costas * 36;
for (std::size_t column = 0; column < 7; ++column) {
// Find the row containing the maximum value in the
// current column.
auto const max_row = std::distance(
s2.begin(),
std::max_element(s2.begin(), s2.end(),
[index = offset + column](
auto const &rowA, auto const &rowB) {
return rowA[index] < rowB[index];
}));
// Check if the max row matches the Costas pattern.
if (Costas[costas][column] == max_row)
++nsync;
}
}
// If the sync quality isn't at least 7, this one's a loser.
if (nsync <= 6) {
logTracker("sync_fail");
return std::nullopt;
}
if (syncStats)
emitEvent(
JS8::Event::SyncState{JS8::Event::SyncState::Type::CANDIDATE,
Mode::NSUBMODE,
f1,
xdt,
{.candidate = nsync}});
std::array<std::array<float, ND>, NROWS> s1;
// Fill s1 from s2, excluding the Costas arrays.
for (int row = 0; row < NROWS; ++row) {
std::copy(s2[row].begin() + 7, s2[row].begin() + 36,
s1[row].begin());
std::copy(s2[row].begin() + 43, s2[row].begin() + 72,
s1[row].begin() + 29);
}
// Identify winning tones (max magnitude) for each data symbol.
std::array<int, ND> symbolWinners = {};
for (int j = 0; j < ND; ++j) {
int winner = 0;
float best = s1[0][j];
for (int i = 1; i < NROWS; ++i) {
if (s1[i][j] > best) {
best = s1[i][j];
winner = i;
}
}
symbolWinners[j] = winner;
}
auto const whitening = js8::WhiteningProcessor<NROWS, ND, N>::process(
s1, symbolWinners, m_llrErasureThreshold,
decoder_js8().isDebugEnabled());
auto llr0 = whitening.llr0;
auto llr1 = whitening.llr1;
// Only apply a second erasure threshold pass if whitening didn't
// already zero low-magnitude LLRs using the configured threshold.
if (!whitening.erasureApplied) {
std::size_t erasuresAfterThreshold = 0;
double sumAbsPreErasure = 0.0;
double sumAbsPostErasure = 0.0;
auto const applyErasureThreshold = [&](auto &llr) {
for (auto const value : llr)
sumAbsPreErasure += std::abs(value);
if (m_llrErasureThreshold > 0.0f) {
for (auto &value : llr) {
if (std::abs(value) < m_llrErasureThreshold) {
value = 0.0f;
++erasuresAfterThreshold;
}
sumAbsPostErasure += std::abs(value);
}
} else {
for (auto const value : llr)
sumAbsPostErasure += std::abs(value);
}
};
applyErasureThreshold(llr0);
applyErasureThreshold(llr1);
if (decoder_js8().isDebugEnabled()) {
auto const total =
static_cast<double>(llr0.size() + llr1.size());
double const avgPre =
total > 0.0 ? sumAbsPreErasure / total : 0.0;
double const avgPost =
total > 0.0 ? sumAbsPostErasure / total : 0.0;
qCDebug(decoder_js8)
<< "LLR erasure threshold" << m_llrErasureThreshold
<< "erasures:" << erasuresAfterThreshold
<< "avg|LLR| pre/post:" << avgPre << avgPost;
}
}
auto const ttl = std::chrono::seconds{Mode::NTXDUR * 2};
m_softCombiner.flush(ttl);
auto const key =
m_softCombiner.makeKey(Mode::NSUBMODE, f1, xdt, llr0, llr1);
auto combined = m_softCombiner.combine(key, llr0, llr1, ttl);
auto llr0Combined = combined.llr0;
auto llr1Combined = combined.llr1;
std::array<int8_t, K> decoded;
std::array<int8_t, N> cw;
int totalLdpcPasses = 0;
bool usedFeedbackPass = false;
bool feedbackTurnedSuccess = false;
int feedbackConfident = 0;
int feedbackUncertain = 0;
auto const tryDecode = [&](std::array<float, N> const &llrInput,
int ipass) -> std::optional<Decode> {
nharderrors = bpdecode174(llrInput, decoded, cw);
xsnr = -99.0f;
if (std::all_of(cw.begin(), cw.end(),
[](int x) { return x == 0; })) {
return std::nullopt;
}
if (nharderrors >= 0 && nharderrors < 60 &&
!(sync < 2.0f && nharderrors > 35) &&
!(ipass > 2 && nharderrors > 39) &&
!(ipass == 4 && nharderrors > 30)) {
if (checkCRC12(decoded)) {
if (syncStats)
emitEvent(JS8::Event::SyncState{
JS8::Event::SyncState::Type::DECODED,
Mode::NSUBMODE,
f1,
xdt2,
{.decoded = sync}});
auto message = extractmessage174(decoded);
int const i3bit =
(decoded[72] << 2) | (decoded[73] << 1) | decoded[74];
std::array<int, NN> itone;
JS8::encode(i3bit, Costas, message.data(), itone.data());
if (lsubtract)
subtractjs8(genjs8refsig(itone, f1), xdt2);
float xsig = 0.0f;
for (std::size_t i = 0; i < itone.size(); ++i) {
xsig += std::pow(s2[itone[i]][i], 2);
}
xsnr =
std::max(10.0f * std::log10(std::max(
xsig / xbase - 1.0f, 1.259e-10f)) -
32.0f,
-60.0f); // XXX was -28.0f in Fortran
m_softCombiner.markDecoded(combined.key);
logTracker("decoded");
return std::make_optional<Decode>(i3bit, message);
}
} else {
nharderrors = -1;
}
return std::nullopt;
};
// Loop over decoding passes
for (int ipass = 1; ipass <= 4 && totalLdpcPasses < m_maxLdpcPasses;
++ipass) {
auto &llr = ipass == 2 ? llr1Combined : llr0Combined;
// Zero ranges for certain passes to mirror legacy behavior.
if (ipass == 3)
std::fill(llr0Combined.begin(), llr0Combined.begin() + 24,
0.0f);
else if (ipass == 4)
std::fill(llr0Combined.begin() + 24, llr0Combined.begin() + 48,
0.0f);
std::array<float, N> llrPrimary = llr;
if (auto result = tryDecode(llrPrimary, ipass)) {
++totalLdpcPasses;
return result;
}
++totalLdpcPasses;
// Feedback refinement and second attempt, if enabled and budget
// allows.
if (m_enableLdpcFeedback && totalLdpcPasses < m_maxLdpcPasses) {
std::array<float, N> llrRefined;
int confident = 0;
int uncertain = 0;
js8::refineLlrsWithLdpcFeedback(
llrPrimary, cw, m_llrErasureThreshold, llrRefined,
confident, uncertain);
if (decoder_js8().isDebugEnabled()) {
qCDebug(decoder_js8)
<< "LDPC feedback pass"
<< "ipass" << ipass << "confident" << confident
<< "uncertain" << uncertain;
}
usedFeedbackPass = true;
feedbackConfident += confident;
feedbackUncertain += uncertain;
if (auto result = tryDecode(llrRefined, ipass)) {
++totalLdpcPasses;
feedbackTurnedSuccess = true;
if (decoder_js8().isDebugEnabled()) {
qCDebug(decoder_js8)
<< "LDPC feedback succeeded on second pass"
<< "ipass" << ipass << "confident"
<< feedbackConfident << "uncertain"
<< feedbackUncertain << "passes" << totalLdpcPasses;
}
return result;
}
++totalLdpcPasses;
}
}
if (decoder_js8().isDebugEnabled()) {
qCDebug(decoder_js8)
<< "LDPC feedback summary"
<< "used" << usedFeedbackPass << "success"
<< feedbackTurnedSuccess << "confident" << feedbackConfident
<< "uncertain" << feedbackUncertain << "passes"
<< totalLdpcPasses;
}
logTracker("fail");
return std::nullopt;
}
// Compute noise baseline. We differ quite a bit from the Fortran
// implementation here.
//
// The Fortran version took `savg` as input; power scaled data from
// `syncjs8`, and produced `sbase`, the noise baseline. To accomplish
// that, it used up to 1000 lower envelope points for the polynomial
// determination, which caused some oddities when the matrix was
// ill-conditioned; we're just looking for a low-order polynomial
// here, and a massively tall matrix isn't in general going to be
// helpful there. Additionally, the methodology seemed to be very
// susceptible to Runge's phenomenon.
//
// This approach instead uses a number of Chebyshev nodes proportional
// to the polynomial degree, and we evaluate 2 kHz of `savg`, centered
// around 1.5 kHz, to determine the polynomial, figuring that that's
// going to be an optimal place to measure the 10% noise floor. We then
// map the [ia, ib] range to the domain of the polynomial to compute
// the baseline. Since `savg` would otherwise no longer be referenced
// beyond this function, we dispense with `sbase` and instead overwrite
// `savg` with the baseline.
void baselinejs8(int const ia, int const ib) {
// Data referenced in savg is defined by the closed range [bmin, bmax].
// From this we can derive the size of the closed range and the number
// of points in each of the arms on either side of a node. All of these
// values can be computed at compile time.
using boost::math::ccmath::round;
constexpr auto bmin =
static_cast<std::size_t>(round(BASELINE_MIN / Mode::DF));
constexpr auto bmax =
static_cast<std::size_t>(round(BASELINE_MAX / Mode::DF));
constexpr auto size = bmax - bmin + 1;
constexpr auto arm = size / (2 * BASELINE_NODES.size());
// Loop invariants; beginning of the data range, sentinel one past the
// end of the range.
auto const data = savg.begin() + bmin;
auto const end = data + size;
// Convert savg range of interest from power scale to dB scale.
std::transform(data, end, data, [](float const value) {
return 10.0f * std::log10(value);
});
// Collect lower envelope points; use Chebyshev node interpolants
// to reduce Runge's phenomenon oscillations.
for (std::size_t i = 0; i < BASELINE_NODES.size(); ++i) {
auto const node = size * BASELINE_NODES[i];
auto const base = data + static_cast<int>(std::round(node));
auto span = std::vector<float>(std::clamp(base - arm, data, end),
std::clamp(base + arm, data, end));
auto const n = span.size() * BASELINE_SAMPLE / 100;
std::nth_element(span.begin(), span.begin() + n, span.end());
p.row(i) << node, span[n];
}
// Extract x and y values from points and prepare the Vandermonde
// matrix, initializing the first column with 1 (x^0); remaining
// columns are filled with the Schur product.
Eigen::VectorXd x = p.col(0);
Eigen::VectorXd y = p.col(1);
V.col(0).setOnes();
for (Eigen::Index i = 1; i < V.cols(); ++i) {
V.col(i) = V.col(i - 1).cwiseProduct(x);
}
// Solve the least squares problem for polynomial coefficients.
c = V.colPivHouseholderQr().solve(y);
// To map an index i in the range [ia, ib] to the polynomial's
// input domain [0, size - 1]:
//
// i - ia
// x = ------- * (size - 1)
// ib - ia
auto const mapIndex = [ia, ib, last = size - 1](int const i) {
return (i - ia) * last / float(ib - ia);
};
// Replace savg with a computed baseline in the range [ia, ib].
// This might be interpolation, which should be quite accurate,
// or extrapolation, likely somewhat less so the further we get
// from the polynomial fitting domain, but hopefully still good
// enough for our purposes here.
savg.fill(0.0f);
for (int i = ia; i <= ib; ++i) {
savg[i] = evaluate(mapIndex(i)) + 0.65f;
}
}
// Extracted from the downsampling process; this step is part of the
// frequency-domain filtering process for downsampling the JS8 signal.
// After the FFT, the resulting frequency-domain data (ds_cx) can be
// manipulated (e.g., band-pass filtered or shifted). Subsequent inverse
// FFT operations convert the filtered data back to the time domain at
// a lower sample rate, achieving the desired downsampling.
void computeBasebandFFT() {
// ds_dx is an array of complex<float>; we're going to do an in-place
// FFT, so we'll interpret the first half of the array as if they were
// floats, which they are.
float *fftw_real = reinterpret_cast<float *>(ds_cx.data());
// Copy in data and zero-pad any remainder; not all modes will have
// a remainder.
std::copy(dd.begin(), dd.end(), fftw_real);
std::fill(fftw_real + dd.size(), fftw_real + Mode::NDFFT1, 0.0f);
fftwf_execute(plans[Plan::BB]);
}
// This function extracts a narrow frequency band around the target
// frequency f0, applies tapering to reduce spectral artifacts, aligns the
// signal to the center frequency, performs an inverse FFT to convert the
// data back into the time domain, and normalizes the result for further
// processing in the JS8 decoding pipeline.
void js8_downsample(float const f0) {
// Frequency band extraction; identifies a narrow frequency band around
// the target frequency (f0) based on a predefined range (8.5 baud above
// and 1.5 baud below). The indices of this range in the
// frequency-domain representation (ds_cx) are calculated (ib and it),
// and the relevant frequency-domain samples are extracted into cd0.
constexpr float DF = 12000.0f / Mode::NDFFT1;
constexpr float BAUD = 12000.0f / Mode::NSPS;
float const ft = f0 + 8.5f * BAUD;
float const fb = f0 - 1.5f * BAUD;
int const i0 = static_cast<int>(std::round(f0 / DF));
int const it =
std::min(static_cast<int>(std::round(ft / DF)), Mode::NDFFT1 / 2);
int const ib = std::max(0, static_cast<int>(std::round(fb / DF)));
std::size_t const NDD_SIZE = Mode::NDD + 1;
std::size_t const RANGE_SIZE = it - ib + 1;
std::fill_n(cd0.begin(), Mode::NDFFT2, ZERO);
std::copy(ds_cx.begin() + ib, ds_cx.begin() + ib + RANGE_SIZE,
cd0.begin());
// Tapering is applied to smooth the edges of the frequency band,
// reducing spectral leakage during the inverse FFT. Reversed taper at
// the beginning, normal taper at the end.
auto const head = cd0.begin();
auto const tail = cd0.begin() + RANGE_SIZE;
std::transform(head, head + NDD_SIZE, Taper[0].begin(), head,
std::multiplies<>());
std::transform(tail - NDD_SIZE, tail, Taper[1].begin(), tail - NDD_SIZE,
std::multiplies<>());
// The extracted frequency band is aligned to the center of the
// frequency domain representation (i0 - ib) via a cyclic shift using
// std::rotate. This centers the desired signal.
std::rotate(cd0.begin(), cd0.begin() + (i0 - ib),
cd0.begin() + Mode::NDFFT2);
// An inverse FFT is performed on the frequency-domain data (cd0) to
// transform it back into the time domain, effectively yielding a
// downsampled, time-domain signal focused on the extracted narrow
// frequency band.
fftwf_execute(plans[Plan::DS]);
// The resulting time-domain samples are normalized by a factor derived
// from the input and output FFT sizes (Mode::NDFFT1 and Mode::NDFFT2),
// ensuring consistency in the signal’s amplitude.
float const factor =
1.0f / std::sqrt(static_cast<float>(Mode::NDFFT1) * Mode::NDFFT2);
std::transform(cd0.begin(), cd0.end(), cd0.begin(),
[factor](auto &value) { return value * factor; });
}
// Evaluate the synchronization power of signal segments, ranks potential
// candidates, and extracts the most promising ones for further decoding.
//
// Detailed Steps:
//
// 1. Compute Symbol Spectra:
//
// - The signal is processed in overlapping segments, with each segment
// multiplied by
// a Nuttall window to reduce spectral leakage.
// - An FFT is performed on each windowed segment to obtain the
// frequency-domain
// representation.
// - The power spectrum of each segment is computed, and the average
// spectrum is
// accumulated across segments.
//
// 2. Filter Edge Adjustments:
//
// - Adjusts the frequency bounds (nfa and nfb) to ensure the analysis
// remains
// within valid and meaningful regions of the signal.
//
// 3. Baseline Computation:
//
// - The average spectrum is converted to a dB scale.
// - Baseline is computed to distinguish significant signal components
// from
// background noise.
//
// 4. Synchronization Metric Calculation:
//
// - For each frequency bin in the specified range, evaluates
// synchronization
// power using a Costas waveform.
// - Sync metric is computed over the index range, considering all
// combinations
// of Costas patterns.
// - The maximum sync value and its corresponding offset are recorded
// for each
// frequency bin.
//
// 5. Normalization:
//
// - The sync values are normalized to the 40th percentile value using a
// ranked
// index. This ensures a consistent scaling across different signals
// and noise levels.
//
// 6. Candidate Extraction:
//
// - Candidates with a strong sync metric (above a defined threshold)
// are extracted.
// - Near-duplicate candidates of lesser synchronization power, based on
// frequency
// proximity, are eliminated.
//
// 7. Output:
//
// - Returns a vector of the most promising signal candidates, sorted by
// their
// synchronization power. It's expected that these will be re-sorted
// by the caller into a desirable order, but synchronization power
// order facilitates debugging this function.
//
// Note: The Fortran version of this routine would normalize `s` at the end
// of this
// function, but I'm unsure why; nothing beyond this function
// references `s`, so it was effectively a somewhat expensive dead
// store. It's been eliminated in this version.
std::vector<Sync> syncjs8(int nfa, int nfb) {
// Compute symbol spectra
savg.fill(0.0f);
for (int j = 0; j < Mode::NHSYM; ++j) {
int const ia = j * Mode::NSTEP;
int const ib = ia + Mode::NFFT1;
if (ib > Mode::NMAX)
break;
std::transform(dd.begin() + ia, dd.begin() + ib, nuttal.begin(),
reinterpret_cast<float *>(sd.data()),
std::multiplies<float>{});
fftwf_execute(plans[Plan::SD]);
// Compute power spectrum
for (int i = 0; i < Mode::NSPS; ++i) {
auto const power = std::norm(sd[i]);
s[i][j] = power;
savg[i] += power;
}
}
// Filter edge sanity measures
int const nwin = nfb - nfa;
if (nfa < 100) {
nfa = 100;
if (nwin < 100)
nfb = nfa + nwin;
}
if (nfb > 4910) {
nfb = 4910;
if (nwin < 100)
nfa = nfb - nwin;
}
auto const ia =
std::max(0, static_cast<int>(std::round(nfa / Mode::DF)));
auto const ib = static_cast<int>(std::round(nfb / Mode::DF));
// Convert average spectrum from power to db scale and compute
// baseline from it; baseline replaces average spectrum.
baselinejs8(ia, ib);
// Compute and populate the sync index.
sync.clear();
for (int i = ia; i <= ib; ++i) {
float max_value = -std::numeric_limits<float>::infinity();
int max_index = -Mode::JZ;
for (int j = -Mode::JZ; j <= Mode::JZ; ++j) {
std::array<std::array<float, 3>, 2> t{};
for (int p = 0; p < 3; ++p) {
for (int n = 0; n < 7; ++n) {
int const offset =
j + Mode::JSTRT + NSSY * n + p * 36 * NSSY;
if (offset >= 0 && offset < Mode::NHSYM) {
// Accumulate Costas pattern contributions.
t[0][p] += s[i + NFOS * Costas[p][n]][offset];
// Accumulate sum over all frequencies for this
// block.
for (int freq = 0; freq < 7; ++freq) {
t[1][p] += s[i + NFOS * freq][offset];
}
}
}
}
// Compute sync metric over the index range. We are at the
// moment maintaining the Fortran summation methodology for
// compatibility testing; there are more efficient ways to do
// this, but IEEE 754 addition is a touchy thing, so we'll need
// to ensure that any changes don't negatively affect result
// precision.
auto const compute_sync = [&t](int start, int end) {
float tx = 0.0f;
float t0 = 0.0f;
for (int i = start; i <= end; ++i) {
tx += t[0][i];
t0 += t[1][i];
}
return tx / ((t0 - tx) / 6.0f);
};
if (auto const sync_value =
std::max({compute_sync(0, 2), compute_sync(0, 1),
compute_sync(1, 2)});
sync_value > max_value) {
max_value = sync_value;
max_index = j;
}
}
sync.emplace(Mode::DF * i, Mode::TSTEP * (max_index + 0.5f),
max_value);
}
// If we found nothing, we're done here.
if (sync.empty())
return {};
// Access the sync indices.
auto &freqIndex = sync.get<Tag::Freq>();
auto &rankIndex = sync.get<Tag::Rank>();
auto &syncIndex = sync.get<Tag::Sync>();
// Normalize to the 40th percentile using the frequency index,
// which is stable under sync value mutation. One thing to note
// here is that the Fortran version didn't seem to reliably
// calculate the 40th percentile rank; sometimes high, other
// times low, infrequently actually the 40th percentile value.
// This method should be perfectly accurate in all cases.
auto const normalize =
[sync = rankIndex.nth(rankIndex.size() * 4 / 10)->sync](
Sync &entry) { entry.sync /= sync; };
for (auto it = freqIndex.begin(); it != freqIndex.end(); ++it) {
freqIndex.modify(it, normalize);
}
// Extract candidates.
std::vector<Sync> candidates;
for (auto it = syncIndex.begin();
it != syncIndex.end() && candidates.size() < NMAXCAND;
it = syncIndex.begin()) {
// Stop iteration if below threshold or invalid; as the
// index is sorted by sync, any subsequent entries will
// also be below the threshold or invalid.
if (it->sync < ASYNCMIN || std::isnan(it->sync))
break;
// Good value, relatively strong; save the candidate.
candidates.push_back(*it);
// Remove the candidate and any near-duplicates based
// on frequency. This invalidates `it`, so we reset it
// to the index begin in the loop increment condition.
freqIndex.erase(freqIndex.lower_bound(it->freq - Mode::AZ),
freqIndex.upper_bound(it->freq + Mode::AZ));
}
return candidates;
}
// Returns the total synchronization power, which is a measure of how well
// the signal aligns with the Costas sequence after accounting for the
// frequency adjustment. Used to identify the best alignment for further
// decoding.
float syncjs8d(int const i0, float const delf) {
constexpr float BASE_DPHI = TAU * (1.0f / (12000.0f / Mode::NDOWN));
// If delta frequency is non-zero, compute the frequency
// adjustment array, otherwise, use what'll be an identity
// transfrom when multiplied.
std::array<std::complex<float>, Mode::NDOWNSPS> freqAdjust;
if (delf != 0.0f) {
float const dphi = BASE_DPHI * delf;
float phi = 0.0f;
// std::fmod() is almost like Fortran's mod(), but not quite;
// Since delf can be negative, we must ensure that phi stays
// within [0, TAU), which Fortran's mod() handles by itself.
for (int i = 0; i < Mode::NDOWNSPS; ++i) {
freqAdjust[i] = std::polar(1.0f, phi);
if (phi = std::fmod(phi + dphi, TAU); phi < 0.0f) {
phi += TAU;
}
}
} else {
freqAdjust.fill(std::complex<float>{1.0f, 0.0f});
}
// Compute sync power by looping over the Costas indices for
// each of the 3 Costas blocks, accumulating as we go.
float sync = 0.0f;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 7; ++j) {
if (auto const offset =
36 * i * Mode::NDOWNSPS + i0 + j * Mode::NDOWNSPS;
offset >= 0 && offset + Mode::NDOWNSPS <= Mode::NP2) {
sync += std::norm(std::transform_reduce(
freqAdjust.begin(), // Range start
freqAdjust.end(), // Range end
cd0.begin() + offset, // Data start
std::complex<float>{}, // Initial reduction value
std::plus<>{}, // Reduction by accumulation
[&](auto const &fa, // Conjugate and multiply
auto const &cd) {
return cd *
std::conj(
fa * csyncs[i][j][&fa - &freqAdjust[0]]);
}));
}
}
}
return sync;
}
// Generate a reference signal, based on the provided tone sequence and
// base frequency. The output is a vector of complex values representing
// the signal in the time domain.
std::vector<std::complex<float>>
genjs8refsig(std::array<int, NN> const &itone, float const f0) {
// Precompute the base frequency contribution; full circle in
// radians, multipled by the base frequency, multiplied by the
// sampling interval, i.e., the time step between samples, which
// results in the base frequency phase increment. Start the
// phase accumulator off at zero.
float const BFPI = TAU * f0 * (1.0f / 12000.0f);
auto phi = 0.0f;
std::vector<std::complex<float>> cref;
cref.reserve(NN * Mode::NSPS);
for (int i = 0; i < NN; ++i) {
// Compute phase increment for the tone; frequency offset is
// determined by the tone value.
float const dphi =
BFPI + TAU * static_cast<float>(itone[i]) / Mode::NSPS;
// Iterate over the samples per symbol to generate the time
// domain signal.
for (std::size_t is = 0; is < Mode::NSPS; ++is) {
cref.push_back(std::polar(1.0f, phi));
phi = std::fmod(phi + dphi, TAU);
}
}
return cref;
}
// Subtract a JS8 signal
//
// Measured signal : dd(t) = a(t)cos(2*pi*f0*t+theta(t))
// Reference signal : cref(t) = exp( j*(2*pi*f0*t+phi(t)) )
// Complex amp : cfilt(t) = LPF[ dd(t)*CONJG(cref(t)) ]
// Subtract : dd(t) = dd(t) - 2*REAL{cref*cfilt}
//
// Important to note that dt can be negative here.
void subtractjs8(std::vector<std::complex<float>> const &cref,
float const dt) {
auto const nstart = static_cast<int>(dt * 12000.0f);
std::size_t const cref_start =
(nstart < 0) ? static_cast<std::size_t>(-nstart) : 0;
std::size_t const dd_start =
(nstart > 0) ? static_cast<std::size_t>(nstart) : 0;
auto const size =
std::min(cref.size() - cref_start, dd.size() - dd_start);
// Populate complex filter with the conjugate of the reference signal.
for (std::size_t i = 0; i < size; ++i) {
cfilt[i] = dd[dd_start + i] * std::conj(cref[cref_start + i]);
}
// Zero-fill the remainder, if any.
std::fill(cfilt.begin() + size, cfilt.end(), ZERO);
// FFT to the frequency domain.
fftwf_execute(plans[Plan::CF]);
// Apply the filter in the frequency domain.
std::transform(cfilt.begin(), cfilt.end(), filter.begin(),
cfilt.begin(), std::multiplies<>());
// Inverse FFT to return to the time domain.
fftwf_execute(plans[Plan::CB]);
// Subtract the reconstructed signal.
for (std::size_t i = 0; i < size; ++i) {
dd[dd_start + i] -=
2.0f * std::real(cfilt[i] * cref[cref_start + i]);
}
}
public:
// Constructor
DecodeMode() {
m_enableFreqTracking =
std::getenv("JS8_DISABLE_FREQ_TRACKING") == nullptr;
m_enableTimingTracking =
std::getenv("JS8_DISABLE_TIMING_TRACKING") == nullptr;
// Intialize the Nuttal window. In theory, we can do this as a
// constexpr function at compile time, but doing so yield results
// slightly different than the Fortran version did, so for sanity
// while testing, we'll opt for consistency. IEEE 754 is always a
// bit brittle.
constexpr float a0 = 0.3635819f;
constexpr float a1 = -0.4891775f;
constexpr float a2 = 0.1365995f;
constexpr float a3 = -0.0106411f;
// Computed Pi constant to match the Fortran version; we could
// probably use std::numbers::pi_v<float> here, but for the
// moment, matching Fortran exactly.
float const pi = 4.0f * std::atan(1.0f);
float sum = 0.0f;
for (std::size_t i = 0; i < nuttal.size(); ++i) {
// Naive summation here will exhibit substantial precision loss
// relative to the Fortran version; we use Kahan summation to
// compensate, which should yield results identical to Fortran.
KahanSum value = a0;
value += a1 * std::cos(2 * pi * i / nuttal.size());
value += a2 * std::cos(4 * pi * i / nuttal.size());
value += a3 * std::cos(6 * pi * i / nuttal.size());
nuttal[i] = value;
sum += value;
}
// Normalize the Nuttal window.
for (auto &value : nuttal)
value = value / sum * nuttal.size() / 300.0f;
// Initialize Costas waveforms.
for (int i = 0; i < 7; ++i) {
float const dphia = TAU * Costas[0][i] / Mode::NDOWNSPS;
float const dphib = TAU * Costas[1][i] / Mode::NDOWNSPS;
float const dphic = TAU * Costas[2][i] / Mode::NDOWNSPS;
float phia = 0.0f;
float phib = 0.0f;
float phic = 0.0f;
for (int j = 0; j < Mode::NDOWNSPS; ++j) {
csyncs[0][i][j] = std::polar(1.0f, phia);
csyncs[1][i][j] = std::polar(1.0f, phib);
csyncs[2][i][j] = std::polar(1.0f, phic);
phia = std::fmod(phia + dphia, TAU);
phib = std::fmod(phib + dphib, TAU);
phic = std::fmod(phic + dphic, TAU);
}
}
// Compute a Hann-like window directly into the real part of the
// first NFILT + 1 elements in the filter, accumulating the sum
// as we go.
sum = 0.0f;
for (int j = -NFILT / 2; j <= NFILT / 2; ++j) {
int const index = j + NFILT / 2;
float const value = std::pow(std::cos(pi * j / NFILT), 2);
filter[index].real(value);
sum += value;
}
// Now that we've got the sum, create actual complex numbers using
// the normalized real values that we just populated and zero the
// rest of the filter.
std::fill(std::transform(filter.begin(), filter.begin() + NFILT + 1,
filter.begin(),
[sum](auto const value) {
return std::complex<float>(
value.real() / sum, 0.0f);
}),
filter.end(), ZERO);
// Shift to position the window.
std::rotate(filter.begin(), filter.begin() + NFILT / 2,
filter.begin() + NFILT + 1);
// Transform the filter into the frequency domain.
fftwf_plan fftw_plan;
{
std::lock_guard<std::mutex> lock(fftw_mutex);
fftw_plan = fftwf_plan_dft_1d(
Mode::NMAX, reinterpret_cast<fftwf_complex *>(filter.data()),
reinterpret_cast<fftwf_complex *>(filter.data()), FFTW_FORWARD,
FFTW_ESTIMATE_PATIENT);
if (!fftw_plan) {
throw std::runtime_error("Failed to create FFT plan");
}
}
fftwf_execute(fftw_plan);
{
std::lock_guard<std::mutex> lock(fftw_mutex);
fftwf_destroy_plan(fftw_plan);
}
// Normalize the frequency domain representation.
std::transform(filter.begin(), filter.end(), filter.begin(),
[factor = 1.0f / Mode::NMAX](auto value) {
return value * factor;
});
// The rest of our FFT plans are always the same size and operate on the
// same data, so we can reuse them as long as we're alive.
std::lock_guard<std::mutex> lock(fftw_mutex);
plans[Plan::DS] = fftwf_plan_dft_1d(
Mode::NDFFT2, reinterpret_cast<fftwf_complex *>(cd0.data()),
reinterpret_cast<fftwf_complex *>(cd0.data()), FFTW_BACKWARD,
FFTW_ESTIMATE_PATIENT);
plans[Plan::BB] = fftwf_plan_dft_r2c_1d(
Mode::NDFFT1, reinterpret_cast<float *>(ds_cx.data()),
reinterpret_cast<fftwf_complex *>(ds_cx.data()),
FFTW_ESTIMATE_PATIENT);
plans[Plan::CF] = fftwf_plan_dft_1d(
Mode::NMAX, reinterpret_cast<fftwf_complex *>(cfilt.data()),
reinterpret_cast<fftwf_complex *>(cfilt.data()), FFTW_FORWARD,
FFTW_ESTIMATE_PATIENT);
plans[Plan::CB] = fftwf_plan_dft_1d(
Mode::NMAX, reinterpret_cast<fftwf_complex *>(cfilt.data()),
reinterpret_cast<fftwf_complex *>(cfilt.data()), FFTW_BACKWARD,
FFTW_ESTIMATE_PATIENT);
plans[Plan::SD] = fftwf_plan_dft_r2c_1d(
Mode::NFFT1, reinterpret_cast<float *>(sd.data()),
reinterpret_cast<fftwf_complex *>(sd.data()),
FFTW_ESTIMATE_PATIENT);
plans[Plan::CS] = fftwf_plan_dft_1d(
Mode::NDOWNSPS, reinterpret_cast<fftwf_complex *>(csymb.data()),
reinterpret_cast<fftwf_complex *>(csymb.data()), FFTW_FORWARD,
FFTW_ESTIMATE_PATIENT);
for (auto plan : plans) {
if (!plan)
throw std::runtime_error("Failed to create FFT plan");
}
}
// Decode entry point.
std::size_t operator()(struct dec_data const &data, int const kpos,
int const ksz, JS8::Event::Emitter emitEvent) {
// Copy the relevant frames for decoding
auto const pos = std::max(0, kpos);
auto const sz = std::max(0, ksz);
assert(sz <= Mode::NMAX);
if (data.params.syncStats)
emitEvent(JS8::Event::SyncStart{pos, sz});
auto const ddCopy = [](auto const begin, auto const end,
auto const to) {
std::transform(begin, end, to, [](auto const value) {
return static_cast<float>(value);
});
};
dd.fill(0.0f);
if ((JS8_RX_SAMPLE_SIZE - pos) < sz) {
// Wrap case; split into two parts.
int const firstsize = JS8_RX_SAMPLE_SIZE - pos;
int const secondsize = sz - firstsize;
ddCopy(std::begin(data.d2) + pos,
std::begin(data.d2) + pos + firstsize, dd.begin());
ddCopy(std::begin(data.d2), std::begin(data.d2) + secondsize,
dd.begin() + firstsize);
} else {
// Non-wrapping case; copy directly.
ddCopy(std::begin(data.d2) + pos, std::begin(data.d2) + pos + sz,
dd.begin());
}
Decode::Map decodes;
auto const ttl = std::chrono::seconds{Mode::NTXDUR * 2};
m_softCombiner.flush(ttl);
for (int ipass = 1; ipass <= 3; ++ipass) {
// Determine if there's anything worth considering in the signal.
// If not, then we can just bail completely; more passes will not
// yield more results. If we do have some candidates, sort them
// by frequency, but put any that are close to nfqso up front.
auto candidates = syncjs8(data.params.nfa, data.params.nfb);
if (candidates.empty())
break;
std::sort(
candidates.begin(), candidates.end(),
[nfqso = data.params.nfqso](auto const &a, auto const &b) {
auto const a_dist = std::abs(a.freq - nfqso);
auto const b_dist = std::abs(b.freq - nfqso);
if (a_dist < 10.0f && b_dist >= 10.0f)
return true;
if (b_dist < 10.0f && a_dist >= 10.0f)
return false;
return std::tie(a_dist, a.freq) < std::tie(b_dist, b.freq);
});
// Recompute the baseband signal; subtraction during the last
// pass might have changed the landscape.
computeBasebandFFT();
bool const subtract = ipass < 3;
bool improved = false;
for (auto [f1, xdt, sync] : candidates) {
float xsnr = 0.0f;
int nharderrors = -1;
if (auto decode = js8dec(data.params.syncStats, subtract, f1,
xdt, nharderrors, xsnr, emitEvent)) {
// We don't need to be emitting duplicate events for
// something that's effectively the same SNR as a previous
// event.
auto const snr = static_cast<int>(std::round(xsnr));
// If this decode is new, or it's a duplicate with a better
// SNR than what we had before, then our situation has
// improved and we must announce that we've had some
// success.
if (auto [it, inserted] =
decodes.try_emplace(std::move(*decode), snr);
inserted || it->second < snr) {
improved = true;
// Update the SNR if this is an improved decode.
if (!inserted)
it->second = snr;
// Emit decoded events on new or improved decodes.
emitEvent(JS8::Event::Decoded{
data.params.nutc, snr, xdt - Mode::ASTART, f1,
it->first.data, it->first.type,
1.0f - nharderrors / 60.0f, Mode::NSUBMODE});
}
}
}
// If nothing from this pass improved our situation, there's no
// point in trying any remaining passes.
if (!improved)
break;
}
// Let the caller know how many unique decodes we discovered, if any.
return decodes.size();
}
};
// Explicit template class instantiations; avoids compiler complaints
// about unused variables.
template class DecodeMode<ModeA>;
template class DecodeMode<ModeB>;
template class DecodeMode<ModeC>;
template class DecodeMode<ModeE>;
template class DecodeMode<ModeI>;
} // namespace
} // namespace
/******************************************************************************/
// Worker
/******************************************************************************/
namespace JS8 {
class Worker : public QObject {
Q_OBJECT
// Initialization of the decoders, in that they're heavy with
// FFT plan creations, is non-trivial, so a handle-body class
// to avoid initializing them on the main thread.
class Impl {
// To avoid data races, decode data is referenced here but is
// actually located in the Worker that instantiates us, as it
// must be possible to copy data for us before we're ready to
// process it.
struct dec_data &m_data;
// Mode-specific decode strategy; we'll instantiate one of
// these for each of the 5 modes; this class is an aggregate
// of the 5 modes.
struct DecodeEntry {
std::variant<DecodeMode<ModeA>, DecodeMode<ModeB>,
DecodeMode<ModeC>, DecodeMode<ModeE>,
DecodeMode<ModeI>>
decode;
int mode;
int &kpos;
int &ksz;
template <typename DecodeModeType>
DecodeEntry(std::in_place_type_t<DecodeModeType>, int mode,
int &kpos, int &ksz)
: decode(std::in_place_type<DecodeModeType>), mode(mode),
kpos(kpos), ksz(ksz) {}
};
// Since a strategy can be neither moved nor copied, we must
// instantiate them in-place. Note that with the advent of the
// multi-decoder, mode identifiers became a bitset instead of
// integral values. The order defined here is the order that
// the decode loop will run in; we're matching the Fortran
// version here in terms of faster modes first.
template <typename ModeType>
DecodeEntry makeDecodeEntry(int shift, int &kpos, int &ksz) {
return DecodeEntry(std::in_place_type<DecodeMode<ModeType>>,
1 << shift, kpos, ksz);
}
std::array<DecodeEntry, 5> m_decodes = {
{makeDecodeEntry<ModeI>(4, m_data.params.kposI, m_data.params.kszI),
makeDecodeEntry<ModeE>(3, m_data.params.kposE, m_data.params.kszE),
makeDecodeEntry<ModeC>(2, m_data.params.kposC, m_data.params.kszC),
makeDecodeEntry<ModeB>(1, m_data.params.kposB, m_data.params.kszB),
makeDecodeEntry<ModeA>(0, m_data.params.kposA,
m_data.params.kszA)}};
public:
// Constructor
explicit Impl(struct dec_data &data) : m_data(data) {}
// Execute a decoding pass, using the supplied event emitter to
// emit events as they occur.
void operator()(::JS8::Event::Emitter emitEvent) {
// The multi-decoder can provide data for multiple modes at
// the same time; specific decodes to be performed for this
// pass are in the `nsubmodes` bitset.
auto const set = m_data.params.nsubmodes;
std::size_t sum = 0;
// Let any interested parties know that we've started a run
// for the set of modes requested.
emitEvent(::JS8::Event::DecodeStarted{set});
// Iterate through all the modes we're aware of, performing
// a mode-specific decode pass if the mode is scheduled for
// decoding during this pass.
for (auto &entry : m_decodes) {
if ((set & entry.mode) == entry.mode) {
std::visit(
[&](auto &&decode) {
sum += decode(m_data, entry.kpos, entry.ksz,
emitEvent);
},
entry.decode);
}
}
// Let any interested parties know the total number of decodes
// performed during this run.
emitEvent(::JS8::Event::DecodeFinished{sum});
}
};
// Data members
QSemaphore *m_semaphore;
std::atomic<bool> m_quit = false;
struct dec_data m_data;
public:
// Constructor
explicit Worker(QSemaphore *semaphore, QObject *parent = nullptr)
: QObject(parent), m_semaphore(semaphore) {}
// Used to inform the worker that it's time to go; the next
// time it wakes up due to the semaphore being released, it
// will exit the runloop.
void stop() { m_quit = true; }
// Called by the owning Decoder to refresh the copy of the
// decode data that the Worker implementation references.
void copy() { m_data = dec_data; };
signals:
// Signal used to indicate that something of interest has
// occurred during a decoding pass.
void decodeEvent(::JS8::Event::Variant const &);
public slots:
// Runloop for the thread that the worker is scheduled on; this
// is started by the Decoder when it's informed that the thread
// has started. Performs decoding runs each time the semaphore
// is released, until it's informed that it should quit.
void run() {
// Our thread has started, and we're now running on it, so
// we're good to now allocate our implementation; we didn't
// want that to happen on the main thread, as the FFT plans
// can take a while. We only need the implementation while
// we're running.
std::unique_ptr<Impl> impl = std::make_unique<Impl>(m_data);
// Wait until there's something that requires our attention,
// which is going to either be needing to quit or needing to
// perform a decoding pass.
while (true) {
m_semaphore->acquire();
if (m_quit)
break;
(*impl)([this](::JS8::Event::Variant const &event) {
emit decodeEvent(event);
});
}
}
};
} // namespace JS8
/******************************************************************************/
// Public Interface - Decoding
/******************************************************************************/
#include "JS8.moc"
JS8::Decoder::Decoder(QObject *parent)
: QObject(parent), m_semaphore(0), m_worker(new JS8::Worker(&m_semaphore)) {
m_worker->moveToThread(&m_thread);
connect(&m_thread, &QThread::started, m_worker, &JS8::Worker::run);
connect(&m_thread, &QThread::finished, m_worker, &QObject::deleteLater);
connect(m_worker, &JS8::Worker::decodeEvent, this, &Decoder::decodeEvent);
}
void JS8::Decoder::start(QThread::Priority priority) {
m_thread.start(priority);
}
void JS8::Decoder::quit() {
m_worker->stop();
m_semaphore.release();
m_thread.quit();
m_thread.wait();
}
void JS8::Decoder::decode() {
m_worker->copy();
m_semaphore.release();
}
/******************************************************************************/
// Public Interface - Encoding
/******************************************************************************/
namespace JS8 {
// Port of the Fortran `genjs8` subroutine; from the 12 bytes of `message`,
// construct an 87-bit JS8 message and encode it into tones. Costas array
// to use supplied by the caller, as is the type of message, indicated by
// the lower 3 bits of `type`.
void encode(int const type, Costas::Array const &costas,
const char *const message, int *const tones) {
// Our initial goal here is an 87-bit message, for which a std::bitset
// would be the obvious choice, but we've got to compute a checksum of
// the first 75 bits; thus, an array instead.
//
// Message structure:
//
// +----------+----------+----------+
// | | | 72 bits | 12 6-bit words
// | | +==========+
// | | 87 bits | 3 bits | Frame type
// | 11 bytes | +==========+
// | | | 12 bits | 12-bit BE checksum
// | |----------+==========+
// | | 1 bit | 1 bit | Leftover bit in array
// +----------+----------+==========+
std::array<std::uint8_t, 11> bytes = {};
// Convert the 12 characters we've been handed to 6-bit words and pack
// them into the byte array, 4 characters, 24 bits at a time, into the
// 9 bytes [0,8], 72 bits total. Throws if handed an invalid character.
for (int i = 0, j = 0; i < 12; i += 4, j += 3) {
std::uint32_t words = (alphabetWord(message[i]) << 18) |
(alphabetWord(message[i + 1]) << 12) |
(alphabetWord(message[i + 2]) << 6) |
alphabetWord(message[i + 3]);
bytes[j] = words >> 16;
bytes[j + 1] = words >> 8;
bytes[j + 2] = words;
}
// The bottom 3 bits of type are the frame type; these go into the
// next 3 bits in the byte array, i.e., the first 3 bits of byte 9,
// after which we'll be at 75 bits in total.
bytes[9] = (type & 0b111) << 5;
// We now need to compute the augmented CRC-12 of the complete
// byte array, including the trailing zero bits that we've not
// set yet.
auto const crc = CRC12(bytes);
// That CRC needs to occupy the next 12 bits of the array, i.e.,
// the final 5 bits of byte 9, and the first 7 bits of byte 10.
bytes[9] |= (crc >> 7) & 0x1F;
bytes[10] = (crc & 0x7F) << 1;
// That's it for our 87-bit message; we're now going to turn it
// into two blocks of 29 3-bit words, which will in turn become
// tones, the first block being parity for the second, bracketed
// by the Costas arrays.
//
// Output structure:
//
// +----------+----------+
// | | 7 bytes | Costas array A
// | +==========+
// | | 29 bytes | Parity data
// | +==========+
// | 79 bytes | 7 bytes | Costas array B
// | +==========+
// | | 29 bytes | Output data
// | +==========+
// | | 7 bytes | Costas array C
// +----------+==========+
auto costasData = tones;
auto parityData = tones + 7;
auto outputData = tones + 43;
// Output the 3 Costas arrays at offsets 0, 36, and 72.
for (auto const &array : costas) {
std::copy(array.begin(), array.end(), costasData);
costasData += 36;
}
// Our 87 bits are going to be morphed into two sets of 29 3-bit
// words, the first one parity for the second; we're going to do
// this in parallel.
std::size_t outputBits = 0;
std::size_t outputByte = 0;
std::uint8_t outputMask = 0x80;
std::uint8_t outputWord = 0;
std::uint8_t parityWord = 0;
for (std::size_t i = 0; i < 87; ++i) {
// Compute parity for the current bit; inputs for parity computation
// are the corresponding parity matrix row and each bit in the message;
// the parity matrix row, referenced by `i`, contains 87 boolean values.
// Each `true` value defines a message bit that must be summed, modulo
// 2, to produce the parity check bit for the bit we're working on now.
//
// In short, if the parity matrix bit `(i, j)` and the message bit `j`
// are both set, then we add 1 to the parity bits accumulator. If, after
// processing all message bits the accumulated result is odd, then the
// parity bit should be set for the current bit.
std::size_t parityBits = 0;
std::size_t parityByte = 0;
std::uint8_t parityMask = 0x80;
for (std::size_t j = 0; j < 87; ++j) {
parityBits += parity(i, j) && (bytes[parityByte] & parityMask);
parityMask =
(parityMask == 1) ? (++parityByte, 0x80) : (parityMask >> 1);
}
// Accumulate the parity and output bits; this is the point at which
// we perform the modulo 2 operation on the summed parity bits.
parityWord = (parityWord << 1) | (parityBits & 1);
outputWord =
(outputWord << 1) | ((bytes[outputByte] & outputMask) != 0);
outputMask =
(outputMask == 1) ? (++outputByte, 0x80) : (outputMask >> 1);
// If we're at a 3-bit boundary, output the words and reset.
if (++outputBits == 3) {
*parityData++ = parityWord;
*outputData++ = outputWord;
parityWord = 0;
outputWord = 0;
outputBits = 0;
}
}
}
} // namespace JS8
/******************************************************************************/
|