1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#pragma once
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <numeric>
#include <optional>
#include <sstream>
#include <vector>
#include <QDebug>
#include <QLoggingCategory>
Q_DECLARE_LOGGING_CATEGORY(decoder_js8);
namespace js8 {
/**
* @brief Compute per-tone/symbol noise medians and whiten LLRs for a JS8 frame.
*
* Given symbol magnitudes (sans Costas) and winners, produces normalized
* LLR0/LLR1, optionally applying noise-based whitening and erasure. Fully
* templated on matrix dimensions, so it stays header-only; used inside the JS8
* decoder per candidate.
*/
template <int NROWS, int ND, int N> class WhiteningProcessor {
public:
struct Result {
std::array<float, 3 * ND> llr0;
std::array<float, 3 * ND> llr1;
bool whiteningApplied;
bool erasureApplied;
std::size_t erasures;
double avgAbsPre;
double avgAbsPost;
};
static Result process(std::array<std::array<float, ND>, NROWS> const &s1,
std::array<int, ND> const &symbolWinners,
float erasureThreshold, bool debug) {
auto const median =
[](std::vector<float> &values) -> std::optional<float> {
if (values.empty())
return std::nullopt;
auto const mid = values.size() / 2;
std::nth_element(values.begin(), values.begin() + mid,
values.end());
float med = values[mid];
if ((values.size() % 2) == 0 && mid > 0) {
std::nth_element(values.begin(), values.begin() + (mid - 1),
values.end());
med = 0.5f * (med + values[mid - 1]);
}
return med;
};
// Estimate per-tone noise using non-winning tone magnitudes across the
// frame.
auto const toneNoise =
[&]() -> std::optional<std::array<float, NROWS>> {
std::array<std::vector<float>, NROWS> toneSamples;
std::array<float, NROWS> noise = {};
// Collect non-winning magnitudes for each tone.
for (int j = 0; j < ND; ++j) {
int const winner = symbolWinners[j];
for (int i = 0; i < NROWS; ++i) {
if (i != winner)
toneSamples[i].push_back(s1[i][j]);
}
}
bool ok = true;
for (int i = 0; i < NROWS; ++i) {
if (auto m = median(toneSamples[i]); m) {
noise[i] = *m;
} else {
ok = false;
break;
}
}
if (!ok)
return std::nullopt;
return noise;
}();
if (toneNoise && debug) {
std::ostringstream oss;
oss << "toneNoise:";
for (auto const value : *toneNoise)
oss << ' ' << value;
qCDebug(decoder_js8).noquote() << oss.str().c_str();
}
// Estimate per-symbol noise using non-winning tone magnitudes per
// symbol.
auto const symbolNoise = [&]() -> std::optional<std::vector<float>> {
std::vector<float> noise;
noise.reserve(ND);
for (int j = 0; j < ND; ++j) {
std::vector<float> bins;
bins.reserve(NROWS - 1);
int const winner = symbolWinners[j];
for (int i = 0; i < NROWS; ++i) {
if (i != winner)
bins.push_back(s1[i][j]);
}
if (auto m = median(bins); m) {
noise.push_back(*m);
} else {
return std::nullopt;
}
}
return noise;
}();
if (symbolNoise && !symbolNoise->empty() && debug) {
auto const [minIt, maxIt] =
std::minmax_element(symbolNoise->begin(), symbolNoise->end());
float const avg = std::accumulate(symbolNoise->begin(),
symbolNoise->end(), 0.0f) /
static_cast<float>(symbolNoise->size());
qCDebug(decoder_js8)
<< "symbolNoise avg/min/max" << avg << *minIt << *maxIt;
}
Result result{};
bool const disableWhitening =
std::getenv("JS8_DISABLE_WHITENING") != nullptr;
bool const whiteningAvailable = toneNoise && symbolNoise &&
!symbolNoise->empty() &&
!disableWhitening;
bool const applyErasureInWhitening =
whiteningAvailable && erasureThreshold > 0.0f;
double sumAbsPre = 0.0;
double sumAbsPost = 0.0;
std::size_t erasures = 0;
for (int j = 0; j < ND; ++j) {
int const i1 = 3 * j; // First column (matches Fortran's i1)
int const i2 = 3 * j + 1; // Second column (matches Fortran's i2)
int const i4 = 3 * j + 2; // Third column (matches Fortran's i4)
std::array<float, NROWS> ps;
for (int i = 0; i < NROWS; ++i)
ps[i] = s1[i][j];
// Assign to `bmeta` in column order, with correct values
result.llr0[i1] = std::max({ps[4], ps[5], ps[6], ps[7]}) -
std::max({ps[0], ps[1], ps[2], ps[3]}); // r4
result.llr0[i2] = std::max({ps[2], ps[3], ps[6], ps[7]}) -
std::max({ps[0], ps[1], ps[4], ps[5]}); // r2
result.llr0[i4] = std::max({ps[1], ps[3], ps[5], ps[7]}) -
std::max({ps[0], ps[2], ps[4], ps[6]}); // r1
for (auto &x : ps)
x = std::log(x + 1e-32f);
// Assign to `bmetb` in column order, with correct values
result.llr1[i1] = std::max({ps[4], ps[5], ps[6], ps[7]}) -
std::max({ps[0], ps[1], ps[2], ps[3]}); // r4
result.llr1[i2] = std::max({ps[2], ps[3], ps[6], ps[7]}) -
std::max({ps[0], ps[1], ps[4], ps[5]}); // r2
result.llr1[i4] = std::max({ps[1], ps[3], ps[5], ps[7]}) -
std::max({ps[0], ps[2], ps[4], ps[6]}); // r1
if (whiteningAvailable) {
int const winner = symbolWinners[j];
float const tn = std::max(0.0f, (*toneNoise)[winner]);
float const sn = std::max(0.0f, (*symbolNoise)[j]);
float const localNoise = std::sqrt(tn * sn + 1e-12f);
auto const applyWhitening = [&](float &value) {
float const pre = std::abs(value);
sumAbsPre += pre;
if (localNoise > 0.0f && std::isfinite(localNoise)) {
value /= localNoise;
}
if (applyErasureInWhitening &&
std::abs(value) < erasureThreshold) {
value = 0.0f;
++erasures;
}
sumAbsPost += std::abs(value);
};
applyWhitening(result.llr0[i1]);
applyWhitening(result.llr0[i2]);
applyWhitening(result.llr0[i4]);
applyWhitening(result.llr1[i1]);
applyWhitening(result.llr1[i2]);
applyWhitening(result.llr1[i4]);
}
}
auto const normalizeLLR = [](auto &llr) {
float sum = 0.0f;
float sum_of_squares = 0.0f;
for (auto const value : llr) {
sum += value;
sum_of_squares += value * value;
}
float const llrav = sum / llr.size();
float const llr2av = sum_of_squares / llr.size();
float const variance = llr2av - llrav * llrav;
float const llrsig = std::sqrt(variance > 0.0f ? variance : llr2av);
for (float &val : llr)
val = (val / llrsig) * 2.83f;
};
// Normalize and process metrics
normalizeLLR(result.llr0);
normalizeLLR(result.llr1);
if (whiteningAvailable && debug) {
auto const total =
static_cast<double>(result.llr0.size() + result.llr1.size());
double const avgPre = total > 0.0 ? sumAbsPre / total : 0.0;
double const avgPost = total > 0.0 ? sumAbsPost / total : 0.0;
qCDebug(decoder_js8) << "LLR whitening applied"
<< "avg|LLR| pre/post:" << avgPre << avgPost
<< "erasures:" << erasures;
}
result.whiteningApplied = whiteningAvailable;
result.erasureApplied = applyErasureInWhitening;
result.erasures = erasures;
result.avgAbsPre = sumAbsPre;
result.avgAbsPost = sumAbsPost;
return result;
}
};
} // namespace js8
|