1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
### jsoncons::csv::decode_csv
Decodes a [comma-separated variables (CSV)](https://en.wikipedia.org/wiki/Comma-separated_values) data format into a C++ data structure.
```cpp
#include <jsoncons_ext/csv/csv.hpp>
template <typename T,typename Source>
T decode_csv(const Source& s,
const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>())); (1)
template <typename T,typename CharT>
T decode_csv(std::basic_istream<CharT>& is,
const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>())); (2)
template <typename T,typename InputIt>
T decode_csv(InputIt first, InputIt last,
const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>())); (3) (since 0.153.0)
template <typename T,typename Source,typename Allocator,typename TempAllocator>
T decode_csv(allocator_set<Allocator,TempAllocator> alloc_set,
const Source& s,
const basic_csv_decode_options<Source::value_type>& options = basic_csv_decode_options<Source::value_type>()); (4)
template <typename T,typename CharT,typename Allocator,typename TempAllocator>
T decode_csv(allocator_set<Allocator,TempAllocator> alloc_set,
std::basic_istream<CharT>& is,
const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>()); (5)
```
(1) Reads CSV data from a contiguous character sequence into a type T, using the specified (or defaulted) [options](basic_csv_options.md).
Type 'T' must be an instantiation of [basic_json](../basic_json.md)
or support [json_type_traits](../json_type_traits.md).
(2) Reads CSV data from an input stream into a type T, using the specified (or defaulted) [options](basic_csv_options.md).
Type 'T' must be an instantiation of [basic_json](../basic_json.md)
or support [json_type_traits](../json_type_traits.md).
(3) Reads CSV data from the range [`first`,`last`) into a type T, using the specified (or defaulted) [options](basic_csv_options.md).
Type 'T' must be an instantiation of [basic_json](../basic_json.md)
or support [json_type_traits](../json_type_traits.md).
Functions (4)-(5) are identical to (1)-(2) except an [allocator_set](../allocator_set.md) is passed as an additional argument and
provides allocators for result data and temporary allocations.
#### Return value
Returns a value of type `T`.
#### Exceptions
Throws a [ser_error](../ser_error.md) if parsing fails, and a [conv_error](conv_error.md) if type conversion fails.
### Examples
#### Decode a CSV file with type inference (default)
Example file (sales.csv)
```csv
customer_name,has_coupon,phone_number,zip_code,sales_tax_rate,total_amount
"John Roe",true,0272561313,01001,0.05,431.65
"Jane Doe",false,416-272-2561,55416,0.15,480.70
"Joe Bloggs",false,"4162722561","55416",0.15,300.70
"John Smith",FALSE,NULL,22313-1450,0.15,300.70
```
```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>
#include <fstream>
using namespace jsoncons;
int main()
{
auto options = csv::csv_options{}
.assume_header(true)
.mapping_kind(csv::csv_mapping_kind::n_objects);
std::ifstream is1("input/sales.csv");
ojson j1 = csv::decode_csv<ojson>(is1,options);
std::cout << "\n(1)\n"<< pretty_print(j1) << "\n";
options.mapping_kind(csv::csv_mapping_kind::n_rows);
std::ifstream is2("input/sales.csv");
ojson j2 = csv::decode_csv<ojson>(is2,options);
std::cout << "\n(2)\n"<< pretty_print(j2) << "\n";
options.mapping_kind(csv::csv_mapping_kind::m_columns);
std::ifstream is3("input/sales.csv");
ojson j3 = csv::decode_csv<ojson>(is3,options);
std::cout << "\n(3)\n"<< pretty_print(j3) << "\n";
}
```
Output:
```json
(1)
[
{
"customer_name": "John Roe",
"has_coupon": true,
"phone_number": "0272561313",
"zip_code": "01001",
"sales_tax_rate": 0.05,
"total_amount": 431.65
},
{
"customer_name": "Jane Doe",
"has_coupon": false,
"phone_number": "416-272-2561",
"zip_code": 55416,
"sales_tax_rate": 0.15,
"total_amount": 480.7
},
{
"customer_name": "Joe Bloggs",
"has_coupon": false,
"phone_number": "4162722561",
"zip_code": "55416",
"sales_tax_rate": 0.15,
"total_amount": 300.7
},
{
"customer_name": "John Smith",
"has_coupon": false,
"phone_number": null,
"zip_code": "22313-1450",
"sales_tax_rate": 0.15,
"total_amount": 300.7
}
]
(2)
[
["customer_name","has_coupon","phone_number","zip_code","sales_tax_rate","total_amount"],
["John Roe",true,"0272561313","01001",0.05,431.65],
["Jane Doe",false,"416-272-2561",55416,0.15,480.7],
["Joe Bloggs",false,"4162722561","55416",0.15,300.7],
["John Smith",false,null,"22313-1450",0.15,300.7]
]
(3)
{
"customer_name": ["John Roe","Jane Doe","Joe Bloggs","John Smith"],
"has_coupon": [true,false,false,false],
"phone_number": ["0272561313","416-272-2561",4162722561,null],
"zip_code": ["01001",55416,55416,"22313-1450"],
"sales_tax_rate": [0.05,0.15,0.15,0.15],
"total_amount": [431.65,480.7,300.7,300.7]
}
```
#### Decode a CSV string without type inference
```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>
using namespace jsoncons;
int main()
{
std::string s = R"(employee-no,employee-name,dept,salary
00000001,"Smith,Matthew",sales,150000.00
00000002,"Brown,Sarah",sales,89000.00
)";
auto options = csv::csv_options{}
.assume_header(true)
.infer_types(false);
ojson j = csv::decode_csv<ojson>(s,options);
std::cout << pretty_print(j) << '\n';
}
```
Output:
```json
[
{
"employee-no": "00000001",
"employee-name": "Smith,Matthew",
"dept": "sales",
"salary": "150000.00"
},
{
"employee-no": "00000002",
"employee-name": "Brown,Sarah",
"dept": "sales",
"salary": "89000.00"
}
]
```
#### Decode a CSV string with specified types
```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>
using namespace jsoncons;
int main()
{
const std::string s = R"(Date,1Y,2Y,3Y,5Y
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.0112
2017-01-08,0.0063,0.0076,0.0084,0.0112
)";
auto options = csv::csv_options{}
.assume_header(true)
.column_types("string,float,float,float,float");
// csv_mapping_kind::n_objects
options.mapping_kind(csv::csv_mapping_kind::n_objects);
ojson j1 = csv::decode_csv<ojson>(s,options);
std::cout << "\n(1)\n"<< pretty_print(j1) << "\n";
// csv_mapping_kind::n_rows
options.mapping_kind(csv::csv_mapping_kind::n_rows);
ojson j2 = csv::decode_csv<ojson>(s,options);
std::cout << "\n(2)\n"<< pretty_print(j2) << "\n";
// csv_mapping_kind::m_columns
options.mapping_kind(csv::csv_mapping_kind::m_columns);
ojson j3 = csv::decode_csv<ojson>(s,options);
std::cout << "\n(3)\n" << pretty_print(j3) << "\n";
}
```
Output:
```json
(1)
[
{
"Date": "2017-01-09",
"1Y": 0.0062,
"2Y": 0.0075,
"3Y": 0.0083,
"5Y": 0.011
},
{
"Date": "2017-01-08",
"1Y": 0.0063,
"2Y": 0.0076,
"3Y": 0.0084,
"5Y": 0.0112
},
{
"Date": "2017-01-08",
"1Y": 0.0063,
"2Y": 0.0076,
"3Y": 0.0084,
"5Y": 0.0112
}
]
(2)
[
["Date","1Y","2Y","3Y","5Y"],
["2017-01-09",0.0062,0.0075,0.0083,0.011],
["2017-01-08",0.0063,0.0076,0.0084,0.0112],
["2017-01-08",0.0063,0.0076,0.0084,0.0112]
]
(3)
{
"Date": ["2017-01-09","2017-01-08","2017-01-08"],
"1Y": [0.0062,0.0063,0.0063],
"2Y": [0.0075,0.0076,0.0076],
"3Y": [0.0083,0.0084,0.0084],
"5Y": [0.011,0.0112,0.0112]
}
```
#### Decode a CSV string with multi-valued fields separated by subfield delimiters
```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>
using namespace jsoncons;
int main()
{
const std::string s = R"(calculationPeriodCenters,paymentCenters,resetCenters
NY;LON,TOR,LON
NY,LON,TOR;LON
"NY";"LON","TOR","LON"
"NY","LON","TOR";"LON"
)";
auto print_options = json_options{}
.array_array_line_splits(line_split_kind::same_line);
auto options1 = csv::csv_options{}
.assume_header(true)
.subfield_delimiter(';');
json j1 = csv::decode_csv<json>(s,options1);
std::cout << "(1)\n" << pretty_print(j1,print_options) << "\n\n";
auto options2 = csv::csv_options{}
.mapping_kind(csv::csv_mapping_kind::n_rows)
.subfield_delimiter(';');
json j2 = csv::decode_csv<json>(s,options2);
std::cout << "(2)\n" << pretty_print(j2,print_options) << "\n\n";
auto options3 = csv::csv_options{}
assume_header(true)
.mapping_kind(csv::csv_mapping_kind::m_columns)
.subfield_delimiter(';');
json j3 = csv::decode_csv<json>(s,options3);
std::cout << "(3)\n" << pretty_print(j3,print_options) << "\n\n";
}
```
Output:
```json
(1)
[
{
"calculationPeriodCenters": ["NY","LON"],
"paymentCenters": "TOR",
"resetCenters": "LON"
},
{
"calculationPeriodCenters": "NY",
"paymentCenters": "LON",
"resetCenters": ["TOR","LON"]
},
{
"calculationPeriodCenters": ["NY","LON"],
"paymentCenters": "TOR",
"resetCenters": "LON"
},
{
"calculationPeriodCenters": "NY",
"paymentCenters": "LON",
"resetCenters": ["TOR","LON"]
}
]
(2)
[
["calculationPeriodCenters","paymentCenters","resetCenters"],
[["NY","LON"],"TOR","LON"],
["NY","LON",["TOR","LON"]],
[["NY","LON"],"TOR","LON"],
["NY","LON",["TOR","LON"]]
]
(3)
{
"calculationPeriodCenters": [["NY","LON"],"NY",["NY","LON"],"NY"],
"paymentCenters": ["TOR","LON","TOR","LON"],
"resetCenters": ["LON",["TOR","LON"],"LON",["TOR","LON"]]
}
```
#### Convert a CSV source to a C++ data structure that satisfies [json_type_traits](../json_type_traits.md) requirements, and back
```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>
#include <iostream>
using namespace jsoncons;
int main()
{
const std::string input = R"(Date,1Y,2Y,3Y,5Y
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.0112
2017-01-08,0.0063,0.0076,0.0084,0.0112
)";
auto ioptions = csv::csv_options{}
.header_lines(1)
.mapping_kind(csv::csv_mapping_kind::n_rows);
using table_type = std::vector<std::tuple<std::string,double,double,double,double>>;
table_type table = csv::decode_csv<table_type>(input,ioptions);
std::cout << "(1)\n";
for (const auto& row : table)
{
std::cout << std::get<0>(row) << ","
<< std::get<1>(row) << ","
<< std::get<2>(row) << ","
<< std::get<3>(row) << ","
<< std::get<4>(row) << "\n";
}
std::cout << "\n";
std::string output;
auto ooptions = csv::csv_options{}
.column_names("Date,1Y,2Y,3Y,5Y");
csv::encode_csv<table_type>(table, output, ooptions);
std::cout << "(2)\n";
std::cout << output << "\n";
}
```
Output:
```
(1)
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.011
2017-01-08,0.0063,0.0076,0.0084,0.011
(2)
Date,1Y,2Y,3Y,5Y
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.0112
2017-01-08,0.0063,0.0076,0.0084,0.0112
```
|