File: decode_csv.md

package info (click to toggle)
jsoncons 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 17,584 kB
  • sloc: cpp: 136,382; sh: 33; makefile: 5
file content (420 lines) | stat: -rw-r--r-- 11,641 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
### jsoncons::csv::decode_csv

Decodes a [comma-separated variables (CSV)](https://en.wikipedia.org/wiki/Comma-separated_values) data format into a C++ data structure.

```cpp
#include <jsoncons_ext/csv/csv.hpp>

template <typename T,typename Source>
T decode_csv(const Source& s, 
    const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>()));                          (1)

template <typename T,typename CharT>
T decode_csv(std::basic_istream<CharT>& is, 
    const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>()));                          (2)

template <typename T,typename InputIt>
T decode_csv(InputIt first, InputIt last,
    const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>()));                          (3) (since 0.153.0)

template <typename T,typename Source,typename Allocator,typename TempAllocator>
T decode_csv(allocator_set<Allocator,TempAllocator> alloc_set,
    const Source& s,
    const basic_csv_decode_options<Source::value_type>& options = basic_csv_decode_options<Source::value_type>()); (4)

template <typename T,typename CharT,typename Allocator,typename TempAllocator>
T decode_csv(allocator_set<Allocator,TempAllocator> alloc_set,
    std::basic_istream<CharT>& is,
    const basic_csv_decode_options<CharT>& options = basic_csv_decode_options<CharT>());                           (5)
```

(1) Reads CSV data from a contiguous character sequence into a type T, using the specified (or defaulted) [options](basic_csv_options.md). 
Type 'T' must be an instantiation of [basic_json](../basic_json.md) 
or support [json_type_traits](../json_type_traits.md).

(2) Reads CSV data from an input stream into a type T, using the specified (or defaulted) [options](basic_csv_options.md). 
Type 'T' must be an instantiation of [basic_json](../basic_json.md) 
or support [json_type_traits](../json_type_traits.md).

(3) Reads CSV data from the range [`first`,`last`) into a type T, using the specified (or defaulted) [options](basic_csv_options.md). 
Type 'T' must be an instantiation of [basic_json](../basic_json.md) 
or support [json_type_traits](../json_type_traits.md).

Functions (4)-(5) are identical to (1)-(2) except an [allocator_set](../allocator_set.md) is passed as an additional argument and
provides allocators for result data and temporary allocations.

#### Return value

Returns a value of type `T`.

#### Exceptions

Throws a [ser_error](../ser_error.md) if parsing fails, and a [conv_error](conv_error.md) if type conversion fails.

### Examples

#### Decode a CSV file with type inference (default)

Example file (sales.csv)
```csv
customer_name,has_coupon,phone_number,zip_code,sales_tax_rate,total_amount
"John Roe",true,0272561313,01001,0.05,431.65
"Jane Doe",false,416-272-2561,55416,0.15,480.70
"Joe Bloggs",false,"4162722561","55416",0.15,300.70
"John Smith",FALSE,NULL,22313-1450,0.15,300.70
```

```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>
#include <fstream>

using namespace jsoncons;

int main()
{
    auto options = csv::csv_options{}
        .assume_header(true)
        .mapping_kind(csv::csv_mapping_kind::n_objects);

    std::ifstream is1("input/sales.csv");
    ojson j1 = csv::decode_csv<ojson>(is1,options);
    std::cout << "\n(1)\n"<< pretty_print(j1) << "\n";

    options.mapping_kind(csv::csv_mapping_kind::n_rows);
    std::ifstream is2("input/sales.csv");
    ojson j2 = csv::decode_csv<ojson>(is2,options);
    std::cout << "\n(2)\n"<< pretty_print(j2) << "\n";

    options.mapping_kind(csv::csv_mapping_kind::m_columns);
    std::ifstream is3("input/sales.csv");
    ojson j3 = csv::decode_csv<ojson>(is3,options);
    std::cout << "\n(3)\n"<< pretty_print(j3) << "\n";
}
```
Output:
```json
(1)
[
    {
        "customer_name": "John Roe",
        "has_coupon": true,
        "phone_number": "0272561313",
        "zip_code": "01001",
        "sales_tax_rate": 0.05,
        "total_amount": 431.65
    },
    {
        "customer_name": "Jane Doe",
        "has_coupon": false,
        "phone_number": "416-272-2561",
        "zip_code": 55416,
        "sales_tax_rate": 0.15,
        "total_amount": 480.7
    },
    {
        "customer_name": "Joe Bloggs",
        "has_coupon": false,
        "phone_number": "4162722561",
        "zip_code": "55416",
        "sales_tax_rate": 0.15,
        "total_amount": 300.7
    },
    {
        "customer_name": "John Smith",
        "has_coupon": false,
        "phone_number": null,
        "zip_code": "22313-1450",
        "sales_tax_rate": 0.15,
        "total_amount": 300.7
    }
]

(2)
[
    ["customer_name","has_coupon","phone_number","zip_code","sales_tax_rate","total_amount"],
    ["John Roe",true,"0272561313","01001",0.05,431.65],
    ["Jane Doe",false,"416-272-2561",55416,0.15,480.7],
    ["Joe Bloggs",false,"4162722561","55416",0.15,300.7],
    ["John Smith",false,null,"22313-1450",0.15,300.7]
]

(3)
{
    "customer_name": ["John Roe","Jane Doe","Joe Bloggs","John Smith"],
    "has_coupon": [true,false,false,false],
    "phone_number": ["0272561313","416-272-2561",4162722561,null],
    "zip_code": ["01001",55416,55416,"22313-1450"],
    "sales_tax_rate": [0.05,0.15,0.15,0.15],
    "total_amount": [431.65,480.7,300.7,300.7]
}
```

#### Decode a CSV string without type inference

```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>

using namespace jsoncons;

int main()
{
    std::string s = R"(employee-no,employee-name,dept,salary
00000001,"Smith,Matthew",sales,150000.00
00000002,"Brown,Sarah",sales,89000.00
)";

    auto options = csv::csv_options{}
        .assume_header(true)
        .infer_types(false);
    ojson j = csv::decode_csv<ojson>(s,options);

    std::cout << pretty_print(j) << '\n';
}
```
Output:
```json
[
    {
        "employee-no": "00000001",
        "employee-name": "Smith,Matthew",
        "dept": "sales",
        "salary": "150000.00"
    },
    {
        "employee-no": "00000002",
        "employee-name": "Brown,Sarah",
        "dept": "sales",
        "salary": "89000.00"
    }
]
```

#### Decode a CSV string with specified types

```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>

using namespace jsoncons;

int main()
{
    const std::string s = R"(Date,1Y,2Y,3Y,5Y
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.0112
2017-01-08,0.0063,0.0076,0.0084,0.0112
)";

    auto options = csv::csv_options{}
        .assume_header(true)
        .column_types("string,float,float,float,float");

    // csv_mapping_kind::n_objects
    options.mapping_kind(csv::csv_mapping_kind::n_objects);
    ojson j1 = csv::decode_csv<ojson>(s,options);
    std::cout << "\n(1)\n"<< pretty_print(j1) << "\n";

    // csv_mapping_kind::n_rows
    options.mapping_kind(csv::csv_mapping_kind::n_rows);
    ojson j2 = csv::decode_csv<ojson>(s,options);
    std::cout << "\n(2)\n"<< pretty_print(j2) << "\n";

    // csv_mapping_kind::m_columns
    options.mapping_kind(csv::csv_mapping_kind::m_columns);
    ojson j3 = csv::decode_csv<ojson>(s,options);
    std::cout << "\n(3)\n" << pretty_print(j3) << "\n";
}
```
Output:
```json
(1)
[
    {
        "Date": "2017-01-09",
        "1Y": 0.0062,
        "2Y": 0.0075,
        "3Y": 0.0083,
        "5Y": 0.011
    },
    {
        "Date": "2017-01-08",
        "1Y": 0.0063,
        "2Y": 0.0076,
        "3Y": 0.0084,
        "5Y": 0.0112
    },
    {
        "Date": "2017-01-08",
        "1Y": 0.0063,
        "2Y": 0.0076,
        "3Y": 0.0084,
        "5Y": 0.0112
    }
]

(2)
[
    ["Date","1Y","2Y","3Y","5Y"],
    ["2017-01-09",0.0062,0.0075,0.0083,0.011],
    ["2017-01-08",0.0063,0.0076,0.0084,0.0112],
    ["2017-01-08",0.0063,0.0076,0.0084,0.0112]
]

(3)
{
    "Date": ["2017-01-09","2017-01-08","2017-01-08"],
    "1Y": [0.0062,0.0063,0.0063],
    "2Y": [0.0075,0.0076,0.0076],
    "3Y": [0.0083,0.0084,0.0084],
    "5Y": [0.011,0.0112,0.0112]
}
```
#### Decode a CSV string with multi-valued fields separated by subfield delimiters

```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>

using namespace jsoncons;

int main()
{
    const std::string s = R"(calculationPeriodCenters,paymentCenters,resetCenters
NY;LON,TOR,LON
NY,LON,TOR;LON
"NY";"LON","TOR","LON"
"NY","LON","TOR";"LON"
)";
    auto print_options = json_options{}
        .array_array_line_splits(line_split_kind::same_line);

    auto options1 = csv::csv_options{}
        .assume_header(true)
        .subfield_delimiter(';');

    json j1 = csv::decode_csv<json>(s,options1);
    std::cout << "(1)\n" << pretty_print(j1,print_options) << "\n\n";

    auto options2 = csv::csv_options{}       
        .mapping_kind(csv::csv_mapping_kind::n_rows)
        .subfield_delimiter(';');

    json j2 = csv::decode_csv<json>(s,options2);
    std::cout << "(2)\n" << pretty_print(j2,print_options) << "\n\n";

    auto options3 = csv::csv_options{}
        assume_header(true)
        .mapping_kind(csv::csv_mapping_kind::m_columns)
        .subfield_delimiter(';');

    json j3 = csv::decode_csv<json>(s,options3);
    std::cout << "(3)\n" << pretty_print(j3,print_options) << "\n\n";
}
```
Output:
```json
(1)
[

    {
        "calculationPeriodCenters": ["NY","LON"],
        "paymentCenters": "TOR",
        "resetCenters": "LON"
    },
    {
        "calculationPeriodCenters": "NY",
        "paymentCenters": "LON",
        "resetCenters": ["TOR","LON"]
    },
    {
        "calculationPeriodCenters": ["NY","LON"],
        "paymentCenters": "TOR",
        "resetCenters": "LON"
    },
    {
        "calculationPeriodCenters": "NY",
        "paymentCenters": "LON",
        "resetCenters": ["TOR","LON"]
    }
]

(2)
[

    ["calculationPeriodCenters","paymentCenters","resetCenters"],
    [["NY","LON"],"TOR","LON"],
    ["NY","LON",["TOR","LON"]],
    [["NY","LON"],"TOR","LON"],
    ["NY","LON",["TOR","LON"]]
]

(3)
{
    "calculationPeriodCenters": [["NY","LON"],"NY",["NY","LON"],"NY"],
    "paymentCenters": ["TOR","LON","TOR","LON"],
    "resetCenters": ["LON",["TOR","LON"],"LON",["TOR","LON"]]
}
```

#### Convert a CSV source to a C++ data structure that satisfies [json_type_traits](../json_type_traits.md) requirements, and back

```cpp
#include <jsoncons/json.hpp>
#include <jsoncons_ext/csv/csv.hpp>
#include <iostream>

using namespace jsoncons;

int main()
{
    const std::string input = R"(Date,1Y,2Y,3Y,5Y
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.0112
2017-01-08,0.0063,0.0076,0.0084,0.0112
)";

    auto ioptions = csv::csv_options{}
        .header_lines(1)
        .mapping_kind(csv::csv_mapping_kind::n_rows);

    using table_type = std::vector<std::tuple<std::string,double,double,double,double>>;

    table_type table = csv::decode_csv<table_type>(input,ioptions);

    std::cout << "(1)\n";
    for (const auto& row : table)
    {
        std::cout << std::get<0>(row) << "," 
                  << std::get<1>(row) << "," 
                  << std::get<2>(row) << "," 
                  << std::get<3>(row) << "," 
                  << std::get<4>(row) << "\n";
    }
    std::cout << "\n";

    std::string output;

    auto ooptions = csv::csv_options{}
        .column_names("Date,1Y,2Y,3Y,5Y");
    csv::encode_csv<table_type>(table, output, ooptions);

    std::cout << "(2)\n";
    std::cout << output << "\n";
}
```
Output:
```
(1)
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.011
2017-01-08,0.0063,0.0076,0.0084,0.011

(2)
Date,1Y,2Y,3Y,5Y
2017-01-09,0.0062,0.0075,0.0083,0.011
2017-01-08,0.0063,0.0076,0.0084,0.0112
2017-01-08,0.0063,0.0076,0.0084,0.0112
```