1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
|
% Reference Card for JSXGraph
% To create a document out of this for printing, save this text into
% a file 'jsxgraph_refcard.tex' and run the commands
% tex jsxgraph_refcard.tex
% dvips -t landscape jsxgraph_refcard.dvi -o
% gs -sDEVICE=pdfwrite -dBATCH -dNOPAUSE -sOutputFile=jsxgraph_refcard.pdf jsxgraph_refcard.ps
% this will result in a PDF file 'jsxgraph_refcard.pdf'
% this is a comment
%**start of header
\newcount\columnsperpage
\overfullrule=0pt
% This file can be printed with 1, 2, or 3 columns per page (see below).
% [For 2 or 3 columns, you'll need 6 and 8 point fonts.]
% Specify how many you want here. Nothing else needs to be changed.
\columnsperpage=3
% This reference card is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
% This file is intended to be processed by plain TeX (TeX82).
%
% The final reference card has six columns, three on each side.
% This file can be used to produce it in any of three ways:
% 1 column per page
% produces six separate pages, each of which needs to be reduced to 80%.
% This gives the best resolution.
% 2 columns per page
% produces three already-reduced pages.
% You will still need to cut and paste.
% 3 columns per page
% produces two pages which must be printed sideways to make a
% ready-to-use 8.5 x 11 inch reference card.
% For this you need a dvi device driver that can print landscape
% Which mode to use is controlled by setting \columnsperpage above.
%
% Thanks:
% (reference card macros due to Stephen Gildea)
\def\versionnumber{0.92} % Version of this reference card
\def\year{2011}
\def\month{September}
\def\version{\month\ \year\ v\versionnumber}
\def\shortcopyrightnotice{\vskip .5ex plus 2 fill
\centerline{\small \copyright\ \year\ v\versionnumber}}
\def\copyrightnotice{\vskip 1ex plus 100 fill\begingroup\small
\centerline{\version.}
\endgroup}
% make \bye not \outer so that the \def\bye in the \else clause below
% can be scanned without complaint.
\def\bye{\par\vfill\supereject\end}
\newdimen\intercolumnskip
\newbox\columna
\newbox\columnb
\def\ncolumns{\the\columnsperpage}
\message{[\ncolumns\space
column\if 1\ncolumns\else s\fi\space per page]}
\def\scaledmag#1{ scaled \magstep #1}
% This multi-way format was designed by Stephen Gildea
% October 1986.
\if 1\ncolumns
\hsize 4in
\vsize 10in
\voffset -.7in
\font\titlefont=\fontname\tenbf \scaledmag3
\font\headingfont=\fontname\tenbf \scaledmag2
\font\headingfonttt=\fontname\tentt \scaledmag2
\font\smallfont=\fontname\sevenrm
\font\smallsy=\fontname\sevensy
\footline{\hss\folio\hss}
\def\makefootline{\baselineskip10pt\hsize4in\line{\the\footline}}
\else
\hsize 3.2in
\vsize 7.5in %% was 7.95in
\advance\vsize by 1cm
\hoffset -12mm %-2mm % was -.75in
\voffset -.81in
\font\titlefont=cmbx10 \scaledmag2
\font\headingfont=cmbx9 \scaledmag1
\font\headingfonttt=cmtt9 \scaledmag1
\font\smallfont=cmr6
\font\smallsy=cmsy6
\font\eightrm=cmr8
\font\eightbf=cmbx8
\font\eightit=cmti8
\font\eighttt=cmtt8
\font\eightsy=cmsy8
\font\eightsl=cmsl8
\font\eighti=cmmi8
\font\eightex=cmex10 at 8pt
\textfont0=\eightrm
\textfont1=\eighti
\textfont2=\eightsy
\textfont3=\eightex
\def\rm{\fam0 \eightrm}
\def\bf{\eightbf}
\def\it{\eightit}
\def\tt{\eighttt}
\def\sl{\eightsl}
\normalbaselineskip=.8\normalbaselineskip
\normallineskip=.8\normallineskip
\normallineskiplimit=.8\normallineskiplimit
\normalbaselines\rm %make definitions take effect
\if 2\ncolumns
\let\maxcolumn=b
\footline{\hss\rm\folio\hss}
\def\makefootline{\vskip 2in \hsize=6.86in\line{\the\footline}}
\else \if 3\ncolumns
\let\maxcolumn=c
\nopagenumbers
\else
\errhelp{You must set \columnsperpage equal to 1, 2, or 3.}
\errmessage{Illegal number of columns per page}
\fi\fi
\intercolumnskip=.46in
\def\abc{a}
\output={%
% This next line is useful when designing the layout.
%\immediate\write16{Column \folio\abc\space starts with \firstmark}
\if \maxcolumn\abc \multicolumnformat \global\def\abc{a}
\else\if a\abc
\global\setbox\columna\columnbox \global\def\abc{b}
%% in case we never use \columnb (two-column mode)
\global\setbox\columnb\hbox to -\intercolumnskip{}
\else
\global\setbox\columnb\columnbox \global\def\abc{c}\fi\fi}
\def\multicolumnformat{\shipout\vbox{\makeheadline
\hbox{\box\columna\hskip\intercolumnskip
\box\columnb\hskip\intercolumnskip\columnbox}
\makefootline}\advancepageno}
\def\columnbox{\leftline{\pagebody}}
\def\bye{\par\vfill\supereject
\if a\abc \else\null\vfill\eject\fi
\if a\abc \else\null\vfill\eject\fi
\end}
\fi
% we won't be using math mode much, so redefine some of the characters
% we might want to talk about
%\catcode`\^=12
%\catcode`\_=12
\catcode`\~=12
\chardef\\=`\\
\chardef\{=`\{
\chardef\}=`\}
\chardef\underscore=`\_
\chardef\'="0D % These are upright quote marks
\hyphenation{}
\parindent 0pt
\parskip .85ex plus .35ex minus .5ex
\def\small{\smallfont\textfont2=\smallsy\baselineskip=.8\baselineskip}
\outer\def\newcolumn{\vfill\eject}
\outer\def\title#1{{\titlefont\centerline{#1}}\vskip 1ex plus .5ex}
%\outer\def\section#1{\par\filbreak
% \vskip .5ex minus .1ex {\headingfont #1}\mark{#1}%
% \vskip .3ex minus .1ex}
\outer\def\section#1{\par\filbreak
\vskip .5ex minus .1ex \vskip2\jot
\hrule width.5\hsize
\vskip1\jot{\headingfont #1}\mark{#1}%
\vskip .3ex minus .1ex}
\outer\def\librarysection#1#2{\par\filbreak
\vskip .5ex minus .1ex {\headingfont #1}\quad{\headingfonttt<#2>}\mark{#1}%
\vskip .3ex minus .1ex}
\newdimen\keyindent
\def\beginindentedkeys{\keyindent=1em}
\def\endindentedkeys{\keyindent=0em}
\def\begindoubleindentedkeys{\keyindent=2em}
\def\enddoubleindentedkeys{\keyindent=1em}
\endindentedkeys
\def\paralign{\vskip\parskip\halign}
\def\<#1>{$\langle${\rm #1}$\rangle$}
\def\kbd#1{{\tt#1}\null} %\null so not an abbrev even if period follows
\def\beginexample{\par\vskip1\jot
\hrule width.5\hsize
\vskip1\jot
\begingroup\parindent=2em
\obeylines\obeyspaces\parskip0pt\tt}
{\obeyspaces\global\let =\ }
\def\endexample{\endgroup}
\def\Example{\qquad{\sl Example\/}.\enspace\ignorespaces}
\def\key#1#2{\leavevmode\hbox to \hsize{\vtop
{\hsize=.75\hsize\rightskip=1em
\hskip\keyindent\relax#1}\kbd{#2}\hfil}}
\newbox\metaxbox
\setbox\metaxbox\hbox{\kbd{M-x }}
\newdimen\metaxwidth
\metaxwidth=\wd\metaxbox
%\def\metax#1#2{\leavevmode\hbox to \hsize{\hbox to .75\hsize
% {\hskip\keyindent\relax#1\hfil}%
% \hskip -\metaxwidth minus 1fil
% \kbd{#2}\hfil}}
\def\metax#1#2{\leavevmode\hbox to \hsize{\hbox to .75\hsize
{\hskip\keyindent\relax\kbd{#1}\hfil}%
\hskip -\metaxwidth minus 1fil
#2\hfil}}
\def\threecol#1#2#3{\hskip\keyindent\relax#1\hfil&\kbd{#2}\quad
&\kbd{#3}\quad\cr}
%**end of header
\title{JSXGraph Reference Card}
\section{Include JSXGraph in HTML}
Three parts are needed: Include files containing the software, an HTML element, and
JavaScript code.
{\bf Include files:}
Two files have to be included:
{\tt jsxgraph.css}, and {\tt jsxgraphcore.js}.
{\obeylines\obeyspaces\parskip0pt\tt
- $<$link rel="stylesheet" type="text/css"
href="domain/jsxgraph.css"/$>$
- $<$script type="text/javascript"
src="domain/jsxgraphcore.js"$>$$<$/script$>$}
{\tt domain} is the location of the files. This can be a local directory or
{\tt http://cdnjs.cloudflare.com/ajax/libs/jsxgraph/0.92/jsxgraphcore.js}
{\tt http://jsxgraph.uni-bayreuth.de/distrib/}
%{\tt http://jsxgraph.uni-bayreuth.de/distrib/}
{\bf HTML element containing the construction:}
\metax{$<$div id="box" class="jxgbox"}{}
\metax{\phantom{xxx}style="width:600px; height:600px;"$>$$<$/div$>$}{}
{\bf JavaScript code:}
\metax{$<$script type="text/javascript"$>$}{}
\metax{\phantom{xxx}{\tt var b = JXG.JSXGraph.initBoard(\'box\',$\{$axis:true$\}$);}}{}
\metax{$<$script$>$}{}
\section{Initializing the board}
\metax{var b = JXG.JSXGraph.initBoard(\'box\',$\{$attributes$\}$);}{}
{\sl -- Attributes of the board}\par
\metax{boundingbox:}{$[x_1,y_1,x_2,y_2]$ user coordinates of the}
\metax{}{upper left and bottom right corner}
\metax{keepaspectratio:true/false}{ default: false}
%\metax{unitX, unitY:}{number of pixels of one unit}
%\metax{}{in $x$/$y$-axis direction}
%\metax{originX, originY:}{pixel position of the origin}
\metax{zoomX,zoomY:}{zoom factor in $x$/$y$-axis direction}
\metax{zoomfactor:}{overall zoom factor in both directions}
\metax{axis,grid,showNavigation,showCopyright,zoom,pan:}{}\par%{\hfill true/false}
show axis, grid, zoom/navigation buttons, copyright text; enable mouse wheel zoom, shift$+$mouse panning
{\sl Properties and methods of the board:}\par
\metax{b.snapToGrid:true/false:}{grid mode}
\metax{b.suspendUpdate()}{stop updating (if speed is needed)}
\metax{b.unsuspendUpdate()}{restart updating}
\metax{b.addChild(b2)}{Connect board {\tt b2} to board {\tt b}}
\section{Basic commands}
\metax{var el = b.create(\'type\',[parents],$\{$attributes$\}$);}{}
\metax{el.setProperty($\{$key1:value1,key2:value2,...$\}$);}{}
\section{Point}
\metax{b.create(\'point\',[parents],$\{$atts$\}$);}{}
{\bf Parent elements:}
\metax{[x,y]}{Euclidean coordinates}
\metax{[z,x,y]}{Homogeneous coordinates ($z$ in first place)}
\metax{[function()$\{$return p1.X();$\}$,}{}
\metax{ function()$\{$return p2.Y();$\}$]}{Functions for $x,y$, (and $z$)}
\metax{[function()$\{$return [a,b];$\}$]}{Function returning array}
\metax{[function()$\{$return new JXG.Coords(...);$\}$]}{}
\metax{}{Function returning Coords object}
\eject
{\bf Methods}
\metax{p.X(),p.Y()}{$x$-coordinate, $y$-coordinate}
\metax{p.Z()}{(Homogeneous) $z$-coordinate}
\metax{p.Dist(q)}{Distance from $p$ to point $q$}
%\metax{p.setPosition(JXG.COORDS\_BY\_USER,x,y)}{move point}
\section{Glider}
Point on circle, line, curve, or turtle.
\metax{b.create(\'glider\',[parents],$\{$atts$\}$);}{}
{\bf Parent elements:}
\metax{[x,y,c]}{Initial coordinates and object to glide on}
\metax{[c]}{Object to glide on (initially at origin)}
Coordinates may also be defined by functions, see Point.
\section{Line}
\metax{b.create(\'line\',[parents],$\{$atts$\}$);}{}
{\bf Parent elements:}
\metax{[p1,p2]}{{}line through 2 points}
\metax{[c,a,b]}{{}line defined by 3 coordinates (can also be functions)}
\metax{[[x1,y1],[x2,y2]]}{{}line by 2 coordinate pairs}
In case of coordinates as parents, the line is the set of solutions
of the equation $ a\cdot x+b\cdot y+c\cdot z=0.$
\section{Circle}
\metax{b.create(\'circle\',[parents],$\{$atts$\}$);}{}
{\bf Parent elements:}
\metax{[p1,p2]}{2 points: center and point on circle line}
\metax{[p,r]}{center, radius (constant or function)}
\metax{[p,c],[c,p]}{center, circle from which the radius is taken}
\metax{[p,l],[l,p]}{center, line segment for the radius}
\metax{[p1,p2,p3]}{circle through 3 points}
Points may also be specified as array of coordinates.
\section{Polygon}
\metax{b.create(\'polygon\',[p1,p2,...],$\{$atts$\}$);}{}
\metax{[p1,p2,...]}{The array of points}
is connected by line segments and the inner area is filled.
\metax{b.create(\'regularpolygon\',[p1,p2,n],$\{$atts$\}$);}{}
\section{Slider}
\metax{var s = b.create(\'slider\',[[a,b],[c,d],[e,f,g]],$\{$atts$\}$);}{}
\metax{[a,b],[c,d]:}{visual start and end position of the slider}
\metax{[e,f,g]:}{the slider returns values between $e$ and $g$,}
\metax{}{the initial position is at value $f$}
\metax{snapWidth:num}{minimum distance between 2 values}
\metax{s.Value():}{returns the position of the slider $\in[e,g]$}
\section{Group}
\metax{b.create(\'group\',[p1,p2,...],$\{$atts$\}$);}{}
\metax{[p1,p2,...]}{array of points}
Invisible grouping of points. If one point is moved, the others are
transformed accordingly.
\section{Curve}
-- \metax{b.create(\'functiongraph\',[parents],$\{$atts$\}$);}{}
\metax{}{\sl Function graph, $x\mapsto f(x)$}
\metax{[function(x)$\{$return x*x;$\}$,-1,1]}{function term}
\metax{}{optional: start, end}
%The other types of curves are defined through:
-- \metax{b.create(\'curve\',[parents],$\{$atts$\}$);}{}
{\sl $\cdot$ Parameter curve, $t\mapsto(f(t),g(t))$:}
\metax{[function(t)$\{$return 5*t;$\}$,function(t)$\{$return t*t;$\}$,0,2]}{}
\metax{}{$x$ function, $y$ function, optional: start, end}
{\sl $\cdot$ Polar curve:}
Defined by the equation $r=f(\phi)$.
\metax{[function(phi)$\{$return 5*phi;$\}$,[1,2],0,Math.PI]}{}
\metax{}{Defining function, optional: center, start, end}
{\sl $\cdot$ Data plot:}\par
\metax{[[1,2,3],[4,-2,3]]}{array of $x$- and $y$-coordinates, {\sl or}}
\metax{[[1,2,3],function(x)$\{$return x*x;$\}$]}{}
\metax{}{array of $x$-coordinates, function term}
-- \metax{b.create(\'spline\',[p1,p2,...],$\{$atts$\}$);}{}
\metax{[p1,p2,...]}{{\sl Cubic spline:} array of points}
-- \metax{b.create(\'riemannsum\',[f,n,type],$\{$atts$\}$);}{}
{\sl Riemann sum} of type 'left', 'right', 'middle', 'trapezodial', 'upper', or 'lower'
-- \metax{b.create(\'integral',[[a,b],f],$\{$atts$\}$);}{}
Display the area $\int_a^b f(x)dx$.
\section{Tangent, normal}
\metax{var el = b.create(\'tangent\',[g],$\{$atts$\}$);}{}
\metax{var el = b.create(\'normal\',[g],$\{$atts$\}$);}{}
\metax{g}{glider on circle, line, polygon, curve, or turtle}
\section{Conic sections}
\par{\sl -- ellipse, hyperbola:}\hfill defined by the two foci points
and a point on the conic section or the length of the major axis.
\metax{b.create(\'ellipse\',[p1,p2,p3],$\{$atts$\}$);}{}
\metax{b.create(\'ellipse\',[p1,p2,a],$\{$atts$\}$);}{}
\metax{b.create(\'hyperbola\',[p1,p2,p3],$\{$atts$\}$);}{}
\metax{b.create(\'hyperbola\',[p1,p2,a],$\{$atts$\}$);}{}
\par{\sl -- parabola:}\hfill defined by the focus and the directrix (line).
\metax{b.create(\'parabola\',[p1,line],$\{$atts$\}$);}{}
\par{\sl -- conic section:}\hfill defined by $5$ points or
by the (symmetric) quadratic form
$$
(x,y,z)
\pmatrix{a_{00}&a_{01}&a_{02}\cr
a_{01}&a_{11}&a_{12}\cr
a_{02}&a_{12}&a_{22}\cr}
(x,y,z)^\top
$$
\metax{b.create(\'conic\',[p1,$\ldots$,p5],$\{$atts$\}$);}{}
\metax{b.create(\'conic\',[$a_{00}$,$a_{11}$,$a_{22}$,$a_{01}$,$a_{02}$,$a_{12}$],$\{$atts$\}$);}{}
\section{Turtle}
%\metax{var t = b.create(\'turtle\');}{}
%\metax{var t = b.create(\'turtle\',[],$\{$atts$\}$);}{}
\metax{var t = b.create(\'turtle\',[parents],$\{$atts$\}$);}{}
\metax{t.X(), t.Y(), t.dir}{position, direction (degrees)}.
%All angles have to be supplied in degrees.
{\bf Parent elements:}
\metax{[x,y,angle]}{Optional start values for $x$, $y$, and direction}
{\bf Methods:}
%Most of the methods have an abbreviated alternative version.
\metax{t.back(len); or t.bk(len);}{}
\metax{t.clean();}{erase the turtle lines without resetting the turtle}
\metax{t.clearScreen(); or t.cs();}{call {\tt t.home()} and {\tt t.clean()}}
\metax{t.forward(len); t.fd(len);}{}
\metax{t.hideTurtle(); or t.ht();}{}
\metax{t.home();}{Set the turtle to [0,0] and direction to 90.}
\metax{t.left(angle); or t.lt(angle);}{}
\metax{t.lookTo(t2.pos);}{Turtle looks to the turtle {\tt t2}}
\metax{t.lookTo([x,y]);}{Turtle looks to a coordinate pair}
\metax{t.moveTo([x,y]);}{Move the turtle with drawing}
\metax{t.penDown(); or t.pd();}{}
\metax{t.penUp(); or t.pu();}{}
\metax{t.popTurtle();}{pop turtle status from stack}
\metax{t.pushTurtle();}{push turtle status on stack}
\metax{t.right(angle); or t.rt(angle);}{}
\metax{t.setPos(x,y);}{Move the turtle without drawing}
\metax{t.setPenColor(col);}{{\tt col}: colorString, e.g. 'red' or '\#ff0000'}
%\eject
\metax{t.setPenSize(size);}{{\tt size}: number}
\metax{t.showTurtle(); or t.st();}{}
\section{Text}
Display static or dynamic texts.\par
\metax{el = b.create(\'text\',[x,y,"Hello"]);}{}
\metax{el = b.create(\'text\',[x,y,f]);}{where}
\metax{f = function()$\{$ return p.X(); $\}$}{}
Example for a dynamic text: $f$ returns the $x$ coordinate of the point $p$.\par
\section{Image}
Display bitmap image (also as data uri).\par
\metax{el = b.create(\'image\',[uri-string,[x,y],[w,h]]);}{}
\metax{}{{\tt [x,y]:} position of lower left corner, {\tt [w,h]:} width, height}
\section{Other geometric elements}
{\sl -- angle:} \hfill filled area defined by 3 points
\metax{el = b.create(\'angle\',[M,B,C],$\{$atts$\}$);}{}
\par{\sl -- arc:} \hfill circular arc defined by 3 points
\metax{el = b.create(\'arc\',[A,B,C],$\{$atts$\}$);}{}
\par{\sl -- arrow:} \hfill line through 2 points with arrow head
\metax{el = b.create(\'arrow\',[A,B],$\{$atts$\}$);}{}
\par{\sl -- arrowparallel:} \hfill arrow parallel to arrow $a$ starting at point $P$
\metax{el = b.create(\'arrowparallel\',[a,P],$\{$atts$\}$); or [P,a]}{}
%\metax{el = b.create(\'arrowparallel\',[P,a],$\{$atts$\}$);}{}
\par{\sl -- bisector:} \hfill angular bisector defined by 3 points, returns line
\metax{el = b.create(\'bisector\',[A,B,C],$\{$atts$\}$);}{}
\par{} \hfill angular bisector defined by 2 lines, returns 2 lines
\metax{el = b.create(\'bisectorlines\',[l1,l2],$\{$atts$\}$);}{}
\par{\sl -- incircle:} \hfill incircle of triangle defined by 3 points
\metax{el = b.create(\'incircle\',[A,B,C],$\{$atts$\}$);}{}
\par{\sl -- circumcircle:} \hfill circle through 3 points (deprecated)
\metax{el = b.create(\'circumcircle\',[A,B,C],$\{$atts$\}$);}{}
\par{\sl -- circumcirclemidpoint:} \hfill center of circle through 3 points
\metax{el = b.create(\'circumcirclemidpoint\',[A,B,C]);}{}
\par{\sl -- circumcircle arc:} \hfill circular arc defined by 3 points
\metax{el = b.create(\'circumcirclearc\',[A,B,C],$\{$atts$\}$);}{}
\par{\sl -- midpoint:} midpoint between 2 points or the 2 points defined by a line
\par{\sl -- circumcircle sector:} \hfill circular sector defined by 3 points
\metax{el = b.create(\'circumcirclesector\',[A,B,C],$\{$atts$\}$);}{}
\metax{el = b.create(\'midpoint\',[A,B],$\{$atts$\}$); or [line]}{}
%\metax{el = b.create(\'midpoint\',[line],$\{$atts$\}$);}{}
\par{\sl -- mirrorpoint:} \hfill rotate point $B$ around point $A$ by $180^\circ$
\metax{el = b.create(\'mirrorpoint\',[A,B],$\{$atts$\}$);}{}
\par{\sl -- parallel:} \hfill line parallel to line $l$ through point $P$
\metax{el = b.create(\'parallel\',[l,P],$\{$atts$\}$); or [P,l]}{}
%\metax{el = b.create(\'parallel\',[P,l],$\{$atts$\}$);}{}
\par{\sl -- parallelpoint:} \hfill point D such that $ABCD$ from a parallelogram
\metax{el = b.create(\'parallelpoint\',[A,B,C],$\{$atts$\}$);}{}
\par{\sl -- perpendicular:} \hfill line perpendicular to line $l$ through point $P$
\metax{el = b.create(\'perpendicular\',[l,P],$\{$atts$\}$); or [P,l]}{}
%\metax{el = b.create(\'perpendicular\',[P,l],$\{$atts$\}$);}{}
\par{\sl -- perpendicularpoint:} \hfill orthogonal projection of $P$ onto $l$
\metax{el = b.create(\'orthogonalprojection\',[l,P],$\{$$\}$); or [P,l]}{}
%\metax{el = b.create(\'perpendicularpoint\',[P,l],$\{$$\}$);}{}
\par{\sl -- reflection:} \hfill reflection of point $P$ over the line $l$.
Superseded by transformations
\metax{el = b.create(\'reflection\',[l,P],$\{$atts$\}$); or [P,l]}{}
%\metax{el = b.create(\'reflection\',[P,l],$\{$atts$\}$);}{}
\par{\sl -- sector:} \hfill circle sector defined by 3 points \hfill ???
\metax{el = b.create(\'sector\',[A,B,C],$\{$atts$\}$);}{}
\par{\sl -- semi circle:} \hfill defined by 2 points $p_1$ and $p_2$.
\metax{b.create(\'semicircle\',[p1,p2],$\{atts\}$);}{}
\par{\sl -- intersection:} \hfill of 2 objects (lines or circles).
Returns array of length 2 with first and second intersection point (also for line/line intersection).
\metax{b.create(\'intersection\',[o1,o2,n],$\{atts\}$);}{}
\section{Transform}
Affine transformation of points, images and texts.\par
\metax{t = b.create(\'transform\',[data,base],$\{$type:\'type\'$\}$);}{}
{\tt base}: the transformation is applied to the coordinates of this object.\par
Possible types:\par
-- translate: {\tt data}$=${\tt [x,y]}\par
-- scale: {\tt data}$=${\tt [x,y]}\par
-- reflect: {\tt data}$=${\tt [line]} or {\tt [x1,y1,x2,y2]}\par
-- rotate: {\tt data}$=${\tt [angle,point]} or {\tt [angle,x,y]}\par
-- shear: {\tt data}$=${\tt [angle]} \par
-- generic: {\tt data}$=${\tt [v11,v12,v13,v21,$\ldots$,v33]} $3\times 3$ matrix\par
{\bf Methods:}\par
\metax{t.bindTo(p)}{the coordinates of $p$ are defined by $t$}
\metax{t.applyOnce(p)}{apply the transformation once}
\metax{t.melt(s)}{combine two transformations to one: $ t:= t\cdot s$}
\metax{p2 = b.create('point',[p1,t],$\{$fixed:true$\}$);}{}
\metax{}{Point $p_2$: apply $t$ on point $p_1$}
\section{Attributes of geometric elements}
{\sl Generic attributes:}\par
\metax{strokeWidth:}{number}
\metax{strokeColor,fillColor,highlightFillColor,}{}
\metax{highlightStrokeColor,labelColor:}{color string}
\metax{strokeOpacity,fillOpacity,highlightFillOpacity,}{}
\metax{highlightStrokeOpacity:}{value between 0 and 1}
\metax{visible,trace,draft:}{true, false}
\metax{dash:}{dash style for lines: $0, 1, \ldots, 6$}
\metax{infoboxtext:}{string}
{\sl Attributes for point elements:}\par
%\metax{style:}{point style: $0, 1, \ldots, 12$}
\metax{face:}{possible point faces: '\kbd{[]}', '\kbd o', '\kbd x', '\kbd +', '\kbd <', '\kbd >', '\kbd A', '\kbd v'}
\metax{size:}{number}
\metax{fixed:}{true, false}
{\sl Attributes for line elements:}\par
\metax{straightFirst,straightLast,withTicks:}{true, false}
{\sl Attributes for line, arc and curve elements:}\par
\metax{firstArrow,lastArrow:}{true, false}
{\sl Attributes for polygon elements:}\par
\metax{withLines:}{true, false}
{\sl Attributes for text elements:}\par
\metax{display:}{'html', 'internal'}
\metax{fontSize:}{numerical value}
{\sl Attributes for angle elements:}\par
\metax{text:}{string}
{\sl Color string:}\par HTML color definition or HSV color scheme:
\par
\metax{JXG.hsv2rgb(h,s,v)}{$0\leq h\leq 360$, $0\leq s,v\leq1$}
\metax{}{returns RGB color string.}
\section{Mathematical functions}
Functions of the intrinsic JavaScript object {\sl Math}:\par
\metax{Math.abs,Math.acos,Math.asin,Math.atan,Math.ceil,}{}
\metax{Math.cos,Math.exp,Math.floor,Math.log,Math.max,}{}
\metax{Math.min,Math.random,Math.sin,Math.sqrt,Math.tan}{}
\metax{(number).toFixed(3):}{Rounding a number to fixed precision}
Additional mathematical functions are methods of {\tt JXG.Board}.
\metax{b.angle(A,B,C)}{angle $ABC$}
\metax{b.cosh(x), board.sinh(x)}{}
\metax{b.pow(a,b)}{$a^b$}
\metax{b.D(f,x)}{compute ${d\over dx}f$ numerically}
\metax{b.I([a,b],f)}{compute $\int_a^b f(x)dx$ numerically}
\metax{b.root(f,x)}{root of the function $f$.}
\metax{}{Uses Newton method with start value $x$}
\metax{b.factorial(n)}{computes $n!=1\cdot 2\cdot 3\cdots n$}
\metax{b.binomial(n,k)}{computes ${n\choose k}$}
\metax{b.distance(arr1,arr2)}{Euclidean distance}
\metax{b.lagrangePolynomial([p1,p2,...])}{}
\metax{}{returns a polynomial through the given points}
\metax{b.neville([p1,p2,...])}{polynomial curve interpolation}
\metax{c = JXG.Math.Numerics.bezier([p1,p2,...])}{\hfill Bezier curve}
\metax{}{$p_2,p_3,p_5,p_6,\ldots$ are control points. \kbd{b.create('curve',c);}}
\metax{c = JXG.Math.Numerics.bspline([p1,p2,...],order)}{\hfill B-spline curve}
\metax{f = JXG.Math.Numerics.regressionPolynomial(n,xArr,yArr)}{}
\metax{}{Regression pol. of deg. $n$: \kbd{b.create('functiongraph',f);}}
\metax{b.riemannsum(f,n,type,start,end)}{Area of Riemann}
\metax{}{sum, see {\sl Curves}}
{-- Intersection of objects:}\par
\metax{b.intersection(el1,el2,i,j)}{intersection of the elements}
\metax{}{$el_1$ and $el_2$ which can be lines, circles or curves}\par
In case of circle and line intersection, $i\in\{0,1\}$ denotes
the first or second intersection. In case of an intersection with a curve, $i$ and $j$ are floats
which are the start values for the path positions in the Newton method for $el_1$ and $el_2$, resp.
\section{Todo list}
'axis', 'ticks'.
\section{Chart}
To do $\ldots$
\section{Links}
Help pages are available at
{\tt http://jsxgraph.org}
%%%%%%%%%%%%%%%%%%%%%%%%%% END LIBRARIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This goes at the bottom of the last page (column 6)
\copyrightnotice
%
\bye
% Local variables:
% compile-command: "tex wiki-refcard.tex"
% End:
|