File: Verschiebung%20der%20LM-Kurve%20in%20ein_.gxt

package info (click to toggle)
jsxgraph 1.10.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 24,804 kB
  • sloc: javascript: 82,299; xml: 5,869; java: 1,072; php: 281; makefile: 184; python: 174; cpp: 76; sh: 12
file content (1 line) | stat: -rw-r--r-- 4,800 bytes parent folder | download | duplicates (8)
1
eNrtXW1v27YW/pz8CgH9kuA2NvUu4XoG1i3pur7tdlmXXlxskG3a1iJLhiSnTof998tXiZIpy7HTxonZAq14+CaJz3MOeY5M9l6ev393fnXZP+59PP/w66v37/p6xwW9Lk8d9wZJkI76x0e9OJjB/keYZsNpCAeLeKKNYKq9eXv2epHeQC2MNRjGSDKBqESUZBmMYax9/L3XJTVRC2E8TtJZkIdJ3O91xRTKDBb5NEmRnF0g0TCZzWCcIxm/QsJxEudZ+AX2dbvXLRK49VFfR62Se2Wyo94sWIYzlBj183QBe90yjXOXfdBBD7skiVuauCWJz+Eon/ZNm4hoAounMJxM874JiJylUH9d2qGmoR6T0SLrew7qi1yR50jSURgHOURJ7YgJ+uMgyiB+Npwg8kkaFmJyTaRZHMy5lFzjO0nScBLiF0ceQzft4kHwk1iO1bH5s3R5WdzYlySZFbUqdfTy6bu0FC6/iMOcl7dBpYItvK8uLYdr5DAtehBKFyVpPi4ZBQMY8aJLoextUZgVwaVniygPmxtG72mafF4WL4okCvmtKGdtswbpgMR5GC8SMl6kA1a86IWlWVWxvMa6EN/U+tplaVwXIbLolYK0qEaTrBYth2ssk+SW15hcvYHioEw+kTSrQ0viOjch/DxPUnaHeTLv+x3DR6ORzKkoguO8f2Z0XPTS8SURDpI8R0hAYsw2liI5KYG+7nRcq9dNGQ9Qj2U/2hHDdon8XgnqZd8gd62RuzbIHZORSJHmKKhBEmyEIqQUnv0A8N+LC9w0FpC8UZBN2bsil0Q4T0KkGwTqlAJMWH4nvUEwvJ6kySKmKoH1c8H+FP2grHEYQYaodIhgh/9lo1AlRskLrkiqaqTQI1Utgu6Kd9ELZ8EE9judDtJo5BLpFk1DQyDcrUZECIqjECvRjEmIdBTkQX/w56BzE2bhIILfvRqffD/ITj6d/Hx6ivrV7eeX6IU9v8Dv5hS/N1T+uFr9cpfKV7tUnu50294uta/Fyrhi7+QM1zzdoGPd3KXn6O6ViSLio48FGNAwgthWZlwbLxmXEd6TaIQNOCpOrTwxloRAuMWjI6YJsaX94+8//r6chpmGBBni1hB3on0OkCCFiM8j7XOYTzUyf1heari9zj//UM1ILTVubTZHPJnNi9SSJJcsvcSKxebEwcw50zuWy7mDOByk1P6zC3Kz3eJuewG6qxvIqM8SNAPdYx+1TP5nj4gUA+AKgkjSAKk5phxogr4nNC9h0xMqYMPCuuEpqkfTYAh5GzRBFUSeJteQEh7pNjF5fFRoGaFo/xlAfy4uAOClmVbGuiGMJzgf6yOcX8hICaQyov6zF/6PL9wfHYuoEGZTqe18hisBojIFe0uf99kPHv6LqwkvoCveHTJV5E0I5rN8M2WDeDCJtirHkiSZFhS7LiBbToC4gOZn/XgRRUjOzOJf2RiNB/6XPTC3k/iKPg2a3yDAozfNrigIFnnC0qwnQcKmIpQcO7HkU7LQEM60dBHHaFS0INZQC2gifEMb0ZIxp8n9MMRVDFEM+bYMwbYGzZ4QoOGQ3oeG65OFHV/faYw+Ex3alDRayRrtiN5YmuV8ykoTLCcKcAadu5JrWrlb1n4KUC6x7AH8F0NOwHIdzAyTIpg5mmm2aQhoLuAMwCqcHxTP+e0c4uEg/9PBxK2KMwuxt4r8uMQN7YaA7fvCqSCALix1dTNaGFx8AS4SvDQCZhUxJWRYYREzjaCposZcRU0FNm242QQ465CzHjprsVMBTwt6KvCp46cGoKMqeikuBK9JKeC0KFbdXOnxVVSxhDq6M/Lwi79FY6nj933LFUG3wCPGQVUrYk2ZRSGy/6KOfCFRkm6DkixXkxp7LW4HWHyBXNp8pi254Wd5SUYNBa1TJO+qTv17VqcSbmykT80N9enFhe+AQ9GnLWSQcUFCBSm0xykshoRcU0jEqFpeKFCaKnov0jQbuyh4FrlmIzWHqIhBsE2v+QgGKfOE0EsuTubUJZlxFxV6WwkWoneRFKJRmMIKj0sBfW/ivfeSeJ5Et5OydCmgnrmCuZjHQZomn0UaBxIae+vnOswuSSY7RAMcwlyHsqeFm7TAltwkc/494SZ6WdyfV6CgIGM5jSEDz+QUBKSlSvUeRLP+QFCfRZoBsM5pjAsGWbkd+kECYL/RDjkd368YIu7YrNqhq3V2iLah7JCyQ8oO3ZsdGkhorIPtDZGvDJEyRF/REJHQmwjgH2UA1hsNkV5fEZ3pgiV60uaEq3xlTrY3Jyz224jGcxkajc3RqMCowLgtGKmDvcTiJZCB0WwAI48lvYTRaAbjCdTedn8RQkwajzHVCuCAk1ZEnFYylyXYPRZ+KrHu2qtrgOr0/+nOICgSayEokQKOhf82UoBmA/AoKLAuDKWtxKG0WiBKk7FEk8eitFowioFFiEVpZTCqQYlfyHhjNSpxv4ZrNKMwbKXFlRa/nynFSxka7Y3RqMCowLg1GKMwhiIWhzIsOm3eAt1qcBZgGCtvgfIWbOAtoCPU7izgiJU7rX+S4bc5euqRGepuXmvahvJaKzWsvNbbeq1XifxKRmRvnZ/FcHdlMmtEUVlRWVF5WyrXZ5QjGZH91hml2zSj9O5tRmns+4yylZtqRvn1Z5Q/S/BrgI1X56Djm0D8Y0isEl1jNVgl0PFcQ2xB3yMTtSUL9mfNv08sUBbqm1ioFQfcaxnFmyPMZ2bdAwdUUE/NF+/LHfxGhsY1EeZagNlQWFRYvC8svpVh0WzEol3DoqNCEwqM24IxwFsmCN8x/in7ot5oitrOwhFtjdnyIs3y02AULjKuW1mK5QXxBN0RgzpN3BXB5uOKX2zkCWpdba77VmGP5tkSMI4X6K45aBf8J79k6Uk/ThQXo+xzRb4grRQoBezLxmHzyvKdDM/2GkNvuQ5wTAMYDrAd13Bqdt/wXB0YwLR9RzeAY0kXmpgwDQtNG7Vgm7atG6bhmqbvKFeo0uB7ttC0H3VQ472M8U4j462OY/su0F3HMxCvvWqAw+64vmPrruECX3dcR7873z3gWj4Anmcalu2bKoypCK8Ivz3hh0Emsv0/MrY3fotwE0ToYW2vTngs55zH11bHc+q0F8os+1cn70//RXajErXFyRnZIgplvD89hCXZQW2a8RWXZAzTEnh/kMHbWwdvo2OBygxWhm+9Y9qVeay5CvB3awH+TgFcAXwbgK94HGS/nTT83T0OXrPHwT0Qj4N3L/Ft5XFY43Go6etfJGA2wTp9bRJ3bl1B02BXRSOb1ZD3Pqjfrx6Y/trLh6camLYbpxfJrLb6bNoyzmyKzZJNwwwd6FZlBzEMk/kiLwBPEtUcuj+SkPO0v1Wn8GqEboE/OXR59iOAbrLIyZCW28FByXZwpj68w35w9l7tB2dsvB+c/EcKm9jcO+wHVxv7vdgPrvJ1Gf+8jG96WXxdxj4vo/Li67L652Vt+xtINV+3hCE5n0DUc3fcLtM02z6dpGCWfjxp+GrHzKe5Y6Z+nztm/ipTkeZDb5m5ihm1Y+bT3jGTKS4BmZdyZOoHgEzZcvmekbmPtvthkWlXkcnhKN/K9S5W3NnFilvKiisr3mrFf5PpSkdZcWXFH9qKf5Qj8+lbcbnXUFnxfbLid3BD+tu7IemcVeKIvFKOyANxRI5lWtBXjkjliHw4R+Tmys/aIQbjKOV36MpvIlF+lorCKOX3OKIwVmsUxmr233jKfaOOLWt13/wu05CHEIRRi+R9WCS3HFt2F11pt/q6faUrla7cQVdeyXSlfRCubhUW3HtdWd8RbSpTkm6rkiQuQ6mSpFA/hF3RPLUr2kPsilZHcChDcOvhhtTvI0eweSgIvp+dFhSCd0TwXzIE+zsg2Hzk+DUVfvcZvytH/+gSANug5eif83T6vwUAY2e6iCeyo39qBapH/6xkLteccwU66ugfdfTPgx/9s8IbQ8YbvYU3H+BocY2fSMYZIbPKl0rGctMTChVZFFn2hSymjCxGC1kaTpWTnCUnO0Gudh6H2dEPlxleW4x4B2Z4ihm7MMOSMaPt5MXvtE9vTsJTGTuKrCpDBPFS3GPcsmosAZ4yIMqA7B1NbBlNrBaa/DeMsyzIvzzXQhlVKtlVutSyBMqcgdqe3a64Na2ijKLMvlDGkVHGblvYh/F1MpvB+Ln2Sbqur+TXlvW1PIE1Tn2holb1ijT7SBpXRhqnhTRS67JiUySWxLDrrAC6b9i+CXTbN3TLAo78lBca5lBs2ZUtpRNasWULtngytrhtbMG+34El5QzPqjGnFLfxR3eBY3u+5TumbQFdvnU1DXMr9qil/4Oyx5exx2thj3RWtjIVq8+/wEbzLxZ9VMRQZuVbEqMeUr+W8WKnkDr54mkvgup7sRu5iqp//ag6kIDYaQurv3l79nqR3kCZji/zqqpelC/FLf9rARBHrbiVst/DWZAuC6Q7bYF0hL1IShOWUeVIIazEPvAJwJVzb/Bpwoohyie1bwyRRc8do9WWNK+zy7y6LWlaaeuVg4OBXT+bWHcq+Q0Lb7wpuaKTWnZ/SzqxLc1LPkUyNpn7srx4/L8uU6uLdasL6a/MZcuLAreocARnSGdidPe6gyTAP07SiKJPE3SzvQiO8zxJokGATxDS6O/ifvv1/EPx0ziNQv8FjBf5F5iO4DiMQ5jmUHtNf5pEPi/MIhhmebGvNao1gtkwDeeEysF1voBRBLXBhq2IlY/RuxHvspehhxrmcCRKsbaUiI+Pe4MFSsVZ+AX28aaFQvK4l6T45CTw716XXh1Ti0dfTffl+ft351eX/f8D/xKWpQ==