File: Verschiebung%20der%20IS-Kurve%20in%20einer%20geschlossenen%20VW.gxt

package info (click to toggle)
jsxgraph 1.5.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 24,020 kB
  • sloc: javascript: 76,112; xml: 5,869; java: 1,072; python: 767; php: 181; makefile: 154; cpp: 76; sh: 9
file content (1 line) | stat: -rw-r--r-- 7,440 bytes parent folder | download | duplicates (8)
1
eNrtXWlv20jS/mz/CgIBBslMTPMURawswHHijDczSTb2ZOLBYgPKomRuZNIvRSV2dve/v33xLoo6qIi2Kl7Msk9S5PNUdVdVd/dev3r39tWni/5+7+OrD+dn7972VdlSeodxar83CJxw2N/f6/nOjdv/6IbTq2vPHcz8sTR0Q+ns/ODNLPzqSp4vuZ5PcsYuqTEJplPXd33p45+9Q9aS9OD5oyC8cSIv8Pu9w2yKFDqz6DoISb64IFlXwc2N60ckL74imaPAj6bed7evmr3DJEF7H/ZV0it7VpG317tx7rwbkhj2o3Dm9g7TNC296ysy+bF3LHHPE/cs8c0bRtd93WRZPEGzr11vfB31dYXlixS53yG/oSSROwbD2bSvqYrWIVV4iv2WIBx6vhO5JCntiYz+yJlMXfr7aILlj0MvyWbXLHfqO7dxLrumTxOE3tijL4/9lE5XNsVvoT/GMFWa5j/nMK5K+/oeBDdxIzX5/bSNmr6AQ16L1p/5XhTXN5VcAzPzyg55PdoicsPkDpnaSU1eTmtOnIE7iaveZereJ5VFFVr7ZjaJvOqOyWu6Dr7dJe+JJZL8+2y+6Ft0yL+HH3n+LGCfi91AVE/uItKiaba+JG6RfVPzW6e1aVsCyuSuHKdJM54UrXg92uIuCO7jFuNPv7nZjzK+ZGnRhtekbb567rfbIBRPGAW3fVtWdPI1glueNXFHUf9AlXWLvHV6zXIHQRQRKBxoskH4JVKsJGTwV7uyQhqEggvklumNpD2B7RT5vRTUd32NPbbEHltjj8w+RUikR0INlhCfaEIEw5MThf6dntKuaQYrGzrTa/Gy2CXLvA08Ih8y1EkzKGnjJ+kNnKsv4zCY+VwsiPucin/JfUjRyJu4AlLhFcEd/a/4DHlmpMSIhUlelCSyJC9JyFPFt+h5N87Y7cuyTKQauyTyRZLIJ8g8rcSyCBaHHhWkU5HDcodO5PQHnwfyV2/qDSbu0dno6fFg+vTy6e/PnpH7qs8vyPt6fkpfzTP62kj1/XzrcbYtbdd7ekAaPqtv+ecad70u3rW/6F3/WuOukzXaXmhrNB58viq3frtoa3+Ntscv12h8oa9z55M1Ggd5fLxd+D0Psw3zn+mnn3IPsQDWbld7iuNfm3yI47Mmewub7OzCaLQ3M9cb7enoSJHNn36ivRwdUQlhPluko05THVlAR7x13Be9XqCjblMdqWqjr1zV5r+qRZ9Kb6Ybo/Y1Lf7tVLPJztRCZ29zb/z3xd94Vyn1JDTu8p05ozVErDNeQ6Hl75y27q0Ew/yjVIK6t1hvg89O9cP997/LdnehKsr6/bHZRDyCoxl0UOpOXDrnncZTqjsxHidj1mAypBNxUp3P1tmklw2CaY97e2I6Q2fM//rPv/5zce1NJZIxJePjK3oT6ZtDMkKXjMmH0jcvupaYHeDuQqL9yf/7H5/e8Bk37e3mlox1b26T1B1L3on0HZ00qFY8+qXDX5Jh6fEAmAzEnZBP5MUFe9rD5HF7Dnmsr64Yv4sELyAP2SfTWPb/4jeS0b0Sj/JZTuiQuYoY4fMEf1H+KBB2Bp4hvpO4TZzis6HQuXLjPniCj/KjMPji8lE7maBkk/t7yVQhU7X/RCH/Tk8VJa4t5lZ0gO/5Y1pOJxW0PMljNci4f9J/8sJ++cJ62THYPEDMjPkM+AltpLB5T2bWzH/vk5Mu/aPNMi/gMPt0ZMLJ3kRmEpy+mbRD+jXZlCP9liwppjLZWyeYTa0YcQYvn/b92WRC8sXk9t/TEfke9L/iB8ezXXrFf4039gjiyZsWVxwEsygQaXGnTI4wKHB2rEWTy2AmEZxJ4cz3yVeRHF8iPbih9JV3IgWjmCeNUERjs2+kCFLkB1KEahuP4Daculf8OSTanploY0utJPgzVl2Ts0ZKaSPt8QcLp1FseeIJUTJxaAE3QbFr3vgwbf0YoJxiuavQPwq5DJaLYBaYzII5RjMv1rUMmhM4K0oZzlvFc3R/69LPwf6ff0zaa3Zskb1bLn8/xQ2/DQPbceIeyIDOS4V1NVoEXOwMXAC8VAKmjJgUMqJyFjOVoMmjRi+jJgebOtwsApx5yJkPnbnYyYGnBj05+BTxUwDQXh69HBcZ30eaEdMiMZ7HQi+2hSaG0L2lkUdf/D35lip93/exIDhM8EhxkJeKVFJOJx4ZAGRl5AtASFoVQjK1CUvitXRkuxubuVOdL6RlrPhFWTDlioK3SZLLilO7YXEKcGMheaovKE9PT+2OsivytIYMEBcAKoDQHoVu8knYNYeET5pFiQDlqeTuSZoXU0dDXMSuxZe6dUkVjWGbX8df0AmFP4NfxtnBLfcsTmNPE3lbAc0k7yJIsoZe6OZ4nGbw95Z99l7g3waT+3FaO83gDraEuZTHThgG37I0dgAad+ePdYReAgY7TALswliHs6eGm7zCitxkY/6WcJO8rNgrl6AgIWM6jGEfXuRzELCecs17Lhn1OxnxmaQFAIucprgQkIX10AkAYLtSD1nMRZtRRLF7Mq+HPs3TQ7wP1EOoh1APNaaHBgCNVWV1RWSjIkJFtEFFxAJosgB+CQFYrVRE3cKEqJvRQ49amcQCH5XJ6spExG9VYvEVhEWtEouqbJmF2bmJYEQwNgPGUwiMeiUYOwXByMGJYEQwrgBGh0alZgaZnyFzh2pUgPHGG/LehCpP0qI8dIbebBoLV5ESZY4/Jk8koM4TyyJYbwmCFx+LdhVDWXcsqigPYiwKoHE0I08do3YWO2TZwJQPHbNDVTGYjIeruQpphhh3XlUK19cQns1qTV+0w9PQLpSuKF2bUfW/QmjsLI5GBCOCcVUwTjzfzWLxCsKiVWdQYmvpIHsShTEalNCgtIBBiX+hentSjFhQlJ5B8O1Wi1JdNlGxoyzdkGL/O4RGe3E0IhgRjE0p9iGARa3WU0RlJ6zY0VOEin1zir0csPAGwm+1o8iWaeF6EQu8D4xYQDGMEQurRiyUifwbROQ5XjZD1ux1mSw6QSojlZHKq1K5OKJ0ISLrdSNKqlLBESWVAQ2NKLW2jygVBUeUWx9R/g7h11jN7J7qIW4urdJDMiVIa9TQikhvz7y+TUhHLbSlAeVbiMfmijbfLJG16gEl3VPDVHL/NCQ2EhuJ3SCx30HEnuMXl+2uanW0rmWS/+ndHMlN2TJ0taMqVtcwda3ThVW3Ucl4IjUIZDu6rundDrkwdZxP4nyyZYQ3HzTf30N8r14cbcqmZnVtTetqmqV1lLxW12Sl07EN1bAswzQ0016W8Iasq5ZpW4Ttna5ha7iIGvmOfF+d71fONEv2f0Bkr4zU+OpMyPMbRf1Os2PG02tT1kpaPlPnrv/0gG2u9sunp++e5cRFXHDJCh6/z32ntp3ZoM9doBoA+AcI4PY8gBM2lxRaEeGqbObVmlYN8fdVEH+PEEeIrwLx0sIQaP2xrqy9MIQqgoqFIZRC7VgYsmE/wUJGFlwXss66kILEPofArM6T2NwlUJTRzMCYF8p5z4Hejri+DVsJF1rYhFZCQP6alUOM4KYwB63aeFGviqhgW+9pqqIauX34KExuZ1ECeZbIl/AIi0zJ44764/CqhG6CPxi6cfEDgG4wi9gnTTdVHAGbKura1RK7Kpqt2lVRW3hXRTjccxGtu8SuioVv34pdFXN++thRH28dm/jphaOe5yd++qKjvm6XEFDyHaYwZOd1ZeXckpvO6kZdEAoHMxzYbOC+s49z31m1yX1nLyARaeDGs7jx7A/eeFZIrgw0/4ChqW4XmmVx1jgy4QlHw8hso/LeLjLNPDJjOMI7Ii+jxq011LiO28ejGq9X4x8hWWmhGkc1vnU1/icMzcevxmHDN6rxNqnx4lqQMaC/jdrVxXrVWhCO81asBtm0l7KZ7b9wOciSy0GKAL6GAKyuDmCjNQDeuKkc8bsF/PLjuFL8XigQgKucQPHRc17mFDopPobO4+fQSclBdJ44iS52Zh4oMg3Dzi+hUDr55RDwkgpKmGy85eOdmHF4znEhdQz6V8kLXlzlQoo51xJezDunTiodVCcVTqqToMGNBB9WJxVOqxNgyRxWJ6Wn1S3rNDX01Z2m3MAGuE0v0W26I25TD5ixGTq6TdFtuj236RLCz1xd+Fko/HZd+P0bEn4mCj8Ufg8iZsSodTZxTQ7HjKCzCc8qrnc2XUIicuvOJnTM74hFv+as4mWEpV0rLE0Uligs1xGWf0HC0t4BYYnuzwcgLIvuoy+AlDTr3UfMaAhKST4uQAcSOpB+kAN0AiFYq0WwVY1ge1cQ3MxKTUTwui5QFYKwXuMCvYRcoJdFF+hl2QWqWHb2X0cvekQNeI8pLtnRCYpO0B/pBC2RRYPIYtSR5Z8zRRkYIGXiogJx0uw8fVQtGy2gGkaePiq4yXesVZA967In1VnIngVCCPIbBRwfQ+QxN715Ed206JfLp2/z27pcprm4pwvu6bLutkXHLyBsdza/bxHdrwhC93tEN6K7uR2LoAMuTWvtHYuo9K/YsYiSZyd2LKIj8hPcsWiTOxYt4aQxu7VOmirTDeUDumhw8WSNi+YT4KIxu7h4EhdPbn3x5PEJjM3d2AThBN2HrV49uXhQbkddOShXoB2Dcnc4KPcGkIIdFYNyMSj3QQTldmpPE+RgxjgzjDNbdRJz/BKSkfqOROXiSPGBBZr5kJg068QkHwuCYpJDfVcCzU4wTGfrYTo6BOFOXeTBz2DQwc+leIOfgUgdOx+pY5QidTpgrAGnBsYaNBGpc4KxBgvGGhQlfgDRxVojtJgrA9xcCUX+pkR+MaTgFQTh7vyDNey6cBkDONGz8qyvcmBB9sAvDDDAAIOmwmdOIazPPfbLAM6xLIfPKEsc+zUP7RhOg2hvMJxmCMDdWv8AsE71AWCdXToArGzCxnCa7YTTWLWr+YwqS7SFlmgMp1nAEv0asERbKsbTYDzN9uNpfoWxuRu7kdc7ktFL0jA0O+vsRn4L6W9jDScJR/qDNpnhcvx2m8wWDgmzVt+nUQhsDAnb4ZCw/4MUOe7TiCFhDyMkzKr1fFm49RiGhK03ET+DZKS1I3uP4WRn25OdJUPCQkhM1u7QyMeC8GzH2qWdm9Y3seNkZ92QMAOAcFepDQmriAkDgsKWjwpTZUUDo8Is3L+psR1oBLUwKmz5/ZtMiDJqDWXOzvl2TNKRdHYOsqdYI0+kcmmGU6asmjkOqTJdYV6kEHKniYhK3L1pDe50IO7UnZV2BNHlqMiQowIpNNkobQxo6cgKZEXrWGFBrNC3qVE6spYnj9ZujbJp3wySp7Xk6ULkMTaiUgxZM0sqBWmBtGghLVRoT+auWcOL88idueGBNPOH0nnkONHUmU3H5B347mjkfomk77Opc3Pj+hB/lmic59lSDQu2BD1rSrC6pYmQndvtVjFgywIzySFp0bSwZdJCe0N3O7UjQT6GqxgEJoXF8V+mIDf0K3GIBn6jjkMd1zq6QAuau9ZGxn66rD8scwLyYnd5AXp1uj9YjSh2UY0gXZAubaQL6NGxN6VGyiYEE3mBvGghLyBvjV0XHPDK878EdLL+XAJPeMqX59lSLMvrk9L4y0QnJ/KmhbyB/Dl2XYTAX54/nTrR9+eSB9EmV5xnTaEobyCjx6tnWGPJqo2kQdK0jzSQH8fWFrJX+9JFtT2aFUL2ZlGQoYstFw5DU2QkCx6C1kKy2BBZ6iIG6D384MYNpTeBP53dSCcQa6BaefrANTI8UjVZVwvhA2oHmYRb/LXvME4FYpKxIJOkM/+rO43Yr3N96Wwen8p1YVZB9fLc0kr+GQO5hdxqH7egEAS7PgQhGwAgvYZHdsU6xQFeuTzPIdMsDvSQQ8ihFnIIigiwa/dslo4kcIUOyy8s0RF5WX4oRR2jyybSA60G7aMHFAFg10UAgPOe0jTnpMwKC1mBSuMBsALy/9t1/v+n0qV0ADFDFOTZkWRmGaLKChIE1Ub7CQJ5/O06jz9oZC4Zly/KpECtgUblB0AKyN2vKnX+/mfSLxAvWHaeGSIrzw0cUqHGeAjksEBy1C77B2MpSzGUtTZepAXONFpJiy5IC61+qvFc8io0R6awNOVICwrmXGQLKpH2s8UG2VLntwddICWfR8nJoSMrUIc8AFboCsiKOh/8sT+NPHcMcSMpyjMkk52fg6hFZ6COK1VQgbSRKipIlTqX+ge608vo6urL2PFBwhQq5GlTKsz7RGy7FJaPy4WRPW2MmlRgTVO/vv7gzSz86sLrIuOy4rLIND/LF1nJ65oObiCzyWGZgWxZkC2Z4wDFXtx/B8lS5Vun0fN6MTBRs3fhtMvU74CnXa5z2mUCQRiPb0A8dhfHoyLTMwwQj4jHRvD4G4jHygOH+6opG3YBkF0VAYmAbAiQv0OAVJUlAIkaGwHZICDfgoBU5wHSVIsbmSMgEZBNAfIdCEhtCQmpySaOIRGQTQHyPQhIvRqQmqyoCEgE5KYA+Q8QkMYSgESVjYBcA5CT+3H+KMr3nwcgJqucXl/dMHLvkqGmSAKF2rxCfV6hMa+wcM/HfZwvhXAlAU5Pj8lfDQEeyHG+AwJ1N8yeVfkNOKqSoPL9ls/zXfmsSnWJ43zjeBc8zhc6x6/iIL85B/pCR/nB5/lmcAhg8q4CkypiEjG5JUzeV2BSQ0wiJreEye8VmNQRk4jJH4BJOutJJjrwRPwDNOnRlDnebs1E5yLOwzdlGDoH8agujkf0LSIeG8TjBYhHbSnfIgISAdkYIP8AAakvAUhFthCQCMgGLedXICaNess5HWhWmri1eWZ1bZ5ZXZtnVi/e8xGHve+46dxxoPm3ZuyA7Tw9IBPn3+2yCTmDClCqCEoE5bZAeVUBSg1BiaDcFiiHFaDcsvkcGLUhKnfVfv4RnPrYaD/H2fhWzEN/QnjUFTQPISB/BCAnnu9m8ei4IB6r/DlcwsciVMh7KZX3MZi5wH+YcY/qEvgsDwEWGAEsjM8WGW8KWrtK7cNav6D05+v8Mqzp++OoBbfz6IK7eeiLHRl4IM38oZQ/J8YdjdwvkfR9NnXoGbTVRwou1Bg6cnDBhrnzotX8AZ4mO9ETt3HbzPbRgra4X0jtfiFOGAbfchplBNJRr9MouuGpFSrF7NKiVuiUTXsEugr9Q6WyhlIRFeu1SgJdGMdjEMfGGjjWLcQx4nizOC7vFaiBODZ/4LaaxfmrpuPIBfcFbN+umjrIlM72dtVUi4tqD5TsqlokD5JnC+QhOmnikikqK6DmeIdaqSRGiDAgT9+buKMoCoLJwCGvh1Lt/tbt/3H+6gPphF7SPMa0F64/i7674dAdeb5Hg37YWeLkAb7QHzqduN40Sk1UUm/oTq9C75a9BedLNHMnE1caLNhLtvE+edfZp+xNyY+6itxhNpcCDcje3+8NZiTlT73vbp/GUWWS+z3unlD+1jsUjgouFPirOXz96t3bV58u+v8PySARUg==