1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
The code included in this file is provided under the terms of the ISC license
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
To use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted provided that the above copyright notice and
this permission notice appear in all copies.
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Holds a pointer to an object which can optionally be deleted when this pointer
goes out of scope.
This acts in many ways like a ScopedPointer, but allows you to specify whether or
not the object is deleted.
@see ScopedPointer
@tags{Core}
*/
template <class ObjectType>
class OptionalScopedPointer
{
public:
//==============================================================================
/** Creates an empty OptionalScopedPointer. */
OptionalScopedPointer() : shouldDelete (false) {}
/** Creates an OptionalScopedPointer to point to a given object, and specifying whether
the OptionalScopedPointer will delete it.
If takeOwnership is true, then the OptionalScopedPointer will act like a ScopedPointer,
deleting the object when it is itself deleted. If this parameter is false, then the
OptionalScopedPointer just holds a normal pointer to the object, and won't delete it.
*/
OptionalScopedPointer (ObjectType* objectToHold, bool takeOwnership)
: object (objectToHold), shouldDelete (takeOwnership)
{
}
/** Takes ownership of the object that another OptionalScopedPointer holds.
Like a normal ScopedPointer, the objectToTransferFrom object will become null,
as ownership of the managed object is transferred to this object.
The flag to indicate whether or not to delete the managed object is also
copied from the source object.
*/
OptionalScopedPointer (OptionalScopedPointer& objectToTransferFrom)
: object (objectToTransferFrom.release()),
shouldDelete (objectToTransferFrom.shouldDelete)
{
}
/** Takes ownership of the object that another OptionalScopedPointer holds.
Like a normal ScopedPointer, the objectToTransferFrom object will become null,
as ownership of the managed object is transferred to this object.
The ownership flag that says whether or not to delete the managed object is also
copied from the source object.
*/
OptionalScopedPointer& operator= (OptionalScopedPointer& objectToTransferFrom)
{
if (object != objectToTransferFrom.object)
{
reset();
object.reset (objectToTransferFrom.object.release());
}
shouldDelete = objectToTransferFrom.shouldDelete;
return *this;
}
/** The destructor may or may not delete the object that is being held, depending on the
takeOwnership flag that was specified when the object was first passed into an
OptionalScopedPointer constructor.
*/
~OptionalScopedPointer()
{
reset();
}
//==============================================================================
/** Returns the object that this pointer is managing. */
inline operator ObjectType*() const noexcept { return object.get(); }
/** Returns the object that this pointer is managing. */
inline ObjectType* get() const noexcept { return object.get(); }
/** Returns the object that this pointer is managing. */
inline ObjectType& operator*() const noexcept { return *object; }
/** Lets you access methods and properties of the object that this pointer is holding. */
inline ObjectType* operator->() const noexcept { return object.get(); }
//==============================================================================
/** Removes the current object from this OptionalScopedPointer without deleting it.
This will return the current object, and set this OptionalScopedPointer to a null pointer.
*/
ObjectType* release() noexcept { return object.release(); }
/** Resets this pointer to null, possibly deleting the object that it holds, if it has
ownership of it.
*/
void reset()
{
if (! shouldDelete)
object.release();
}
/** Does the same thing as reset(). */
void clear() { reset(); }
/** Makes this OptionalScopedPointer point at a new object, specifying whether the
OptionalScopedPointer will take ownership of the object.
If takeOwnership is true, then the OptionalScopedPointer will act like a ScopedPointer,
deleting the object when it is itself deleted. If this parameter is false, then the
OptionalScopedPointer just holds a normal pointer to the object, and won't delete it.
*/
void set (ObjectType* newObject, bool takeOwnership)
{
if (object.get() != newObject)
{
reset();
object.reset (newObject);
}
shouldDelete = takeOwnership;
}
/** Makes this OptionalScopedPointer point at a new object, and take ownership of that object. */
void setOwned (ObjectType* newObject)
{
set (newObject, true);
}
/** Makes this OptionalScopedPointer point at a new object, but will not take ownership of that object. */
void setNonOwned (ObjectType* newObject)
{
set (newObject, false);
}
/** Returns true if the target object will be deleted when this pointer
object is deleted.
*/
bool willDeleteObject() const noexcept { return shouldDelete; }
//==============================================================================
/** Swaps this object with another OptionalScopedPointer.
The two objects simply exchange their states.
*/
void swapWith (OptionalScopedPointer<ObjectType>& other) noexcept
{
object.swapWith (other.object);
std::swap (shouldDelete, other.shouldDelete);
}
private:
//==============================================================================
ScopedPointer<ObjectType> object;
bool shouldDelete;
// This is here to avoid people accidentally taking a second owned copy of
// a scoped pointer, which is almost certainly not what you intended to do!
// If you hit a problem with this, you probably meant to say
// myPointer.setOwned (myScopedPointer.release())
void setOwned (const ScopedPointer<ObjectType>&) = delete;
};
} // namespace juce
|