1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
The code included in this file is provided under the terms of the ISC license
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
To use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted provided that the above copyright notice and
this permission notice appear in all copies.
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Holds a resizable array of primitive or copy-by-value objects.
Examples of arrays are: Array<int>, Array<Rectangle> or Array<MyClass*>
The Array class can be used to hold simple, non-polymorphic objects as well as primitive types - to
do so, the class must fulfill these requirements:
- it must have a copy constructor and assignment operator
- it must be able to be relocated in memory by a memcpy without this causing any problems - so
objects whose functionality relies on external pointers or references to themselves can not be used.
You can of course have an array of pointers to any kind of object, e.g. Array<MyClass*>, but if
you do this, the array doesn't take any ownership of the objects - see the OwnedArray class or the
ReferenceCountedArray class for more powerful ways of holding lists of objects.
For holding lists of strings, you can use Array\<String\>, but it's usually better to use the
specialised class StringArray, which provides more useful functions.
To make all the array's methods thread-safe, pass in "CriticalSection" as the templated
TypeOfCriticalSectionToUse parameter, instead of the default DummyCriticalSection.
@see OwnedArray, ReferenceCountedArray, StringArray, CriticalSection
@tags{Core}
*/
template <typename ElementType,
typename TypeOfCriticalSectionToUse = DummyCriticalSection,
int minimumAllocatedSize = 0>
class Array
{
private:
using ParameterType = typename TypeHelpers::ParameterType<ElementType>::type;
public:
//==============================================================================
/** Creates an empty array. */
Array() = default;
/** Creates a copy of another array.
@param other the array to copy
*/
Array (const Array& other)
{
const ScopedLockType lock (other.getLock());
values.addArray (other.values.begin(), other.values.size());
}
Array (Array&& other) noexcept
: values (std::move (other.values))
{
}
/** Initalises from a null-terminated raw array of values.
@param data the data to copy from
*/
template <typename TypeToCreateFrom>
explicit Array (const TypeToCreateFrom* data)
{
while (*values != TypeToCreateFrom())
add (*data++);
}
/** Initalises from a raw array of values.
@param data the data to copy from
@param numValues the number of values in the array
*/
template <typename TypeToCreateFrom>
Array (const TypeToCreateFrom* data, int numValues)
{
values.addArray (data, numValues);
}
/** Initalises an Array of size 1 containing a single element. */
Array (const ElementType& singleElementToAdd)
{
add (singleElementToAdd);
}
/** Initalises an Array of size 1 containing a single element. */
Array (ElementType&& singleElementToAdd)
{
add (std::move (singleElementToAdd));
}
/** Initalises an Array from a list of items. */
template <typename... OtherElements>
Array (const ElementType& firstNewElement, OtherElements&&... otherElements)
{
values.add (firstNewElement, std::forward<OtherElements> (otherElements)...);
}
/** Initalises an Array from a list of items. */
template <typename... OtherElements>
Array (ElementType&& firstNewElement, OtherElements&&... otherElements)
{
values.add (std::move (firstNewElement), std::forward<OtherElements> (otherElements)...);
}
template <typename TypeToCreateFrom>
Array (const std::initializer_list<TypeToCreateFrom>& items)
{
addArray (items);
}
/** Destructor. */
~Array() = default;
/** Copies another array.
@param other the array to copy
*/
Array& operator= (const Array& other)
{
if (this != &other)
{
auto otherCopy (other);
swapWith (otherCopy);
}
return *this;
}
Array& operator= (Array&& other) noexcept
{
const ScopedLockType lock (getLock());
values = std::move (other.values);
return *this;
}
//==============================================================================
/** Compares this array to another one.
Two arrays are considered equal if they both contain the same set of
elements, in the same order.
@param other the other array to compare with
*/
template <class OtherArrayType>
bool operator== (const OtherArrayType& other) const
{
const ScopedLockType lock (getLock());
const typename OtherArrayType::ScopedLockType lock2 (other.getLock());
return values == other;
}
/** Compares this array to another one.
Two arrays are considered equal if they both contain the same set of
elements, in the same order.
@param other the other array to compare with
*/
template <class OtherArrayType>
bool operator!= (const OtherArrayType& other) const
{
return ! operator== (other);
}
//==============================================================================
/** Removes all elements from the array.
This will remove all the elements, and free any storage that the array is
using. To clear the array without freeing the storage, use the clearQuick()
method instead.
@see clearQuick
*/
void clear()
{
const ScopedLockType lock (getLock());
clearQuick();
values.setAllocatedSize (0);
}
/** Removes all elements from the array without freeing the array's allocated storage.
@see clear
*/
void clearQuick()
{
const ScopedLockType lock (getLock());
values.clear();
}
/** Fills the Array with the provided value. */
void fill (const ParameterType& newValue) noexcept
{
const ScopedLockType lock (getLock());
for (auto& e : *this)
e = newValue;
}
//==============================================================================
/** Returns the current number of elements in the array. */
inline int size() const noexcept
{
const ScopedLockType lock (getLock());
return values.size();
}
/** Returns true if the array is empty, false otherwise. */
inline bool isEmpty() const noexcept
{
return size() == 0;
}
/** Returns one of the elements in the array.
If the index passed in is beyond the range of valid elements, this
will return a default value.
If you're certain that the index will always be a valid element, you
can call getUnchecked() instead, which is faster.
@param index the index of the element being requested (0 is the first element in the array)
@see getUnchecked, getFirst, getLast
*/
ElementType operator[] (int index) const
{
const ScopedLockType lock (getLock());
return values.getValueWithDefault (index);
}
/** Returns one of the elements in the array, without checking the index passed in.
Unlike the operator[] method, this will try to return an element without
checking that the index is within the bounds of the array, so should only
be used when you're confident that it will always be a valid index.
@param index the index of the element being requested (0 is the first element in the array)
@see operator[], getFirst, getLast
*/
inline ElementType getUnchecked (int index) const
{
const ScopedLockType lock (getLock());
return values[index];
}
/** Returns a direct reference to one of the elements in the array, without checking the index passed in.
This is like getUnchecked, but returns a direct reference to the element, so that
you can alter it directly. Obviously this can be dangerous, so only use it when
absolutely necessary.
@param index the index of the element being requested (0 is the first element in the array)
@see operator[], getFirst, getLast
*/
inline ElementType& getReference (int index) noexcept
{
const ScopedLockType lock (getLock());
return values[index];
}
/** Returns a direct reference to one of the elements in the array, without checking the index passed in.
This is like getUnchecked, but returns a direct reference to the element. Obviously
this can be dangerous, so only use it when absolutely necessary.
@param index the index of the element being requested (0 is the first element in the array)
@see operator[], getFirst, getLast
*/
inline const ElementType& getReference (int index) const noexcept
{
const ScopedLockType lock (getLock());
return values[index];
}
/** Returns the first element in the array, or a default value if the array is empty.
@see operator[], getUnchecked, getLast
*/
inline ElementType getFirst() const noexcept
{
const ScopedLockType lock (getLock());
return values.getFirst();
}
/** Returns the last element in the array, or a default value if the array is empty.
@see operator[], getUnchecked, getFirst
*/
inline ElementType getLast() const noexcept
{
const ScopedLockType lock (getLock());
return values.getLast();
}
/** Returns a pointer to the actual array data.
This pointer will only be valid until the next time a non-const method
is called on the array.
*/
inline ElementType* getRawDataPointer() noexcept
{
return values.begin();
}
/** Returns a pointer to the actual array data.
This pointer will only be valid until the next time a non-const method
is called on the array.
*/
inline const ElementType* getRawDataPointer() const noexcept
{
return values.begin();
}
//==============================================================================
/** Returns a pointer to the first element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline ElementType* begin() noexcept
{
return values.begin();
}
/** Returns a pointer to the first element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline const ElementType* begin() const noexcept
{
return values.begin();
}
/** Returns a pointer to the element which follows the last element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline ElementType* end() noexcept
{
return values.end();
}
/** Returns a pointer to the element which follows the last element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline const ElementType* end() const noexcept
{
return values.end();
}
/** Returns a pointer to the first element in the array.
This method is provided for compatibility with the standard C++ containers.
*/
inline ElementType* data() noexcept
{
return begin();
}
/** Returns a pointer to the first element in the array.
This method is provided for compatibility with the standard C++ containers.
*/
inline const ElementType* data() const noexcept
{
return begin();
}
//==============================================================================
/** Finds the index of the first element which matches the value passed in.
This will search the array for the given object, and return the index
of its first occurrence. If the object isn't found, the method will return -1.
@param elementToLookFor the value or object to look for
@returns the index of the object, or -1 if it's not found
*/
int indexOf (ParameterType elementToLookFor) const
{
const ScopedLockType lock (getLock());
auto e = values.begin();
auto endPtr = values.end();
for (; e != endPtr; ++e)
if (elementToLookFor == *e)
return static_cast<int> (e - values.begin());
return -1;
}
/** Returns true if the array contains at least one occurrence of an object.
@param elementToLookFor the value or object to look for
@returns true if the item is found
*/
bool contains (ParameterType elementToLookFor) const
{
const ScopedLockType lock (getLock());
auto e = values.begin();
auto endPtr = values.end();
for (; e != endPtr; ++e)
if (elementToLookFor == *e)
return true;
return false;
}
//==============================================================================
/** Appends a new element at the end of the array.
@param newElement the new object to add to the array
@see set, insert, addIfNotAlreadyThere, addSorted, addUsingDefaultSort, addArray
*/
void add (const ElementType& newElement)
{
const ScopedLockType lock (getLock());
values.add (newElement);
}
/** Appends a new element at the end of the array.
@param newElement the new object to add to the array
@see set, insert, addIfNotAlreadyThere, addSorted, addUsingDefaultSort, addArray
*/
void add (ElementType&& newElement)
{
const ScopedLockType lock (getLock());
values.add (std::move (newElement));
}
/** Appends multiple new elements at the end of the array. */
template <typename... OtherElements>
void add (const ElementType& firstNewElement, OtherElements&&... otherElements)
{
const ScopedLockType lock (getLock());
values.add (firstNewElement, std::forward<OtherElements> (otherElements)...);
}
/** Appends multiple new elements at the end of the array. */
template <typename... OtherElements>
void add (ElementType&& firstNewElement, OtherElements&&... otherElements)
{
const ScopedLockType lock (getLock());
values.add (std::move (firstNewElement), std::forward<OtherElements> (otherElements)...);
}
/** Inserts a new element into the array at a given position.
If the index is less than 0 or greater than the size of the array, the
element will be added to the end of the array.
Otherwise, it will be inserted into the array, moving all the later elements
along to make room.
@param indexToInsertAt the index at which the new element should be
inserted (pass in -1 to add it to the end)
@param newElement the new object to add to the array
@see add, addSorted, addUsingDefaultSort, set
*/
void insert (int indexToInsertAt, ParameterType newElement)
{
const ScopedLockType lock (getLock());
values.insert (indexToInsertAt, newElement, 1);
}
/** Inserts multiple copies of an element into the array at a given position.
If the index is less than 0 or greater than the size of the array, the
element will be added to the end of the array.
Otherwise, it will be inserted into the array, moving all the later elements
along to make room.
@param indexToInsertAt the index at which the new element should be inserted
@param newElement the new object to add to the array
@param numberOfTimesToInsertIt how many copies of the value to insert
@see insert, add, addSorted, set
*/
void insertMultiple (int indexToInsertAt, ParameterType newElement,
int numberOfTimesToInsertIt)
{
if (numberOfTimesToInsertIt > 0)
{
const ScopedLockType lock (getLock());
values.insert (indexToInsertAt, newElement, numberOfTimesToInsertIt);
}
}
/** Inserts an array of values into this array at a given position.
If the index is less than 0 or greater than the size of the array, the
new elements will be added to the end of the array.
Otherwise, they will be inserted into the array, moving all the later elements
along to make room.
@param indexToInsertAt the index at which the first new element should be inserted
@param newElements the new values to add to the array
@param numberOfElements how many items are in the array
@see insert, add, addSorted, set
*/
void insertArray (int indexToInsertAt,
const ElementType* newElements,
int numberOfElements)
{
if (numberOfElements > 0)
{
const ScopedLockType lock (getLock());
values.insertArray (indexToInsertAt, newElements, numberOfElements);
}
}
/** Appends a new element at the end of the array as long as the array doesn't
already contain it.
If the array already contains an element that matches the one passed in, nothing
will be done.
@param newElement the new object to add to the array
@return true if the element was added to the array; false otherwise.
*/
bool addIfNotAlreadyThere (ParameterType newElement)
{
const ScopedLockType lock (getLock());
if (contains (newElement))
return false;
add (newElement);
return true;
}
/** Replaces an element with a new value.
If the index is less than zero, this method does nothing.
If the index is beyond the end of the array, the item is added to the end of the array.
@param indexToChange the index whose value you want to change
@param newValue the new value to set for this index.
@see add, insert
*/
void set (int indexToChange, ParameterType newValue)
{
if (indexToChange >= 0)
{
const ScopedLockType lock (getLock());
if (indexToChange < values.size())
values[indexToChange] = newValue;
else
values.add (newValue);
}
else
{
jassertfalse;
}
}
/** Replaces an element with a new value without doing any bounds-checking.
This just sets a value directly in the array's internal storage, so you'd
better make sure it's in range!
@param indexToChange the index whose value you want to change
@param newValue the new value to set for this index.
@see set, getUnchecked
*/
void setUnchecked (int indexToChange, ParameterType newValue)
{
const ScopedLockType lock (getLock());
jassert (isPositiveAndBelow (indexToChange, values.size()));
values[indexToChange] = newValue;
}
/** Adds elements from an array to the end of this array.
@param elementsToAdd an array of some kind of object from which elements
can be constructed.
@param numElementsToAdd how many elements are in this other array
@see add
*/
template <typename Type>
void addArray (const Type* elementsToAdd, int numElementsToAdd)
{
const ScopedLockType lock (getLock());
if (numElementsToAdd > 0)
values.addArray (elementsToAdd, numElementsToAdd);
}
template <typename TypeToCreateFrom>
void addArray (const std::initializer_list<TypeToCreateFrom>& items)
{
const ScopedLockType lock (getLock());
values.addArray (items);
}
/** Adds elements from a null-terminated array of pointers to the end of this array.
@param elementsToAdd an array of pointers to some kind of object from which elements
can be constructed. This array must be terminated by a nullptr
@see addArray
*/
template <typename Type>
void addNullTerminatedArray (const Type* const* elementsToAdd)
{
int num = 0;
for (auto e = elementsToAdd; *e != nullptr; ++e)
++num;
addArray (elementsToAdd, num);
}
/** This swaps the contents of this array with those of another array.
If you need to exchange two arrays, this is vastly quicker than using copy-by-value
because it just swaps their internal pointers.
*/
template <class OtherArrayType>
void swapWith (OtherArrayType& otherArray) noexcept
{
const ScopedLockType lock1 (getLock());
const typename OtherArrayType::ScopedLockType lock2 (otherArray.getLock());
values.swapWith (otherArray.values);
}
/** Adds elements from another array to the end of this array.
@param arrayToAddFrom the array from which to copy the elements
@see add
*/
template <class OtherArrayType>
void addArray (const OtherArrayType& arrayToAddFrom)
{
const typename OtherArrayType::ScopedLockType lock1 (arrayToAddFrom.getLock());
const ScopedLockType lock2 (getLock());
values.addArray (arrayToAddFrom);
}
/** Adds elements from another array to the end of this array.
@param arrayToAddFrom the array from which to copy the elements
@param startIndex the first element of the other array to start copying from
@param numElementsToAdd how many elements to add from the other array. If this
value is negative or greater than the number of available elements,
all available elements will be copied.
@see add
*/
template <class OtherArrayType>
typename std::enable_if<! std::is_pointer<OtherArrayType>::value, void>::type
addArray (const OtherArrayType& arrayToAddFrom,
int startIndex,
int numElementsToAdd = -1)
{
const typename OtherArrayType::ScopedLockType lock1 (arrayToAddFrom.getLock());
const ScopedLockType lock2 (getLock());
values.addArray (arrayToAddFrom, startIndex, numElementsToAdd);
}
/** This will enlarge or shrink the array to the given number of elements, by adding
or removing items from its end.
If the array is smaller than the given target size, empty elements will be appended
until its size is as specified. If its size is larger than the target, items will be
removed from its end to shorten it.
*/
void resize (int targetNumItems)
{
jassert (targetNumItems >= 0);
auto numToAdd = targetNumItems - values.size();
if (numToAdd > 0)
insertMultiple (values.size(), ElementType(), numToAdd);
else if (numToAdd < 0)
removeRange (targetNumItems, -numToAdd);
}
/** Inserts a new element into the array, assuming that the array is sorted.
This will use a comparator to find the position at which the new element
should go. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param comparator the comparator to use to compare the elements - see the sort()
method for details about the form this object should take
@param newElement the new element to insert to the array
@returns the index at which the new item was added
@see addUsingDefaultSort, add, sort
*/
template <class ElementComparator>
int addSorted (ElementComparator& comparator, ParameterType newElement)
{
const ScopedLockType lock (getLock());
auto index = findInsertIndexInSortedArray (comparator, values.begin(), newElement, 0, values.size());
insert (index, newElement);
return index;
}
/** Inserts a new element into the array, assuming that the array is sorted.
This will use the DefaultElementComparator class for sorting, so your ElementType
must be suitable for use with that class. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param newElement the new element to insert to the array
@see addSorted, sort
*/
void addUsingDefaultSort (ParameterType newElement)
{
DefaultElementComparator <ElementType> comparator;
addSorted (comparator, newElement);
}
/** Finds the index of an element in the array, assuming that the array is sorted.
This will use a comparator to do a binary-chop to find the index of the given
element, if it exists. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param comparator the comparator to use to compare the elements - see the sort()
method for details about the form this object should take
@param elementToLookFor the element to search for
@returns the index of the element, or -1 if it's not found
@see addSorted, sort
*/
template <typename ElementComparator, typename TargetValueType>
int indexOfSorted (ElementComparator& comparator, TargetValueType elementToLookFor) const
{
ignoreUnused (comparator); // if you pass in an object with a static compareElements() method, this
// avoids getting warning messages about the parameter being unused
const ScopedLockType lock (getLock());
for (int s = 0, e = values.size();;)
{
if (s >= e)
return -1;
if (comparator.compareElements (elementToLookFor, values[s]) == 0)
return s;
auto halfway = (s + e) / 2;
if (halfway == s)
return -1;
if (comparator.compareElements (elementToLookFor, values[halfway]) >= 0)
s = halfway;
else
e = halfway;
}
}
//==============================================================================
/** Removes an element from the array.
This will remove the element at a given index, and move back
all the subsequent elements to close the gap.
If the index passed in is out-of-range, nothing will happen.
@param indexToRemove the index of the element to remove
@see removeAndReturn, removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
void remove (int indexToRemove)
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (indexToRemove, values.size()))
removeInternal (indexToRemove);
}
/** Removes an element from the array.
This will remove the element at a given index, and move back
all the subsequent elements to close the gap.
If the index passed in is out-of-range, nothing will happen.
@param indexToRemove the index of the element to remove
@returns the element that has been removed
@see removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
ElementType removeAndReturn (int indexToRemove)
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (indexToRemove, values.size()))
{
ElementType removed (values[indexToRemove]);
removeInternal (indexToRemove);
return removed;
}
return ElementType();
}
/** Removes an element from the array.
This will remove the element pointed to by the given iterator,
and move back all the subsequent elements to close the gap.
If the iterator passed in does not point to an element within the
array, behaviour is undefined.
@param elementToRemove a pointer to the element to remove
@see removeFirstMatchingValue, removeAllInstancesOf, removeRange, removeIf
*/
void remove (const ElementType* elementToRemove)
{
jassert (elementToRemove != nullptr);
const ScopedLockType lock (getLock());
jassert (values.begin() != nullptr);
auto indexToRemove = (int) (elementToRemove - values.begin());
if (! isPositiveAndBelow (indexToRemove, values.size()))
{
jassertfalse;
return;
}
removeInternal (indexToRemove);
}
/** Removes an item from the array.
This will remove the first occurrence of the given element from the array.
If the item isn't found, no action is taken.
@param valueToRemove the object to try to remove
@see remove, removeRange, removeIf
*/
void removeFirstMatchingValue (ParameterType valueToRemove)
{
const ScopedLockType lock (getLock());
auto* e = values.begin();
for (int i = 0; i < values.size(); ++i)
{
if (valueToRemove == e[i])
{
removeInternal (i);
break;
}
}
}
/** Removes items from the array.
This will remove all occurrences of the given element from the array.
If no such items are found, no action is taken.
@param valueToRemove the object to try to remove
@return how many objects were removed.
@see remove, removeRange, removeIf
*/
int removeAllInstancesOf (ParameterType valueToRemove)
{
int numRemoved = 0;
const ScopedLockType lock (getLock());
for (int i = values.size(); --i >= 0;)
{
if (valueToRemove == values[i])
{
removeInternal (i);
++numRemoved;
}
}
return numRemoved;
}
/** Removes items from the array.
This will remove all objects from the array that match a condition.
If no such items are found, no action is taken.
@param predicate the condition when to remove an item. Must be a callable
type that takes an ElementType and returns a bool
@return how many objects were removed.
@see remove, removeRange, removeAllInstancesOf
*/
template <typename PredicateType>
int removeIf (PredicateType&& predicate)
{
int numRemoved = 0;
const ScopedLockType lock (getLock());
for (int i = values.size(); --i >= 0;)
{
if (predicate (values[i]))
{
removeInternal (i);
++numRemoved;
}
}
return numRemoved;
}
/** Removes a range of elements from the array.
This will remove a set of elements, starting from the given index,
and move subsequent elements down to close the gap.
If the range extends beyond the bounds of the array, it will
be safely clipped to the size of the array.
@param startIndex the index of the first element to remove
@param numberToRemove how many elements should be removed
@see remove, removeFirstMatchingValue, removeAllInstancesOf, removeIf
*/
void removeRange (int startIndex, int numberToRemove)
{
const ScopedLockType lock (getLock());
auto endIndex = jlimit (0, values.size(), startIndex + numberToRemove);
startIndex = jlimit (0, values.size(), startIndex);
numberToRemove = endIndex - startIndex;
if (numberToRemove > 0)
{
values.removeElements (startIndex, numberToRemove);
minimiseStorageAfterRemoval();
}
}
/** Removes the last n elements from the array.
@param howManyToRemove how many elements to remove from the end of the array
@see remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
void removeLast (int howManyToRemove = 1)
{
jassert (howManyToRemove >= 0);
if (howManyToRemove > 0)
{
const ScopedLockType lock (getLock());
if (howManyToRemove > values.size())
howManyToRemove = values.size();
values.removeElements (values.size() - howManyToRemove, howManyToRemove);
minimiseStorageAfterRemoval();
}
}
/** Removes any elements which are also in another array.
@param otherArray the other array in which to look for elements to remove
@see removeValuesNotIn, remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
template <class OtherArrayType>
void removeValuesIn (const OtherArrayType& otherArray)
{
const typename OtherArrayType::ScopedLockType lock1 (otherArray.getLock());
const ScopedLockType lock2 (getLock());
if (this == &otherArray)
{
clear();
}
else
{
if (otherArray.size() > 0)
{
for (int i = values.size(); --i >= 0;)
if (otherArray.contains (values[i]))
removeInternal (i);
}
}
}
/** Removes any elements which are not found in another array.
Only elements which occur in this other array will be retained.
@param otherArray the array in which to look for elements NOT to remove
@see removeValuesIn, remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
template <class OtherArrayType>
void removeValuesNotIn (const OtherArrayType& otherArray)
{
const typename OtherArrayType::ScopedLockType lock1 (otherArray.getLock());
const ScopedLockType lock2 (getLock());
if (this != &otherArray)
{
if (otherArray.size() <= 0)
{
clear();
}
else
{
for (int i = values.size(); --i >= 0;)
if (! otherArray.contains (values[i]))
removeInternal (i);
}
}
}
/** Swaps over two elements in the array.
This swaps over the elements found at the two indexes passed in.
If either index is out-of-range, this method will do nothing.
@param index1 index of one of the elements to swap
@param index2 index of the other element to swap
*/
void swap (int index1, int index2)
{
const ScopedLockType lock (getLock());
values.swap (index1, index2);
}
/** Moves one of the values to a different position.
This will move the value to a specified index, shuffling along
any intervening elements as required.
So for example, if you have the array { 0, 1, 2, 3, 4, 5 } then calling
move (2, 4) would result in { 0, 1, 3, 4, 2, 5 }.
@param currentIndex the index of the value to be moved. If this isn't a
valid index, then nothing will be done
@param newIndex the index at which you'd like this value to end up. If this
is less than zero, the value will be moved to the end
of the array
*/
void move (int currentIndex, int newIndex) noexcept
{
if (currentIndex != newIndex)
{
const ScopedLockType lock (getLock());
values.move (currentIndex, newIndex);
}
}
//==============================================================================
/** Reduces the amount of storage being used by the array.
Arrays typically allocate slightly more storage than they need, and after
removing elements, they may have quite a lot of unused space allocated.
This method will reduce the amount of allocated storage to a minimum.
*/
void minimiseStorageOverheads()
{
const ScopedLockType lock (getLock());
values.shrinkToNoMoreThan (values.size());
}
/** Increases the array's internal storage to hold a minimum number of elements.
Calling this before adding a large known number of elements means that
the array won't have to keep dynamically resizing itself as the elements
are added, and it'll therefore be more efficient.
*/
void ensureStorageAllocated (int minNumElements)
{
const ScopedLockType lock (getLock());
values.ensureAllocatedSize (minNumElements);
}
//==============================================================================
/** Sorts the array using a default comparison operation.
If the type of your elements isn't supported by the DefaultElementComparator class
then you may need to use the other version of sort, which takes a custom comparator.
*/
void sort()
{
DefaultElementComparator<ElementType> comparator;
sort (comparator);
}
/** Sorts the elements in the array.
This will use a comparator object to sort the elements into order. The object
passed must have a method of the form:
@code
int compareElements (ElementType first, ElementType second);
@endcode
..and this method must return:
- a value of < 0 if the first comes before the second
- a value of 0 if the two objects are equivalent
- a value of > 0 if the second comes before the first
To improve performance, the compareElements() method can be declared as static or const.
@param comparator the comparator to use for comparing elements.
@param retainOrderOfEquivalentItems if this is true, then items
which the comparator says are equivalent will be
kept in the order in which they currently appear
in the array. This is slower to perform, but may
be important in some cases. If it's false, a faster
algorithm is used, but equivalent elements may be
rearranged.
@see addSorted, indexOfSorted, sortArray
*/
template <class ElementComparator>
void sort (ElementComparator& comparator,
bool retainOrderOfEquivalentItems = false)
{
const ScopedLockType lock (getLock());
ignoreUnused (comparator); // if you pass in an object with a static compareElements() method, this
// avoids getting warning messages about the parameter being unused
sortArray (comparator, values.begin(), 0, size() - 1, retainOrderOfEquivalentItems);
}
//==============================================================================
/** Returns the CriticalSection that locks this array.
To lock, you can call getLock().enter() and getLock().exit(), or preferably use
an object of ScopedLockType as an RAII lock for it.
*/
inline const TypeOfCriticalSectionToUse& getLock() const noexcept { return values; }
/** Returns the type of scoped lock to use for locking this array */
using ScopedLockType = typename TypeOfCriticalSectionToUse::ScopedLockType;
//==============================================================================
#ifndef DOXYGEN
[[deprecated ("This method has been replaced by a more flexible templated version and renamed "
"to swapWith to be more consistent with the names used in other classes.")]]
void swapWithArray (Array& other) noexcept { swapWith (other); }
#endif
private:
//==============================================================================
ArrayBase<ElementType, TypeOfCriticalSectionToUse> values;
void removeInternal (int indexToRemove)
{
values.removeElements (indexToRemove, 1);
minimiseStorageAfterRemoval();
}
void minimiseStorageAfterRemoval()
{
if (values.capacity() > jmax (minimumAllocatedSize, values.size() * 2))
values.shrinkToNoMoreThan (jmax (values.size(), jmax (minimumAllocatedSize, 64 / (int) sizeof (ElementType))));
}
};
} // namespace juce
|