1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*
==============================================================================
This file is part of the JUCE framework.
Copyright (c) Raw Material Software Limited
JUCE is an open source framework subject to commercial or open source
licensing.
By downloading, installing, or using the JUCE framework, or combining the
JUCE framework with any other source code, object code, content or any other
copyrightable work, you agree to the terms of the JUCE End User Licence
Agreement, and all incorporated terms including the JUCE Privacy Policy and
the JUCE Website Terms of Service, as applicable, which will bind you. If you
do not agree to the terms of these agreements, we will not license the JUCE
framework to you, and you must discontinue the installation or download
process and cease use of the JUCE framework.
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
Or:
You may also use this code under the terms of the AGPLv3:
https://www.gnu.org/licenses/agpl-3.0.en.html
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/** Fills a block of memory with zeros. */
inline void zeromem (void* memory, size_t numBytes) noexcept { memset (memory, 0, numBytes); }
/** Overwrites a structure or object with zeros. */
template <typename Type>
inline void zerostruct (Type& structure) noexcept { memset ((void*) &structure, 0, sizeof (structure)); }
/** Delete an object pointer, and sets the pointer to null.
Remember that it's not good c++ practice to use delete directly - always try to use a std::unique_ptr
or other automatic lifetime-management system rather than resorting to deleting raw pointers!
*/
template <typename Type>
inline void deleteAndZero (Type& pointer) { delete pointer; pointer = nullptr; }
/** A handy function to round up a pointer to the nearest multiple of a given number of bytes.
alignmentBytes must be a power of two. */
template <typename Type, typename IntegerType>
inline Type* snapPointerToAlignment (Type* basePointer, IntegerType alignmentBytes) noexcept
{
return (Type*) ((((size_t) basePointer) + (alignmentBytes - 1)) & ~(alignmentBytes - 1));
}
/** A handy function which returns the difference between any two pointers, in bytes.
The address of the second pointer is subtracted from the first, and the difference in bytes is returned.
*/
template <typename Type1, typename Type2>
inline int getAddressDifference (Type1* pointer1, Type2* pointer2) noexcept { return (int) (((const char*) pointer1) - (const char*) pointer2); }
/** If a pointer is non-null, this returns a new copy of the object that it points to, or safely returns
nullptr if the pointer is null.
*/
template <class Type>
inline Type* createCopyIfNotNull (const Type* objectToCopy) { return objectToCopy != nullptr ? new Type (*objectToCopy) : nullptr; }
//==============================================================================
/** A handy function to read un-aligned memory without a performance penalty or bus-error. */
template <typename Type>
inline Type readUnaligned (const void* srcPtr) noexcept
{
Type value;
memcpy (&value, srcPtr, sizeof (Type));
return value;
}
/** A handy function to write un-aligned memory without a performance penalty or bus-error. */
template <typename Type>
inline void writeUnaligned (void* dstPtr, Type value) noexcept
{
memcpy (dstPtr, &value, sizeof (Type));
}
//==============================================================================
/** Casts a pointer to another type via `void*`, which suppresses the cast-align
warning which sometimes arises when casting pointers to types with different
alignment.
You should only use this when you know for a fact that the input pointer points
to a region that has suitable alignment for `Type`, e.g. regions returned from
malloc/calloc that should be suitable for any non-over-aligned type.
*/
template <typename Type>
inline Type unalignedPointerCast (void* ptr) noexcept
{
static_assert (std::is_pointer_v<Type>);
return reinterpret_cast<Type> (ptr);
}
/** Casts a pointer to another type via `void*`, which suppresses the cast-align
warning which sometimes arises when casting pointers to types with different
alignment.
You should only use this when you know for a fact that the input pointer points
to a region that has suitable alignment for `Type`, e.g. regions returned from
malloc/calloc that should be suitable for any non-over-aligned type.
*/
template <typename Type>
inline Type unalignedPointerCast (const void* ptr) noexcept
{
static_assert (std::is_pointer_v<Type>);
return reinterpret_cast<Type> (ptr);
}
/** A handy function which adds a number of bytes to any type of pointer and returns the result.
This can be useful to avoid casting pointers to a char* and back when you want to move them by
a specific number of bytes,
*/
template <typename Type, typename IntegerType>
inline Type* addBytesToPointer (Type* basePointer, IntegerType bytes) noexcept
{
return unalignedPointerCast<Type*> (reinterpret_cast<char*> (basePointer) + bytes);
}
/** A handy function which adds a number of bytes to any type of pointer and returns the result.
This can be useful to avoid casting pointers to a char* and back when you want to move them by
a specific number of bytes,
*/
template <typename Type, typename IntegerType>
inline const Type* addBytesToPointer (const Type* basePointer, IntegerType bytes) noexcept
{
return unalignedPointerCast<const Type*> (reinterpret_cast<const char*> (basePointer) + bytes);
}
//==============================================================================
#if JUCE_MAC || JUCE_IOS || DOXYGEN
/** A handy C++ wrapper that creates and deletes an NSAutoreleasePool object using RAII.
You should use the JUCE_AUTORELEASEPOOL macro to create a local auto-release pool on the stack.
@tags{Core}
*/
class JUCE_API ScopedAutoReleasePool
{
public:
ScopedAutoReleasePool();
~ScopedAutoReleasePool();
private:
void* pool;
JUCE_DECLARE_NON_COPYABLE (ScopedAutoReleasePool)
};
/** A macro that can be used to easily declare a local ScopedAutoReleasePool
object for RAII-based obj-C autoreleasing.
Because this may use the \@autoreleasepool syntax, you must follow the macro with
a set of braces to mark the scope of the pool.
*/
#if (JUCE_COMPILER_SUPPORTS_ARC && defined (__OBJC__)) || DOXYGEN
#define JUCE_AUTORELEASEPOOL @autoreleasepool
#else
#define JUCE_AUTORELEASEPOOL const juce::ScopedAutoReleasePool JUCE_JOIN_MACRO (autoReleasePool_, __LINE__);
#endif
#else
#define JUCE_AUTORELEASEPOOL
#endif
//==============================================================================
/* In a Windows DLL build, we'll expose some malloc/free functions that live inside the DLL, and use these for
allocating all the objects - that way all juce objects in the DLL and in the host will live in the same heap,
avoiding problems when an object is created in one module and passed across to another where it is deleted.
By piggy-backing on the JUCE_LEAK_DETECTOR macro, these allocators can be injected into most juce classes.
*/
#if JUCE_MSVC && (defined (JUCE_DLL) || defined (JUCE_DLL_BUILD)) && ! JUCE_DISABLE_DLL_ALLOCATORS
/** @cond */
extern JUCE_API void* juceDLL_malloc (size_t);
extern JUCE_API void juceDLL_free (void*);
#define JUCE_LEAK_DETECTOR(OwnerClass) public:\
static void* operator new (size_t sz) { return juce::juceDLL_malloc (sz); } \
static void* operator new (size_t, void* p) { return p; } \
static void operator delete (void* p) { juce::juceDLL_free (p); } \
static void operator delete (void*, void*) {}
/** @endcond */
#endif
//==============================================================================
/** (Deprecated) This was a Windows-specific way of checking for object leaks - now please
use the JUCE_LEAK_DETECTOR instead.
*/
#ifndef juce_UseDebuggingNewOperator
#define juce_UseDebuggingNewOperator
#endif
/** Converts an owning raw pointer into a unique_ptr, deriving the
type of the unique_ptr automatically.
This should only be used with pointers to single objects.
Do NOT pass a pointer to an array to this function, as the
destructor of the unique_ptr will incorrectly call `delete`
instead of `delete[]` on the pointer.
*/
template <typename T>
std::unique_ptr<T> rawToUniquePtr (T* ptr)
{
return std::unique_ptr<T> (ptr);
}
} // namespace juce
|