1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*
==============================================================================
This file is part of the JUCE framework.
Copyright (c) Raw Material Software Limited
JUCE is an open source framework subject to commercial or open source
licensing.
By downloading, installing, or using the JUCE framework, or combining the
JUCE framework with any other source code, object code, content or any other
copyrightable work, you agree to the terms of the JUCE End User Licence
Agreement, and all incorporated terms including the JUCE Privacy Policy and
the JUCE Website Terms of Service, as applicable, which will bind you. If you
do not agree to the terms of these agreements, we will not license the JUCE
framework to you, and you must discontinue the installation or download
process and cease use of the JUCE framework.
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
Or:
You may also use this code under the terms of the AGPLv3:
https://www.gnu.org/licenses/agpl-3.0.en.html
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Automatically locks and unlocks a mutex object.
Use one of these as a local variable to provide RAII-based locking of a mutex.
The templated class could be a CriticalSection, SpinLock, or anything else that
provides enter() and exit() methods.
e.g. @code
CriticalSection myCriticalSection;
for (;;)
{
const GenericScopedLock<CriticalSection> myScopedLock (myCriticalSection);
// myCriticalSection is now locked
...do some stuff...
// myCriticalSection gets unlocked here.
}
@endcode
@see GenericScopedUnlock, CriticalSection, SpinLock, ScopedLock, ScopedUnlock
@tags{Core}
*/
template <class LockType>
class GenericScopedLock
{
public:
//==============================================================================
/** Creates a GenericScopedLock.
As soon as it is created, this will acquire the lock, and when the GenericScopedLock
object is deleted, the lock will be released.
Make sure this object is created and deleted by the same thread,
otherwise there are no guarantees what will happen! Best just to use it
as a local stack object, rather than creating one with the new() operator.
*/
inline explicit GenericScopedLock (const LockType& lock) noexcept : lock_ (lock) { lock.enter(); }
/** Destructor.
The lock will be released when the destructor is called.
Make sure this object is created and deleted by the same thread, otherwise there are
no guarantees what will happen!
*/
inline ~GenericScopedLock() noexcept { lock_.exit(); }
private:
//==============================================================================
const LockType& lock_;
JUCE_DECLARE_NON_COPYABLE (GenericScopedLock)
};
//==============================================================================
/**
Automatically unlocks and re-locks a mutex object.
This is the reverse of a GenericScopedLock object - instead of locking the mutex
for the lifetime of this object, it unlocks it.
Make sure you don't try to unlock mutexes that aren't actually locked!
e.g. @code
CriticalSection myCriticalSection;
for (;;)
{
const GenericScopedLock<CriticalSection> myScopedLock (myCriticalSection);
// myCriticalSection is now locked
... do some stuff with it locked ..
while (xyz)
{
... do some stuff with it locked ..
const GenericScopedUnlock<CriticalSection> unlocker (myCriticalSection);
// myCriticalSection is now unlocked for the remainder of this block,
// and re-locked at the end.
...do some stuff with it unlocked ...
}
// myCriticalSection gets unlocked here.
}
@endcode
@see GenericScopedLock, CriticalSection, ScopedLock, ScopedUnlock
@tags{Core}
*/
template <class LockType>
class GenericScopedUnlock
{
public:
//==============================================================================
/** Creates a GenericScopedUnlock.
As soon as it is created, this will unlock the CriticalSection, and
when the ScopedLock object is deleted, the CriticalSection will
be re-locked.
Make sure this object is created and deleted by the same thread,
otherwise there are no guarantees what will happen! Best just to use it
as a local stack object, rather than creating one with the new() operator.
*/
inline explicit GenericScopedUnlock (const LockType& lock) noexcept : lock_ (lock) { lock.exit(); }
/** Destructor.
The CriticalSection will be unlocked when the destructor is called.
Make sure this object is created and deleted by the same thread,
otherwise there are no guarantees what will happen!
*/
inline ~GenericScopedUnlock() noexcept { lock_.enter(); }
private:
//==============================================================================
const LockType& lock_;
JUCE_DECLARE_NON_COPYABLE (GenericScopedUnlock)
};
//==============================================================================
/**
Automatically locks and unlocks a mutex object.
Use one of these as a local variable to provide RAII-based locking of a mutex.
The templated class could be a CriticalSection, SpinLock, or anything else that
provides enter() and exit() methods.
e.g. @code
CriticalSection myCriticalSection;
for (;;)
{
const GenericScopedTryLock<CriticalSection> myScopedTryLock (myCriticalSection);
// Unlike using a ScopedLock, this may fail to actually get the lock, so you
// should test this with the isLocked() method before doing your thread-unsafe
// action..
if (myScopedTryLock.isLocked())
{
...do some stuff...
}
else
{
..our attempt at locking failed because another thread had already locked it..
}
// myCriticalSection gets unlocked here (if it was locked)
}
@endcode
@see CriticalSection::tryEnter, GenericScopedLock, GenericScopedUnlock
@tags{Core}
*/
template <class LockType>
class GenericScopedTryLock
{
public:
//==============================================================================
/** Creates a GenericScopedTryLock.
If acquireLockOnInitialisation is true then as soon as this ScopedTryLock
is created, it will attempt to acquire the lock with tryEnter.
You can retry acquiring the lock by calling retryLock.
When GenericScopedTryLock is deleted, the lock will be released (if the lock
was successfully acquired).
Make sure this object is created and deleted by the same thread,
otherwise there are no guarantees what will happen! Best just to use it
as a local stack object, rather than creating one with the new() operator.
@see retryLock, isLocked
*/
inline explicit GenericScopedTryLock (const LockType& lock, bool acquireLockOnInitialisation = true) noexcept
: lock_ (lock), lockWasSuccessful (acquireLockOnInitialisation && lock.tryEnter()) {}
/** Destructor.
The mutex will be unlocked (if it had been successfully locked) when the
destructor is called.
Make sure this object is created and deleted by the same thread,
otherwise there are no guarantees what will happen!
*/
inline ~GenericScopedTryLock() noexcept { if (lockWasSuccessful) lock_.exit(); }
/** Returns true if the mutex was successfully locked. */
bool isLocked() const noexcept { return lockWasSuccessful; }
/** Retry gaining the lock by calling tryEnter on the underlying lock. */
bool retryLock() const noexcept { lockWasSuccessful = lock_.tryEnter(); return lockWasSuccessful; }
private:
//==============================================================================
const LockType& lock_;
mutable bool lockWasSuccessful;
JUCE_DECLARE_NON_COPYABLE (GenericScopedTryLock)
};
} // namespace juce
|