1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054
|
# automatically generated from files in doc/stdlib/ -- do not edit here
{
("Base","exit","exit([code])
Quit (or control-D at the prompt). The default exit code is zero,
indicating that the processes completed successfully.
"),
("Base","quit","quit()
Quit the program indicating that the processes completed
succesfully. This function calls \"exit(0)\" (see \"exit()\").
"),
("Base","atexit","atexit(f)
Register a zero-argument function to be called at exit.
"),
("Base","isinteractive","isinteractive() -> Bool
Determine whether Julia is running an interactive session.
"),
("Base","whos","whos([Module,] [pattern::Regex])
Print information about global variables in a module, optionally
restricted to those matching \"pattern\".
"),
("Base","edit","edit(file::String[, line])
Edit a file optionally providing a line number to edit at. Returns
to the julia prompt when you quit the editor.
"),
("Base","edit","edit(function[, types])
Edit the definition of a function, optionally specifying a tuple of
types to indicate which method to edit.
"),
("Base","@edit","@edit()
Evaluates the arguments to the function call, determines their
types, and calls the \"edit\" function on the resulting expression
"),
("Base","less","less(file::String[, line])
Show a file using the default pager, optionally providing a
starting line number. Returns to the julia prompt when you quit the
pager.
"),
("Base","less","less(function[, types])
Show the definition of a function using the default pager,
optionally specifying a tuple of types to indicate which method to
see.
"),
("Base","@less","@less()
Evaluates the arguments to the function call, determines their
types, and calls the \"less\" function on the resulting expression
"),
("Base","clipboard","clipboard(x)
Send a printed form of \"x\" to the operating system clipboard
(\"copy\").
"),
("Base","clipboard","clipboard() -> String
Return a string with the contents of the operating system clipboard
(\"paste\").
"),
("Base","require","require(file::String...)
Load source files once, in the context of the \"Main\" module, on
every active node, searching standard locations for files.
\"require\" is considered a top-level operation, so it sets the
current \"include\" path but does not use it to search for files
(see help for \"include\"). This function is typically used to load
library code, and is implicitly called by \"using\" to load
packages.
When searching for files, \"require\" first looks in the current
working directory, then looks for package code under \"Pkg.dir()\",
then tries paths in the global array \"LOAD_PATH\".
"),
("Base","reload","reload(file::String)
Like \"require\", except forces loading of files regardless of
whether they have been loaded before. Typically used when
interactively developing libraries.
"),
("Base","include","include(path::String)
Evaluate the contents of a source file in the current context.
During including, a task-local include path is set to the directory
containing the file. Nested calls to \"include\" will search
relative to that path. All paths refer to files on node 1 when
running in parallel, and files will be fetched from node 1. This
function is typically used to load source interactively, or to
combine files in packages that are broken into multiple source
files.
"),
("Base","include_string","include_string(code::String)
Like \"include\", except reads code from the given string rather
than from a file. Since there is no file path involved, no path
processing or fetching from node 1 is done.
"),
("Base","help","help(name)
Get help for a function. \"name\" can be an object or a string.
"),
("Base","apropos","apropos(string)
Search documentation for functions related to \"string\".
"),
("Base","which","which(f, types)
Return the method of \"f\" (a \"Method\" object) that will be
called for arguments with the given types.
"),
("Base","@which","@which()
Evaluates the arguments to the function call, determines their
types, and calls the \"which\" function on the resulting expression
"),
("Base","methods","methods(f[, types])
Show all methods of \"f\" with their argument types.
If \"types\" is specified, an array of methods whose types match is
returned.
"),
("Base","methodswith","methodswith(typ[, showparents])
Return an array of methods with an argument of type \"typ\". If
optional \"showparents\" is \"true\", also return arguments with a
parent type of \"typ\", excluding type \"Any\".
"),
("Base","@show","@show()
Show an expression and result, returning the result
"),
("Base","versioninfo","versioninfo([verbose::Bool])
Print information about the version of Julia in use. If the
\"verbose\" argument is true, detailed system information is shown
as well.
"),
("Base","workspace","workspace()
Replace the top-level module (\"Main\") with a new one, providing a
clean workspace. The previous \"Main\" module is made available as
\"LastMain\". A previously-loaded package can be accessed using a
statement such as \"using LastMain.Package\".
This function should only be used interactively.
"),
("Base","is","is(x, y) -> Bool
Determine whether \"x\" and \"y\" are identical, in the sense that
no program could distinguish them. Compares mutable objects by
address in memory, and compares immutable objects (such as numbers)
by contents at the bit level. This function is sometimes called
\"egal\". The \"===\" operator is an alias for this function.
"),
("Base","isa","isa(x, type) -> Bool
Determine whether \"x\" is of the given \"type\".
"),
("Base","isequal","isequal(x, y)
Similar to \"==\", except treats all floating-point \"NaN\" values
as equal to each other, and treats \"-0.0\" as unequal to \"0.0\".
For values that are not floating-point, \"isequal\" is the same as
\"==\".
\"isequal\" is the comparison function used by hash tables
(\"Dict\"). \"isequal(x,y)\" must imply that \"hash(x) ==
hash(y)\".
Collections typically implement \"isequal\" by calling \"isequal\"
recursively on all contents.
Scalar types generally do not need to implement \"isequal\", unless
they represent floating-point numbers amenable to a more efficient
implementation than that provided as a generic fallback (based on
\"isnan\", \"signbit\", and \"==\").
"),
("Base","isless","isless(x, y)
Test whether \"x\" is less than \"y\", according to a canonical
total order. Values that are normally unordered, such as \"NaN\",
are ordered in an arbitrary but consistent fashion. This is the
default comparison used by \"sort\". Non-numeric types with a
canonical total order should implement this function. Numeric types
only need to implement it if they have special values such as
\"NaN\".
"),
("Base","ifelse","ifelse(condition::Bool, x, y)
Return \"x\" if \"condition\" is true, otherwise return \"y\". This
differs from \"?\" or \"if\" in that it is an ordinary function, so
all the arguments are evaluated first.
"),
("Base","lexcmp","lexcmp(x, y)
Compare \"x\" and \"y\" lexicographically and return -1, 0, or 1
depending on whether \"x\" is less than, equal to, or greater than
\"y\", respectively. This function should be defined for
lexicographically comparable types, and \"lexless\" will call
\"lexcmp\" by default.
"),
("Base","lexless","lexless(x, y)
Determine whether \"x\" is lexicographically less than \"y\".
"),
("Base","typeof","typeof(x)
Get the concrete type of \"x\".
"),
("Base","tuple","tuple(xs...)
Construct a tuple of the given objects.
"),
("Base","ntuple","ntuple(n, f::Function)
Create a tuple of length \"n\", computing each element as \"f(i)\",
where \"i\" is the index of the element.
"),
("Base","object_id","object_id(x)
Get a unique integer id for \"x\". \"object_id(x)==object_id(y)\"
if and only if \"is(x,y)\".
"),
("Base","hash","hash(x[, h])
Compute an integer hash code such that \"isequal(x,y)\" implies
\"hash(x)==hash(y)\". The optional second argument \"h\" is a hash
code to be mixed with the result. New types should implement the
2-argument form.
"),
("Base","finalizer","finalizer(x, function)
Register a function \"f(x)\" to be called when there are no
program-accessible references to \"x\". The behavior of this
function is unpredictable if \"x\" is of a bits type.
"),
("Base","copy","copy(x)
Create a shallow copy of \"x\": the outer structure is copied, but
not all internal values. For example, copying an array produces a
new array with identically-same elements as the original.
"),
("Base","deepcopy","deepcopy(x)
Create a deep copy of \"x\": everything is copied recursively,
resulting in a fully independent object. For example, deep-copying
an array produces a new array whose elements are deep-copies of the
original elements.
As a special case, functions can only be actually deep-copied if
they are anonymous, otherwise they are just copied. The difference
is only relevant in the case of closures, i.e. functions which may
contain hidden internal references.
While it isn't normally necessary, user-defined types can override
the default \"deepcopy\" behavior by defining a specialized version
of the function \"deepcopy_internal(x::T, dict::ObjectIdDict)\"
(which shouldn't otherwise be used), where \"T\" is the type to be
specialized for, and \"dict\" keeps track of objects copied so far
within the recursion. Within the definition, \"deepcopy_internal\"
should be used in place of \"deepcopy\", and the \"dict\" variable
should be updated as appropriate before returning.
"),
("Base","isdefined","isdefined([object], index | symbol)
Tests whether an assignable location is defined. The arguments can
be an array and index, a composite object and field name (as a
symbol), or a module and a symbol. With a single symbol argument,
tests whether a global variable with that name is defined in
\"current_module()\".
"),
("Base","convert","convert(type, x)
Try to convert \"x\" to the given type. Conversions from floating
point to integer, rational to integer, and complex to real will
raise an \"InexactError\" if \"x\" cannot be represented exactly in
the new type.
"),
("Base","promote","promote(xs...)
Convert all arguments to their common promotion type (if any), and
return them all (as a tuple).
"),
("Base","oftype","oftype(x, y)
Convert \"y\" to the type of \"x\".
"),
("Base","widen","widen(type | x)
If the argument is a type, return a \"larger\" type (for numeric
types, this will be a type with at least as much range and
precision as the argument, and usually more). Otherwise the
argument \"x\" is converted to \"widen(typeof(x))\".
**Examples**:
julia> widen(Int32)
Int64
julia> widen(1.5f0)
1.5
"),
("Base","identity","identity(x)
The identity function. Returns its argument.
"),
("Base","super","super(T::DataType)
Return the supertype of DataType T
"),
("Base","issubtype","issubtype(type1, type2)
True if and only if all values of \"type1\" are also of \"type2\".
Can also be written using the \"<:\" infix operator as \"type1 <:
type2\".
"),
("Base","<:","<:(T1, T2)
Subtype operator, equivalent to \"issubtype(T1,T2)\".
"),
("Base","subtypes","subtypes(T::DataType)
Return a list of immediate subtypes of DataType T. Note that all
currently loaded subtypes are included, including those not visible
in the current module.
"),
("Base","subtypetree","subtypetree(T::DataType)
Return a nested list of all subtypes of DataType T. Note that all
currently loaded subtypes are included, including those not visible
in the current module.
"),
("Base","typemin","typemin(type)
The lowest value representable by the given (real) numeric type.
"),
("Base","typemax","typemax(type)
The highest value representable by the given (real) numeric type.
"),
("Base","realmin","realmin(type)
The smallest in absolute value non-subnormal value representable by
the given floating-point type
"),
("Base","realmax","realmax(type)
The highest finite value representable by the given floating-point
type
"),
("Base","maxintfloat","maxintfloat(type)
The largest integer losslessly representable by the given floating-
point type
"),
("Base","sizeof","sizeof(type)
Size, in bytes, of the canonical binary representation of the given
type, if any.
"),
("Base","eps","eps([type])
The distance between 1.0 and the next larger representable
floating-point value of \"type\". Only floating-point types are
sensible arguments. If \"type\" is omitted, then \"eps(Float64)\"
is returned.
"),
("Base","eps","eps(x)
The distance between \"x\" and the next larger representable
floating-point value of the same type as \"x\".
"),
("Base","promote_type","promote_type(type1, type2)
Determine a type big enough to hold values of each argument type
without loss, whenever possible. In some cases, where no type
exists which to which both types can be promoted losslessly, some
loss is tolerated; for example, \"promote_type(Int64,Float64)\"
returns \"Float64\" even though strictly, not all \"Int64\" values
can be represented exactly as \"Float64\" values.
"),
("Base","promote_rule","promote_rule(type1, type2)
Specifies what type should be used by \"promote\" when given values
of types \"type1\" and \"type2\". This function should not be
called directly, but should have definitions added to it for new
types as appropriate.
"),
("Base","getfield","getfield(value, name::Symbol)
Extract a named field from a value of composite type. The syntax
\"a.b\" calls \"getfield(a, :b)\", and the syntax \"a.(b)\" calls
\"getfield(a, b)\".
"),
("Base","setfield!","setfield!(value, name::Symbol, x)
Assign \"x\" to a named field in \"value\" of composite type. The
syntax \"a.b = c\" calls \"setfield!(a, :b, c)\", and the syntax
\"a.(b) = c\" calls \"setfield!(a, b, c)\".
"),
("Base","fieldoffsets","fieldoffsets(type)
The byte offset of each field of a type relative to the data start.
For example, we could use it in the following manner to summarize
information about a struct type:
structinfo(T) = [zip(fieldoffsets(T),names(T),T.types)...]
structinfo(StatStruct)
"),
("Base","fieldtype","fieldtype(value, name::Symbol)
Determine the declared type of a named field in a value of
composite type.
"),
("Base","isimmutable","isimmutable(v)
True if value \"v\" is immutable. See *Immutable Composite Types*
for a discussion of immutability.
"),
("Base","isbits","isbits(T)
True if \"T\" is a \"plain data\" type, meaning it is immutable and
contains no references to other values. Typical examples are
numeric types such as \"Uint8\", \"Float64\", and
\"Complex{Float64}\".
"),
("Base","isleaftype","isleaftype(T)
Determine whether \"T\" is a concrete type that can have instances,
meaning its only subtypes are itself and \"None\" (but \"T\" itself
is not \"None\").
"),
("Base","typejoin","typejoin(T, S)
Compute a type that contains both \"T\" and \"S\".
"),
("Base","typeintersect","typeintersect(T, S)
Compute a type that contains the intersection of \"T\" and \"S\".
Usually this will be the smallest such type or one close to it.
"),
("Base","apply","apply(f, x...)
Accepts a function and several arguments, each of which must be
iterable. The elements generated by all the arguments are appended
into a single list, which is then passed to \"f\" as its argument
list.
**Example**:
# Define a function f
julia> function f(x, y)
x + y
end
# Apply f with 1 and 2 as arguments
julia> apply(f, [1 2])
3
\"apply\" is called to implement the \"...\" argument splicing
syntax, and is usually not called directly: \"apply(f,x) ===
f(x...)\"
"),
("Base","method_exists","method_exists(f, tuple) -> Bool
Determine whether the given generic function has a method matching
the given tuple of argument types.
**Example**:
julia> method_exists(length, (Array,))
true
"),
("Base","applicable","applicable(f, args...) -> Bool
Determine whether the given generic function has a method
applicable to the given arguments.
**Examples**:
julia> function f(x, y)
x + y
end
julia> applicable(f, 1)
false
julia> applicable(f, 1, 2)
true
"),
("Base","invoke","invoke(f, (types...), args...)
Invoke a method for the given generic function matching the
specified types (as a tuple), on the specified arguments. The
arguments must be compatible with the specified types. This allows
invoking a method other than the most specific matching method,
which is useful when the behavior of a more general definition is
explicitly needed (often as part of the implementation of a more
specific method of the same function).
"),
("Base","|>","|>(x, f)
Applies a function to the preceding argument. This allows for easy
function chaining.
**Example**: \"[1:5] |> x->x.^2 |> sum |> inv\"
"),
("Base","eval","eval([m::Module], expr::Expr)
Evaluate an expression in the given module and return the result.
Every module (except those defined with \"baremodule\") has its own
1-argument definition of \"eval\", which evaluates expressions in
that module.
"),
("Base","@eval","@eval()
Evaluate an expression and return the value.
"),
("Base","evalfile","evalfile(path::String)
Evaluate all expressions in the given file, and return the value of
the last one. No other processing (path searching, fetching from
node 1, etc.) is performed.
"),
("Base","esc","esc(e::ANY)
Only valid in the context of an Expr returned from a macro.
Prevents the macro hygiene pass from turning embedded variables
into gensym variables. See the *Macros* section of the
Metaprogramming chapter of the manual for more details and
examples.
"),
("Base","gensym","gensym([tag])
Generates a symbol which will not conflict with other variable
names.
"),
("Base","@gensym","@gensym()
Generates a gensym symbol for a variable. For example, *@gensym x
y* is transformed into *x = gensym(\"x\"); y = gensym(\"y\")*.
"),
("Base","parse","parse(str, start; greedy=true, raise=true)
Parse the expression string and return an expression (which could
later be passed to eval for execution). Start is the index of the
first character to start parsing. If \"greedy\" is true (default),
\"parse\" will try to consume as much input as it can; otherwise,
it will stop as soon as it has parsed a valid expression. If
\"raise\" is true (default), syntax errors will raise an error;
otherwise, \"parse\" will return an expression that will raise an
error upon evaluation.
"),
("Base","parse","parse(str; raise=true)
Parse the whole string greedily, returning a single expression. An
error is thrown if there are additional characters after the first
expression. If \"raise\" is true (default), syntax errors will
raise an error; otherwise, \"parse\" will return an expression that
will raise an error upon evaluation.
"),
("Base","start","start(iter) -> state
Get initial iteration state for an iterable object
"),
("Base","done","done(iter, state) -> Bool
Test whether we are done iterating
"),
("Base","next","next(iter, state) -> item, state
For a given iterable object and iteration state, return the current
item and the next iteration state
"),
("Base","zip","zip(iters...)
For a set of iterable objects, returns an iterable of tuples, where
the \"i\"th tuple contains the \"i\"th component of each input
iterable.
Note that \"zip\" is its own inverse: \"[zip(zip(a...)...)...] ==
[a...]\".
"),
("Base","enumerate","enumerate(iter)
Return an iterator that yields \"(i, x)\" where \"i\" is an index
starting at 1, and \"x\" is the \"ith\" value from the given
iterator. It's useful when you need not only the values *x* over
which you are iterating, but also the index *i* of the iterations.
**Example**:
julia> a = [\"a\", \"b\", \"c\"]
julia> for (index, value) in enumerate(a)
println(\"\$index \$value\")
end
1 a
2 b
3 c
"),
("Base","isempty","isempty(collection) -> Bool
Determine whether a collection is empty (has no elements).
**Examples**:
julia> a = []
julia> isempty(a)
true
julia> b = [1 2 3]
julia> isempty(b)
false
"),
("Base","empty!","empty!(collection) -> collection
Remove all elements from a \"collection\".
"),
("Base","length","length(collection) -> Integer
For ordered, indexable collections, the maximum index \"i\" for
which \"getindex(collection, i)\" is valid. For unordered
collections, the number of elements.
"),
("Base","endof","endof(collection) -> Integer
Returns the last index of the collection.
**Example**:
julia> endof([1,2,4])
3
"),
("Base","in","in(item, collection) -> Bool
Determine whether an item is in the given collection, in the sense
that it is \"==\" to one of the values generated by iterating over
the collection. Some collections need a slightly different
definition; for example Sets check whether the item is \"isequal\"
to one of the elements. Dicts look for \"(key,value)\" pairs, and
the key is compared using \"isequal\". To test for the presence of
a key in a dictionary, use \"haskey\" or \"k in keys(dict)\".
"),
("Base","eltype","eltype(collection)
Determine the type of the elements generated by iterating
\"collection\". For associative collections, this will be a
\"(key,value)\" tuple type.
"),
("Base","indexin","indexin(a, b)
Returns a vector containing the highest index in \"b\" for each
value in \"a\" that is a member of \"b\" . The output vector
contains 0 wherever \"a\" is not a member of \"b\".
"),
("Base","findin","findin(a, b)
Returns the indices of elements in collection \"a\" that appear in
collection \"b\"
"),
("Base","unique","unique(itr[, dim])
Returns an array containing only the unique elements of the
iterable \"itr\", in the order that the first of each set of
equivalent elements originally appears. If \"dim\" is specified,
returns unique regions of the array \"itr\" along \"dim\".
"),
("Base","reduce","reduce(op, v0, itr)
Reduce the given collection \"ìtr\" with the given binary operator.
Reductions for certain commonly-used operators have special
implementations which should be used instead: \"maximum(itr)\",
\"minimum(itr)\", \"sum(itr)\", \"prod(itr)\", \"any(itr)\",
\"all(itr)\".
The associativity of the reduction is implementation-dependent.
This means that you can't use non-associative operations like \"-\"
because it is undefined whether \"reduce(-,[1,2,3])\" should be
evaluated as \"(1-2)-3\" or \"1-(2-3)\". Use \"foldl\" or \"foldr\"
instead for guaranteed left or right associativity.
Some operations accumulate error, and parallelism will also be
easier if the reduction can be executed in groups. Future versions
of Julia might change the algorithm. Note that the elements are not
reordered if you use an ordered collection.
"),
("Base","reduce","reduce(op, itr)
Like \"reduce\" but using the first element as v0.
"),
("Base","foldl","foldl(op, v0, itr)
Like \"reduce\", but with guaranteed left associativity.
"),
("Base","foldl","foldl(op, itr)
Like \"foldl\", but using the first element as v0.
"),
("Base","foldr","foldr(op, v0, itr)
Like \"reduce\", but with guaranteed right associativity.
"),
("Base","foldr","foldr(op, itr)
Like \"foldr\", but using the last element as v0.
"),
("Base","maximum","maximum(itr)
Returns the largest element in a collection.
"),
("Base","maximum","maximum(A, dims)
Compute the maximum value of an array over the given dimensions.
"),
("Base","maximum!","maximum!(r, A)
Compute the maximum value of \"A\" over the singleton dimensions of
\"r\", and write results to \"r\".
"),
("Base","minimum","minimum(itr)
Returns the smallest element in a collection.
"),
("Base","minimum","minimum(A, dims)
Compute the minimum value of an array over the given dimensions.
"),
("Base","minimum!","minimum!(r, A)
Compute the minimum value of \"A\" over the singleton dimensions of
\"r\", and write results to \"r\".
"),
("Base","extrema","extrema(itr)
Compute both the minimum and maximum element in a single pass, and
return them as a 2-tuple.
"),
("Base","indmax","indmax(itr) -> Integer
Returns the index of the maximum element in a collection.
"),
("Base","indmin","indmin(itr) -> Integer
Returns the index of the minimum element in a collection.
"),
("Base","findmax","findmax(itr) -> (x, index)
Returns the maximum element and its index.
"),
("Base","findmax","findmax(A, dims) -> (maxval, index)
For an array input, returns the value and index of the maximum over
the given dimensions.
"),
("Base","findmin","findmin(itr) -> (x, index)
Returns the minimum element and its index.
"),
("Base","findmin","findmin(A, dims) -> (minval, index)
For an array input, returns the value and index of the minimum over
the given dimensions.
"),
("Base","maxabs","maxabs(itr)
Compute the maximum absolute value of a collection of values.
"),
("Base","maxabs","maxabs(A, dims)
Compute the maximum absolute values over given dimensions.
"),
("Base","maxabs!","maxabs!(r, A)
Compute the maximum absolute values over the singleton dimensions
of \"r\", and write values to \"r\".
"),
("Base","minabs","minabs(itr)
Compute the minimum absolute value of a collection of values.
"),
("Base","minabs","minabs(A, dims)
Compute the minimum absolute values over given dimensions.
"),
("Base","minabs!","minabs!(r, A)
Compute the minimum absolute values over the singleton dimensions
of \"r\", and write values to \"r\".
"),
("Base","sum","sum(itr)
Returns the sum of all elements in a collection.
"),
("Base","sum","sum(A, dims)
Sum elements of an array over the given dimensions.
"),
("Base","sum!","sum!(r, A)
Sum elements of \"A\" over the singleton dimensions of \"r\", and
write results to \"r\".
"),
("Base","sum","sum(f, itr)
Sum the results of calling function \"f\" on each element of
\"itr\".
"),
("Base","sumabs","sumabs(itr)
Sum absolute values of all elements in a collection. This is
equivalent to *sum(abs(itr))* but faster.
"),
("Base","sumabs","sumabs(A, dims)
Sum absolute values of elements of an array over the given
dimensions.
"),
("Base","sumabs!","sumabs!(r, A)
Sum absolute values of elements of \"A\" over the singleton
dimensions of \"r\", and write results to \"r\".
"),
("Base","sumabs2","sumabs2(itr)
Sum squared absolute values of all elements in a collection. This
is equivalent to *sum(abs2(itr))* but faster.
"),
("Base","sumabs2","sumabs2(A, dims)
Sum squared absolute values of elements of an array over the given
dimensions.
"),
("Base","sumabs2!","sumabs2!(r, A)
Sum squared absolute values of elements of \"A\" over the singleton
dimensions of \"r\", and write results to \"r\".
"),
("Base","prod","prod(itr)
Returns the product of all elements of a collection.
"),
("Base","prod","prod(A, dims)
Multiply elements of an array over the given dimensions.
"),
("Base","prod!","prod!(r, A)
Multiply elements of \"A\" over the singleton dimensions of \"r\",
and write results to \"r\".
"),
("Base","any","any(itr) -> Bool
Test whether any elements of a boolean collection are true.
"),
("Base","any","any(A, dims)
Test whether any values along the given dimensions of an array are
true.
"),
("Base","any!","any!(r, A)
Test whether any values in \"A\" along the singleton dimensions of
\"r\" are true, and write results to \"r\".
"),
("Base","all","all(itr) -> Bool
Test whether all elements of a boolean collection are true.
"),
("Base","all","all(A, dims)
Test whether all values along the given dimensions of an array are
true.
"),
("Base","all!","all!(r, A)
Test whether all values in \"A\" along the singleton dimensions of
\"r\" are true, and write results to \"r\".
"),
("Base","count","count(p, itr) -> Integer
Count the number of elements in \"itr\" for which predicate \"p\"
returns true.
"),
("Base","any","any(p, itr) -> Bool
Determine whether predicate \"p\" returns true for any elements of
\"itr\".
"),
("Base","all","all(p, itr) -> Bool
Determine whether predicate \"p\" returns true for all elements of
\"itr\".
**Example**:
julia> all(i->(4<=i<=6), [4,5,6])
true
"),
("Base","map","map(f, c...) -> collection
Transform collection \"c\" by applying \"f\" to each element. For
multiple collection arguments, apply \"f\" elementwise.
**Examples**:
julia> map((x) -> x * 2, [1, 2, 3])
[2, 4, 6]
julia> map(+, [1, 2, 3], [10, 20, 30])
[11, 22, 33]
"),
("Base","map!","map!(function, collection)
In-place version of \"map()\".
"),
("Base","map!","map!(function, destination, collection...)
Like \"map()\", but stores the result in \"destination\" rather
than a new collection. \"destination\" must be at least as large as
the first collection.
"),
("Base","mapreduce","mapreduce(f, op, itr)
Applies function \"f\" to each element in \"itr\" and then reduces
the result using the binary function \"op\".
**Example**: \"mapreduce(x->x^2, +, [1:3]) == 1 + 4 + 9 == 14\"
The associativity of the reduction is implementation-dependent; if
you need a particular associativity, e.g. left-to-right, you should
write your own loop. See documentation for \"reduce\".
"),
("Base","first","first(coll)
Get the first element of an iterable collection.
"),
("Base","last","last(coll)
Get the last element of an ordered collection, if it can be
computed in O(1) time. This is accomplished by calling \"endof\" to
get the last index.
"),
("Base","step","step(r)
Get the step size of a \"Range\" object.
"),
("Base","collect","collect(collection)
Return an array of all items in a collection. For associative
collections, returns (key, value) tuples.
"),
("Base","collect","collect(element_type, collection)
Return an array of type \"Array{element_type,1}\" of all items in a
collection.
"),
("Base","issubset","issubset(a, b)
Determine whether every element of \"a\" is also in \"b\", using
the \"in\" function.
"),
("Base","filter","filter(function, collection)
Return a copy of \"collection\", removing elements for which
\"function\" is false. For associative collections, the function is
passed two arguments (key and value).
"),
("Base","filter!","filter!(function, collection)
Update \"collection\", removing elements for which \"function\" is
false. For associative collections, the function is passed two
arguments (key and value).
"),
("Base","getindex","getindex(collection, key...)
Retrieve the value(s) stored at the given key or index within a
collection. The syntax \"a[i,j,...]\" is converted by the compiler
to \"getindex(a, i, j, ...)\".
"),
("Base","setindex!","setindex!(collection, value, key...)
Store the given value at the given key or index within a
collection. The syntax \"a[i,j,...] = x\" is converted by the
compiler to \"setindex!(a, x, i, j, ...)\".
"),
("Base","Dict","Dict()
\"Dict{K,V}()\" constructs a hashtable with keys of type K and
values of type V. The literal syntax is \"{\"A\"=>1, \"B\"=>2}\"
for a \"Dict{Any,Any}\", or \"[\"A\"=>1, \"B\"=>2]\" for a \"Dict\"
of inferred type.
"),
("Base","haskey","haskey(collection, key) -> Bool
Determine whether a collection has a mapping for a given key.
"),
("Base","get","get(collection, key, default)
Return the value stored for the given key, or the given default
value if no mapping for the key is present.
"),
("Base","get","get(f::Function, collection, key)
Return the value stored for the given key, or if no mapping for the
key is present, return \"f()\". Use \"get!\" to also store the
default value in the dictionary.
This is intended to be called using \"do\" block syntax:
get(dict, key) do
# default value calculated here
time()
end
"),
("Base","get!","get!(collection, key, default)
Return the value stored for the given key, or if no mapping for the
key is present, store \"key => default\", and return \"default\".
"),
("Base","get!","get!(f::Function, collection, key)
Return the value stored for the given key, or if no mapping for the
key is present, store \"key => f()\", and return \"f()\".
This is intended to be called using \"do\" block syntax:
get!(dict, key) do
# default value calculated here
time()
end
"),
("Base","getkey","getkey(collection, key, default)
Return the key matching argument \"key\" if one exists in
\"collection\", otherwise return \"default\".
"),
("Base","delete!","delete!(collection, key)
Delete the mapping for the given key in a collection, and return
the colection.
"),
("Base","pop!","pop!(collection, key[, default])
Delete and return the mapping for \"key\" if it exists in
\"collection\", otherwise return \"default\", or throw an error if
default is not specified.
"),
("Base","keys","keys(collection)
Return an iterator over all keys in a collection.
\"collect(keys(d))\" returns an array of keys.
"),
("Base","values","values(collection)
Return an iterator over all values in a collection.
\"collect(values(d))\" returns an array of values.
"),
("Base","merge","merge(collection, others...)
Construct a merged collection from the given collections.
"),
("Base","merge!","merge!(collection, others...)
Update collection with pairs from the other collections
"),
("Base","sizehint","sizehint(s, n)
Suggest that collection \"s\" reserve capacity for at least \"n\"
elements. This can improve performance.
"),
("Base","Set","Set([itr])
Construct a \"Set\" of the values generated by the given iterable
object, or an empty set. Should be used instead of \"IntSet\" for
sparse integer sets, or for sets of arbitrary objects.
"),
("Base","IntSet","IntSet([itr])
Construct a sorted set of the integers generated by the given
iterable object, or an empty set. Implemented as a bit string, and
therefore designed for dense integer sets. Only non-negative
integers can be stored. If the set will be sparse (for example
holding a single very large integer), use \"Set\" instead.
"),
("Base","union","union(s1, s2...)
Construct the union of two or more sets. Maintains order with
arrays.
"),
("Base","union!","union!(s, iterable)
Union each element of \"iterable\" into set \"s\" in-place.
"),
("Base","intersect","intersect(s1, s2...)
Construct the intersection of two or more sets. Maintains order and
multiplicity of the first argument for arrays and ranges.
"),
("Base","setdiff","setdiff(s1, s2)
Construct the set of elements in \"s1\" but not \"s2\". Maintains
order with arrays. Note that both arguments must be collections,
and both will be iterated over. In particular,
\"setdiff(set,element)\" where \"element\" is a potential member of
\"set\", will not work in general.
"),
("Base","setdiff!","setdiff!(s, iterable)
Remove each element of \"iterable\" from set \"s\" in-place.
"),
("Base","symdiff","symdiff(s1, s2...)
Construct the symmetric difference of elements in the passed in
sets or arrays. Maintains order with arrays.
"),
("Base","symdiff!","symdiff!(s, n)
IntSet s is destructively modified to toggle the inclusion of
integer \"n\".
"),
("Base","symdiff!","symdiff!(s, itr)
For each element in \"itr\", destructively toggle its inclusion in
set \"s\".
"),
("Base","symdiff!","symdiff!(s1, s2)
Construct the symmetric difference of IntSets \"s1\" and \"s2\",
storing the result in \"s1\".
"),
("Base","complement","complement(s)
Returns the set-complement of IntSet s.
"),
("Base","complement!","complement!(s)
Mutates IntSet s into its set-complement.
"),
("Base","intersect!","intersect!(s1, s2)
Intersects IntSets s1 and s2 and overwrites the set s1 with the
result. If needed, s1 will be expanded to the size of s2.
"),
("Base","issubset","issubset(A, S) -> Bool
True if \"A ⊆ S\" (A is a subset of or equal to S)
"),
("Base","push!","push!(collection, items...) -> collection
Insert items at the end of a collection.
"),
("Base","pop!","pop!(collection) -> item
Remove the last item in a collection and return it.
"),
("Base","unshift!","unshift!(collection, items...) -> collection
Insert items at the beginning of a collection.
"),
("Base","shift!","shift!(collection) -> item
Remove the first item in a collection.
"),
("Base","insert!","insert!(collection, index, item)
Insert an item at the given index.
"),
("Base","deleteat!","deleteat!(collection, index)
Remove the item at the given index, and return the modified
collection. Subsequent items are shifted to fill the resulting gap.
"),
("Base","deleteat!","deleteat!(collection, itr)
Remove the items at the indices given by *itr*, and return the
modified collection. Subsequent items are shifted to fill the
resulting gap. *itr* must be sorted and unique.
"),
("Base","splice!","splice!(collection, index[, replacement]) -> item
Remove the item at the given index, and return the removed item.
Subsequent items are shifted down to fill the resulting gap. If
specified, replacement values from an ordered collection will be
spliced in place of the removed item.
To insert \"replacement\" before an index \"n\" without removing
any items, use \"splice!(collection, n:n-1, replacement)\".
"),
("Base","splice!","splice!(collection, range[, replacement]) -> items
Remove items in the specified index range, and return a collection
containing the removed items. Subsequent items are shifted down to
fill the resulting gap. If specified, replacement values from an
ordered collection will be spliced in place of the removed items.
To insert \"replacement\" before an index \"n\" without removing
any items, use \"splice!(collection, n:n-1, replacement)\".
"),
("Base","resize!","resize!(collection, n) -> collection
Resize collection to contain \"n\" elements.
"),
("Base","append!","append!(collection, items) -> collection.
Add the elements of \"items\" to the end of a collection.
\"append!([1],[2,3]) => [1,2,3]\"
"),
("Base","prepend!","prepend!(collection, items) -> collection
Insert the elements of \"items\" to the beginning of a collection.
\"prepend!([3],[1,2]) => [1,2,3]\"
"),
("Base","length","length(s)
The number of characters in string \"s\".
"),
("Base","sizeof","sizeof(s::String)
The number of bytes in string \"s\".
"),
("Base","*","*(s, t)
Concatenate strings. The \"*\" operator is an alias to this
function.
**Example**:
julia> \"Hello \" * \"world\"
\"Hello world\"
"),
("Base","^","^(s, n)
Repeat \"n\" times the string \"s\". The \"^\" operator is an alias
to this function.
**Example**:
julia> \"Test \"^3
\"Test Test Test \"
"),
("Base","string","string(xs...)
Create a string from any values using the \"print\" function.
"),
("Base","repr","repr(x)
Create a string from any value using the \"showall\" function.
"),
("Base","bytestring","bytestring(::Ptr{Uint8}[, length])
Create a string from the address of a C (0-terminated) string
encoded in ASCII or UTF-8. A copy is made; the ptr can be safely
freed. If \"length\" is specified, the string does not have to be
0-terminated.
"),
("Base","bytestring","bytestring(s)
Convert a string to a contiguous byte array representation
appropriate for passing it to C functions. The string will be
encoded as either ASCII or UTF-8.
"),
("Base","ascii","ascii(::Array{Uint8, 1})
Create an ASCII string from a byte array.
"),
("Base","ascii","ascii(s)
Convert a string to a contiguous ASCII string (all characters must
be valid ASCII characters).
"),
("Base","utf8","utf8(::Array{Uint8, 1})
Create a UTF-8 string from a byte array.
"),
("Base","utf8","utf8(s)
Convert a string to a contiguous UTF-8 string (all characters must
be valid UTF-8 characters).
"),
("Base","normalize_string","normalize_string(s, normalform::Symbol)
Normalize the string \"s\" according to one of the four \"normal
forms\" of the Unicode standard: \"normalform\" can be \":NFC\",
\":NFD\", \":NFKC\", or \":NFKD\". Normal forms C (canonical
composition) and D (canonical decomposition) convert different
visually identical representations of the same abstract string into
a single canonical form, with form C being more compact. Normal
forms KC and KD additionally canonicalize \"compatibility
equivalents\": they convert characters that are abstractly similar
but visually distinct into a single canonical choice (e.g. they
expand ligatures into the individual characters), with form KC
being more compact.
Alternatively, finer control and additional transformations may be
be obtained by calling *normalize_string(s; keywords...)*, where
any number of the following boolean keywords options (which all
default to \"false\" except for \"compose\") are specified:
* \"compose=false\": do not perform canonical composition
* \"decompose=true\": do canonical decomposition instead of
canonical composition (\"compose=true\" is ignored if present)
* \"compat=true\": compatibility equivalents are canonicalized
* \"casefold=true\": perform Unicode case folding, e.g. for case-
insensitive string comparison
* \"newline2lf=true\", \"newline2ls=true\", or \"newline2ps=true\":
convert various newline sequences (LF, CRLF, CR, NEL) into a
linefeed (LF), line-separation (LS), or paragraph-separation (PS)
character, respectively
* \"stripmark=true\": strip diacritical marks (e.g. accents)
* \"stripignore=true\": strip Unicode's \"default ignorable\"
characters (e.g. the soft hyphen or the left-to-right marker)
* \"stripcc=true\": strip control characters; horizontal tabs and
form feeds are converted to spaces; newlines are also converted
to spaces unless a newline-conversion flag was specified
* \"rejectna=true\": throw an error if unassigned code points are
found
* \"stable=true\": enforce Unicode Versioning Stability
For example, NFKC corresponds to the options \"compose=true,
compat=true, stable=true\".
"),
("Base","is_valid_ascii","is_valid_ascii(s) -> Bool
Returns true if the string or byte vector is valid ASCII, false
otherwise.
"),
("Base","is_valid_utf8","is_valid_utf8(s) -> Bool
Returns true if the string or byte vector is valid UTF-8, false
otherwise.
"),
("Base","is_valid_char","is_valid_char(c) -> Bool
Returns true if the given char or integer is a valid Unicode code
point.
"),
("Base","is_assigned_char","is_assigned_char(c) -> Bool
Returns true if the given char or integer is an assigned Unicode
code point.
"),
("Base","ismatch","ismatch(r::Regex, s::String) -> Bool
Test whether a string contains a match of the given regular
expression.
"),
("Base","match","match(r::Regex, s::String[, idx::Integer[, addopts]])
Search for the first match of the regular expression \"r\" in \"s\"
and return a RegexMatch object containing the match, or nothing if
the match failed. The matching substring can be retrieved by
accessing \"m.match\" and the captured sequences can be retrieved
by accessing \"m.captures\" The optional \"idx\" argument specifies
an index at which to start the search.
"),
("Base","eachmatch","eachmatch(r::Regex, s::String[, overlap::Bool=false])
Search for all matches of a the regular expression \"r\" in \"s\"
and return a iterator over the matches. If overlap is true, the
matching sequences are allowed to overlap indices in the original
string, otherwise they must be from distinct character ranges.
"),
("Base","matchall","matchall(r::Regex, s::String[, overlap::Bool=false]) -> Vector{String}
Return a vector of the matching substrings from eachmatch.
"),
("Base","lpad","lpad(string, n, p)
Make a string at least \"n\" characters long by padding on the left
with copies of \"p\".
"),
("Base","rpad","rpad(string, n, p)
Make a string at least \"n\" characters long by padding on the
right with copies of \"p\".
"),
("Base","search","search(string, chars[, start])
Search for the first occurance of the given characters within the
given string. The second argument may be a single character, a
vector or a set of characters, a string, or a regular expression
(though regular expressions are only allowed on contiguous strings,
such as ASCII or UTF-8 strings). The third argument optionally
specifies a starting index. The return value is a range of indexes
where the matching sequence is found, such that \"s[search(s,x)] ==
x\":
\"search(string, \"substring\")\" = \"start:end\" such that
\"string[start:end] == \"substring\"\", or \"0:-1\" if unmatched.
\"search(string, 'c')\" = \"index\" such that
\"string[index] == 'c'\", or \"0\" if unmatched.
"),
("Base","rsearch","rsearch(string, chars[, start])
Similar to \"search\", but returning the last occurance of the
given characters within the given string, searching in reverse from
\"start\".
"),
("Base","searchindex","searchindex(string, substring[, start])
Similar to \"search\", but return only the start index at which the
substring is found, or 0 if it is not.
"),
("Base","rsearchindex","rsearchindex(string, substring[, start])
Similar to \"rsearch\", but return only the start index at which
the substring is found, or 0 if it is not.
"),
("Base","contains","contains(haystack, needle)
Determine whether the second argument is a substring of the first.
"),
("Base","replace","replace(string, pat, r[, n])
Search for the given pattern \"pat\", and replace each occurrence
with \"r\". If \"n\" is provided, replace at most \"n\"
occurrences. As with search, the second argument may be a single
character, a vector or a set of characters, a string, or a regular
expression. If \"r\" is a function, each occurrence is replaced
with \"r(s)\" where \"s\" is the matched substring.
"),
("Base","split","split(string, [chars, [limit,] [include_empty]])
Return an array of substrings by splitting the given string on
occurrences of the given character delimiters, which may be
specified in any of the formats allowed by \"search\"'s second
argument (i.e. a single character, collection of characters,
string, or regular expression). If \"chars\" is omitted, it
defaults to the set of all space characters, and \"include_empty\"
is taken to be false. The last two arguments are also optional:
they are are a maximum size for the result and a flag determining
whether empty fields should be included in the result.
"),
("Base","rsplit","rsplit(string, [chars, [limit,] [include_empty]])
Similar to \"split\", but starting from the end of the string.
"),
("Base","strip","strip(string[, chars])
Return \"string\" with any leading and trailing whitespace removed.
If \"chars\" (a character, or vector or set of characters) is
provided, instead remove characters contained in it.
"),
("Base","lstrip","lstrip(string[, chars])
Return \"string\" with any leading whitespace removed. If \"chars\"
(a character, or vector or set of characters) is provided, instead
remove characters contained in it.
"),
("Base","rstrip","rstrip(string[, chars])
Return \"string\" with any trailing whitespace removed. If
\"chars\" (a character, or vector or set of characters) is
provided, instead remove characters contained in it.
"),
("Base","beginswith","beginswith(string, prefix | chars)
Returns \"true\" if \"string\" starts with \"prefix\". If the
second argument is a vector or set of characters, tests whether the
first character of \"string\" belongs to that set.
"),
("Base","endswith","endswith(string, suffix | chars)
Returns \"true\" if \"string\" ends with \"suffix\". If the second
argument is a vector or set of characters, tests whether the last
character of \"string\" belongs to that set.
"),
("Base","uppercase","uppercase(string)
Returns \"string\" with all characters converted to uppercase.
"),
("Base","lowercase","lowercase(string)
Returns \"string\" with all characters converted to lowercase.
"),
("Base","ucfirst","ucfirst(string)
Returns \"string\" with the first character converted to uppercase.
"),
("Base","lcfirst","lcfirst(string)
Returns \"string\" with the first character converted to lowercase.
"),
("Base","join","join(strings, delim)
Join an array of strings into a single string, inserting the given
delimiter between adjacent strings.
"),
("Base","chop","chop(string)
Remove the last character from a string
"),
("Base","chomp","chomp(string)
Remove a trailing newline from a string
"),
("Base","ind2chr","ind2chr(string, i)
Convert a byte index to a character index
"),
("Base","chr2ind","chr2ind(string, i)
Convert a character index to a byte index
"),
("Base","isvalid","isvalid(str, i)
Tells whether index \"i\" is valid for the given string
"),
("Base","nextind","nextind(str, i)
Get the next valid string index after \"i\". Returns a value
greater than \"endof(str)\" at or after the end of the string.
"),
("Base","prevind","prevind(str, i)
Get the previous valid string index before \"i\". Returns a value
less than \"1\" at the beginning of the string.
"),
("Base","randstring","randstring(len)
Create a random ASCII string of length \"len\", consisting of
upper- and lower-case letters and the digits 0-9
"),
("Base","charwidth","charwidth(c)
Gives the number of columns needed to print a character.
"),
("Base","strwidth","strwidth(s)
Gives the number of columns needed to print a string.
"),
("Base","isalnum","isalnum(c::Union(Char, String)) -> Bool
Tests whether a character is alphanumeric, or whether this is true
for all elements of a string.
"),
("Base","isalpha","isalpha(c::Union(Char, String)) -> Bool
Tests whether a character is alphabetic, or whether this is true
for all elements of a string.
"),
("Base","isascii","isascii(c::Union(Char, String)) -> Bool
Tests whether a character belongs to the ASCII character set, or
whether this is true for all elements of a string.
"),
("Base","isblank","isblank(c::Union(Char, String)) -> Bool
Tests whether a character is a tab or space, or whether this is
true for all elements of a string.
"),
("Base","iscntrl","iscntrl(c::Union(Char, String)) -> Bool
Tests whether a character is a control character, or whether this
is true for all elements of a string.
"),
("Base","isdigit","isdigit(c::Union(Char, String)) -> Bool
Tests whether a character is a numeric digit (0-9), or whether this
is true for all elements of a string.
"),
("Base","isgraph","isgraph(c::Union(Char, String)) -> Bool
Tests whether a character is printable, and not a space, or whether
this is true for all elements of a string.
"),
("Base","islower","islower(c::Union(Char, String)) -> Bool
Tests whether a character is a lowercase letter, or whether this is
true for all elements of a string.
"),
("Base","isprint","isprint(c::Union(Char, String)) -> Bool
Tests whether a character is printable, including space, or whether
this is true for all elements of a string.
"),
("Base","ispunct","ispunct(c::Union(Char, String)) -> Bool
Tests whether a character is printable, and not a space or
alphanumeric, or whether this is true for all elements of a string.
"),
("Base","isspace","isspace(c::Union(Char, String)) -> Bool
Tests whether a character is any whitespace character, or whether
this is true for all elements of a string.
"),
("Base","isupper","isupper(c::Union(Char, String)) -> Bool
Tests whether a character is an uppercase letter, or whether this
is true for all elements of a string.
"),
("Base","isxdigit","isxdigit(c::Union(Char, String)) -> Bool
Tests whether a character is a valid hexadecimal digit, or whether
this is true for all elements of a string.
"),
("Base","symbol","symbol(str) -> Symbol
Convert a string to a \"Symbol\".
"),
("Base","escape_string","escape_string(str::String) -> String
General escaping of traditional C and Unicode escape sequences. See
\"print_escaped()\" for more general escaping.
"),
("Base","unescape_string","unescape_string(s::String) -> String
General unescaping of traditional C and Unicode escape sequences.
Reverse of \"escape_string()\". See also \"print_unescaped()\".
"),
("Base","utf16","utf16(s)
Create a UTF-16 string from a byte array, array of \"Uint16\", or
any other string type. (Data must be valid UTF-16. Conversions of
byte arrays check for a byte-order marker in the first two bytes,
and do not include it in the resulting string.)
Note that the resulting \"UTF16String\" data is terminated by the
NUL codepoint (16-bit zero), which is not treated as a character in
the string (so that it is mostly invisible in Julia); this allows
the string to be passed directly to external functions requiring
NUL-terminated data. This NUL is appended automatically by the
*utf16(s)* conversion function. If you have a \"Uint16\" array
\"A\" that is already NUL-terminated valid UTF-16 data, then you
can instead use *UTF16String(A)`* to construct the string without
making a copy of the data and treating the NUL as a terminator
rather than as part of the string.
"),
("Base","utf16","utf16(::Union(Ptr{Uint16}, Ptr{Int16})[, length])
Create a string from the address of a NUL-terminated UTF-16 string.
A copy is made; the pointer can be safely freed. If \"length\" is
specified, the string does not have to be NUL-terminated.
"),
("Base","is_valid_utf16","is_valid_utf16(s) -> Bool
Returns true if the string or \"Uint16\" array is valid UTF-16.
"),
("Base","utf32","utf32(s)
Create a UTF-32 string from a byte array, array of \"Uint32\", or
any other string type. (Conversions of byte arrays check for a
byte-order marker in the first four bytes, and do not include it in
the resulting string.)
Note that the resulting \"UTF32String\" data is terminated by the
NUL codepoint (32-bit zero), which is not treated as a character in
the string (so that it is mostly invisible in Julia); this allows
the string to be passed directly to external functions requiring
NUL-terminated data. This NUL is appended automatically by the
*utf32(s)* conversion function. If you have a \"Uint32\" array
\"A\" that is already NUL-terminated UTF-32 data, then you can
instead use *UTF32String(A)`* to construct the string without
making a copy of the data and treating the NUL as a terminator
rather than as part of the string.
"),
("Base","utf32","utf32(::Union(Ptr{Char}, Ptr{Uint32}, Ptr{Int32})[, length])
Create a string from the address of a NUL-terminated UTF-32 string.
A copy is made; the pointer can be safely freed. If \"length\" is
specified, the string does not have to be NUL-terminated.
"),
("Base","wstring","wstring(s)
This is a synonym for either \"utf32(s)\" or \"utf16(s)\",
depending on whether \"Cwchar_t\" is 32 or 16 bits, respectively.
The synonym \"WString\" for \"UTF32String\" or \"UTF16String\" is
also provided.
"),
("Base","STDOUT","STDOUT
Global variable referring to the standard out stream.
"),
("Base","STDERR","STDERR
Global variable referring to the standard error stream.
"),
("Base","STDIN","STDIN
Global variable referring to the standard input stream.
"),
("Base","open","open(file_name[, read, write, create, truncate, append]) -> IOStream
Open a file in a mode specified by five boolean arguments. The
default is to open files for reading only. Returns a stream for
accessing the file.
"),
("Base","open","open(file_name[, mode]) -> IOStream
Alternate syntax for open, where a string-based mode specifier is
used instead of the five booleans. The values of \"mode\"
correspond to those from \"fopen(3)\" or Perl \"open\", and are
equivalent to setting the following boolean groups:
+------+-----------------------------------+
| r | read |
+------+-----------------------------------+
| r+ | read, write |
+------+-----------------------------------+
| w | write, create, truncate |
+------+-----------------------------------+
| w+ | read, write, create, truncate |
+------+-----------------------------------+
| a | write, create, append |
+------+-----------------------------------+
| a+ | read, write, create, append |
+------+-----------------------------------+
"),
("Base","open","open(f::function, args...)
Apply the function \"f\" to the result of \"open(args...)\" and
close the resulting file descriptor upon completion.
**Example**: \"open(readall, \"file.txt\")\"
"),
("Base","IOBuffer","IOBuffer() -> IOBuffer
Create an in-memory I/O stream.
"),
("Base","IOBuffer","IOBuffer(size::Int)
Create a fixed size IOBuffer. The buffer will not grow dynamically.
"),
("Base","IOBuffer","IOBuffer(string)
Create a read-only IOBuffer on the data underlying the given string
"),
("Base","IOBuffer","IOBuffer([data][, readable, writable[, maxsize]])
Create an IOBuffer, which may optionally operate on a pre-existing
array. If the readable/writable arguments are given, they restrict
whether or not the buffer may be read from or written to
respectively. By default the buffer is readable but not writable.
The last argument optionally specifies a size beyond which the
buffer may not be grown.
"),
("Base","takebuf_array","takebuf_array(b::IOBuffer)
Obtain the contents of an \"IOBuffer\" as an array, without
copying.
"),
("Base","takebuf_string","takebuf_string(b::IOBuffer)
Obtain the contents of an \"IOBuffer\" as a string, without
copying.
"),
("Base","fdio","fdio([name::String], fd::Integer[, own::Bool]) -> IOStream
Create an \"IOStream\" object from an integer file descriptor. If
\"own\" is true, closing this object will close the underlying
descriptor. By default, an \"IOStream\" is closed when it is
garbage collected. \"name\" allows you to associate the descriptor
with a named file.
"),
("Base","flush","flush(stream)
Commit all currently buffered writes to the given stream.
"),
("Base","flush_cstdio","flush_cstdio()
Flushes the C \"stdout\" and \"stderr\" streams (which may have
been written to by external C code).
"),
("Base","close","close(stream)
Close an I/O stream. Performs a \"flush\" first.
"),
("Base","write","write(stream, x)
Write the canonical binary representation of a value to the given
stream.
"),
("Base","read","read(stream, type)
Read a value of the given type from a stream, in canonical binary
representation.
"),
("Base","read","read(stream, type, dims)
Read a series of values of the given type from a stream, in
canonical binary representation. \"dims\" is either a tuple or a
series of integer arguments specifying the size of \"Array\" to
return.
"),
("Base","read!","read!(stream, array::Array)
Read binary data from a stream, filling in the argument \"array\".
"),
("Base","readbytes!","readbytes!(stream, b::Vector{Uint8}, nb=length(b))
Read at most \"nb\" bytes from the stream into \"b\", returning the
number of bytes read (increasing the size of \"b\" as needed).
"),
("Base","readbytes","readbytes(stream, nb=typemax(Int))
Read at most \"nb\" bytes from the stream, returning a
\"Vector{Uint8}\" of the bytes read.
"),
("Base","position","position(s)
Get the current position of a stream.
"),
("Base","seek","seek(s, pos)
Seek a stream to the given position.
"),
("Base","seekstart","seekstart(s)
Seek a stream to its beginning.
"),
("Base","seekend","seekend(s)
Seek a stream to its end.
"),
("Base","skip","skip(s, offset)
Seek a stream relative to the current position.
"),
("Base","mark","mark(s)
Add a mark at the current position of stream \"s\". Returns the
marked position.
See also \"unmark()\", \"reset()\", \"ismarked()\"
"),
("Base","unmark","unmark(s)
Remove a mark from stream \"s\". Returns \"true\" if the stream was
marked, \"false\" otherwise.
See also \"mark()\", \"reset()\", \"ismarked()\"
"),
("Base","reset","reset(s)
Reset a stream \"s\" to a previously marked position, and remove
the mark. Returns the previously marked position. Throws an error
if the stream is not marked.
See also \"mark()\", \"unmark()\", \"ismarked()\"
"),
("Base","ismarked","ismarked(s)
Returns true if stream \"s\" is marked.
See also \"mark()\", \"unmark()\", \"reset()\"
"),
("Base","eof","eof(stream) -> Bool
Tests whether an I/O stream is at end-of-file. If the stream is not
yet exhausted, this function will block to wait for more data if
necessary, and then return \"false\". Therefore it is always safe
to read one byte after seeing \"eof\" return \"false\". \"eof\"
will return \"false\" as long as buffered data is still available,
even if the remote end of a connection is closed.
"),
("Base","isreadonly","isreadonly(stream) -> Bool
Determine whether a stream is read-only.
"),
("Base","isopen","isopen(stream) -> Bool
Determine whether a stream is open (i.e. has not been closed yet).
If the connection has been closed remotely (in case of e.g. a
socket), \"isopen\" will return \"false\" even though buffered data
may still be available. Use \"eof\" to check if necessary.
"),
("Base","ntoh","ntoh(x)
Converts the endianness of a value from Network byte order (big-
endian) to that used by the Host.
"),
("Base","hton","hton(x)
Converts the endianness of a value from that used by the Host to
Network byte order (big-endian).
"),
("Base","ltoh","ltoh(x)
Converts the endianness of a value from Little-endian to that used
by the Host.
"),
("Base","htol","htol(x)
Converts the endianness of a value from that used by the Host to
Little-endian.
"),
("Base","ENDIAN_BOM","ENDIAN_BOM
The 32-bit byte-order-mark indicates the native byte order of the
host machine. Little-endian machines will contain the value
0x04030201. Big-endian machines will contain the value 0x01020304.
"),
("Base","serialize","serialize(stream, value)
Write an arbitrary value to a stream in an opaque format, such that
it can be read back by \"deserialize\". The read-back value will be
as identical as possible to the original. In general, this process
will not work if the reading and writing are done by different
versions of Julia, or an instance of Julia with a different system
image.
"),
("Base","deserialize","deserialize(stream)
Read a value written by \"serialize\".
"),
("Base","print_escaped","print_escaped(io, str::String, esc::String)
General escaping of traditional C and Unicode escape sequences,
plus any characters in esc are also escaped (with a backslash).
"),
("Base","print_unescaped","print_unescaped(io, s::String)
General unescaping of traditional C and Unicode escape sequences.
Reverse of \"print_escaped()\".
"),
("Base","print_joined","print_joined(io, items, delim[, last])
Print elements of \"items\" to \"io\" with \"delim\" between them.
If \"last\" is specified, it is used as the final delimiter instead
of \"delim\".
"),
("Base","print_shortest","print_shortest(io, x)
Print the shortest possible representation of number \"x\" as a
floating point number, ensuring that it would parse to the exact
same number.
"),
("Base","fd","fd(stream)
Returns the file descriptor backing the stream or file. Note that
this function only applies to synchronous *File*'s and *IOStream*'s
not to any of the asynchronous streams.
"),
("Base","redirect_stdout","redirect_stdout()
Create a pipe to which all C and Julia level STDOUT output will be
redirected. Returns a tuple (rd,wr) representing the pipe ends.
Data written to STDOUT may now be read from the rd end of the pipe.
The wr end is given for convenience in case the old STDOUT object
was cached by the user and needs to be replaced elsewhere.
"),
("Base","redirect_stdout","redirect_stdout(stream)
Replace STDOUT by stream for all C and julia level output to
STDOUT. Note that *stream* must be a TTY, a Pipe or a TcpSocket.
"),
("Base","redirect_stderr","redirect_stderr([stream])
Like redirect_stdout, but for STDERR
"),
("Base","redirect_stdin","redirect_stdin([stream])
Like redirect_stdout, but for STDIN. Note that the order of the
return tuple is still (rd,wr), i.e. data to be read from STDIN, may
be written to wr.
"),
("Base","readchomp","readchomp(x)
Read the entirety of x as a string but remove trailing newlines.
Equivalent to chomp(readall(x)).
"),
("Base","readdir","readdir([dir]) -> Vector{ByteString}
Returns the files and directories in the directory *dir* (or the
current working directory if not given).
"),
("Base","truncate","truncate(file, n)
Resize the file or buffer given by the first argument to exactly
*n* bytes, filling previously unallocated space with '0' if the
file or buffer is grown
"),
("Base","skipchars","skipchars(stream, predicate; linecomment::Char)
Advance the stream until before the first character for which
\"predicate\" returns false. For example \"skipchars(stream,
isspace)\" will skip all whitespace. If keyword argument
\"linecomment\" is specified, characters from that character
through the end of a line will also be skipped.
"),
("Base","countlines","countlines(io[, eol::Char])
Read io until the end of the stream/file and count the number of
non-empty lines. To specify a file pass the filename as the first
argument. EOL markers other than 'n' are supported by passing them
as the second argument.
"),
("Base","PipeBuffer","PipeBuffer()
An IOBuffer that allows reading and performs writes by appending.
Seeking and truncating are not supported. See IOBuffer for the
available constructors.
"),
("Base","PipeBuffer","PipeBuffer(data::Vector{Uint8}[, maxsize])
Create a PipeBuffer to operate on a data vector, optionally
specifying a size beyond which the underlying Array may not be
grown.
"),
("Base","readavailable","readavailable(stream)
Read all available data on the stream, blocking the task only if no
data is available.
"),
("Base","stat","stat(file)
Returns a structure whose fields contain information about the
file. The fields of the structure are:
+-----------+------------------------------------------------------------------------+
| size | The size (in bytes) of the file |
+-----------+------------------------------------------------------------------------+
| device | ID of the device that contains the file |
+-----------+------------------------------------------------------------------------+
| inode | The inode number of the file |
+-----------+------------------------------------------------------------------------+
| mode | The protection mode of the file |
+-----------+------------------------------------------------------------------------+
| nlink | The number of hard links to the file |
+-----------+------------------------------------------------------------------------+
| uid | The user id of the owner of the file |
+-----------+------------------------------------------------------------------------+
| gid | The group id of the file owner |
+-----------+------------------------------------------------------------------------+
| rdev | If this file refers to a device, the ID of the device it refers to |
+-----------+------------------------------------------------------------------------+
| blksize | The file-system preffered block size for the file |
+-----------+------------------------------------------------------------------------+
| blocks | The number of such blocks allocated |
+-----------+------------------------------------------------------------------------+
| mtime | Unix timestamp of when the file was last modified |
+-----------+------------------------------------------------------------------------+
| ctime | Unix timestamp of when the file was created |
+-----------+------------------------------------------------------------------------+
"),
("Base","lstat","lstat(file)
Like stat, but for symbolic links gets the info for the link itself
rather than the file it refers to. This function must be called on
a file path rather than a file object or a file descriptor.
"),
("Base","ctime","ctime(file)
Equivalent to stat(file).ctime
"),
("Base","mtime","mtime(file)
Equivalent to stat(file).mtime
"),
("Base","filemode","filemode(file)
Equivalent to stat(file).mode
"),
("Base","filesize","filesize(path...)
Equivalent to stat(file).size
"),
("Base","uperm","uperm(file)
Gets the permissions of the owner of the file as a bitfield of
+------+-----------------------+
| 01 | Execute Permission |
+------+-----------------------+
| 02 | Write Permission |
+------+-----------------------+
| 04 | Read Permission |
+------+-----------------------+
For allowed arguments, see \"stat\".
"),
("Base","gperm","gperm(file)
Like uperm but gets the permissions of the group owning the file
"),
("Base","operm","operm(file)
Like uperm but gets the permissions for people who neither own the
file nor are a member of the group owning the file
"),
("Base","cp","cp(src::String, dst::String)
Copy a file from *src* to *dest*.
"),
("Base","download","download(url[, localfile])
Download a file from the given url, optionally renaming it to the
given local file name. Note that this function relies on the
availability of external tools such as \"curl\", \"wget\" or
\"fetch\" to download the file and is provided for convenience. For
production use or situations in which more options are need, please
use a package that provides the desired functionality instead.
"),
("Base","mv","mv(src::String, dst::String)
Move a file from *src* to *dst*.
"),
("Base","rm","rm(path::String; recursive=false)
Delete the file, link, or empty directory at the given path. If
\"recursive=true\" is passed and the path is a directory, then all
contents are removed recursively.
"),
("Base","touch","touch(path::String)
Update the last-modified timestamp on a file to the current time.
"),
("Base","connect","connect([host], port) -> TcpSocket
Connect to the host \"host\" on port \"port\"
"),
("Base","connect","connect(path) -> Pipe
Connect to the Named Pipe/Domain Socket at \"path\"
"),
("Base","listen","listen([addr], port) -> TcpServer
Listen on port on the address specified by \"addr\". By default
this listens on localhost only. To listen on all interfaces pass,
\"IPv4(0)\" or \"IPv6(0)\" as appropriate.
"),
("Base","listen","listen(path) -> PipeServer
Listens on/Creates a Named Pipe/Domain Socket
"),
("Base","getaddrinfo","getaddrinfo(host)
Gets the IP address of the \"host\" (may have to do a DNS lookup)
"),
("Base","parseip","parseip(addr)
Parse a string specifying an IPv4 or IPv6 ip address.
"),
("Base","IPv4","IPv4(host::Integer) -> IPv4
Returns IPv4 object from ip address formatted as Integer
"),
("Base","IPv6","IPv6(host::Integer) -> IPv6
Returns IPv6 object from ip address formatted as Integer
"),
("Base","nb_available","nb_available(stream)
Returns the number of bytes available for reading before a read
from this stream or buffer will block.
"),
("Base","accept","accept(server[, client])
Accepts a connection on the given server and returns a connection
to the client. An uninitialized client stream may be provided, in
which case it will be used instead of creating a new stream.
"),
("Base","listenany","listenany(port_hint) -> (Uint16, TcpServer)
Create a TcpServer on any port, using hint as a starting point.
Returns a tuple of the actual port that the server was created on
and the server itself.
"),
("Base","watch_file","watch_file(cb=false, s; poll=false)
Watch file or directory \"s\" and run callback \"cb\" when \"s\" is
modified. The \"poll\" parameter specifies whether to use file
system event monitoring or polling. The callback function \"cb\"
should accept 3 arguments: \"(filename, events, status)\" where
\"filename\" is the name of file that was modified, \"events\" is
an object with boolean fields \"changed\" and \"renamed\" when
using file system event monitoring, or \"readable\" and
\"writable\" when using polling, and \"status\" is always 0. Pass
\"false\" for \"cb\" to not use a callback function.
"),
("Base","poll_fd","poll_fd(fd, seconds::Real; readable=false, writable=false)
Poll a file descriptor fd for changes in the read or write
availability and with a timeout given by the second argument. If
the timeout is not needed, use \"wait(fd)\" instead. The keyword
arguments determine which of read and/or write status should be
monitored and at least one of them needs to be set to true. The
returned value is an object with boolean fields \"readable\",
\"writable\", and \"timedout\", giving the result of the polling.
"),
("Base","poll_file","poll_file(s, interval_seconds::Real, seconds::Real)
Monitor a file for changes by polling every *interval_seconds*
seconds for *seconds* seconds. A return value of true indicates the
file changed, a return value of false indicates a timeout.
"),
("Base","show","show(x)
Write an informative text representation of a value to the current
output stream. New types should overload \"show(io, x)\" where the
first argument is a stream. The representation used by \"show\"
generally includes Julia-specific formatting and type information.
"),
("Base","showcompact","showcompact(x)
Show a more compact representation of a value. This is used for
printing array elements. If a new type has a different compact
representation, it should overload \"showcompact(io, x)\" where the
first argument is a stream.
"),
("Base","showall","showall(x)
Similar to \"show\", except shows all elements of arrays.
"),
("Base","summary","summary(x)
Return a string giving a brief description of a value. By default
returns \"string(typeof(x))\". For arrays, returns strings like
\"2x2 Float64 Array\".
"),
("Base","print","print(x)
Write (to the default output stream) a canonical (un-decorated)
text representation of a value if there is one, otherwise call
\"show\". The representation used by \"print\" includes minimal
formatting and tries to avoid Julia-specific details.
"),
("Base","println","println(x)
Print (using \"print()\") \"x\" followed by a newline.
"),
("Base","print_with_color","print_with_color(color::Symbol[, io], strings...)
Print strings in a color specified as a symbol, for example
\":red\" or \":blue\".
"),
("Base","info","info(msg)
Display an informational message.
"),
("Base","warn","warn(msg)
Display a warning.
"),
("Base","@printf","@printf([io::IOStream], \"%Fmt\", args...)
Print arg(s) using C \"printf()\" style format specification
string. Optionally, an IOStream may be passed as the first argument
to redirect output.
"),
("Base","@sprintf","@sprintf(\"%Fmt\", args...)
Return \"@printf\" formatted output as string.
"),
("Base","sprint","sprint(f::Function, args...)
Call the given function with an I/O stream and the supplied extra
arguments. Everything written to this I/O stream is returned as a
string.
"),
("Base","showerror","showerror(io, e)
Show a descriptive representation of an exception object.
"),
("Base","dump","dump(x)
Show all user-visible structure of a value.
"),
("Base","xdump","xdump(x)
Show all structure of a value, including all fields of objects.
"),
("Base","readall","readall(stream::IO)
Read the entire contents of an I/O stream as a string.
"),
("Base","readall","readall(filename::String)
Open \"filename\", read the entire contents as a string, then close
the file. Equivalent to \"open(readall, filename)\".
"),
("Base","readline","readline(stream=STDIN)
Read a single line of text, including a trailing newline character
(if one is reached before the end of the input), from the given
\"stream\" (defaults to \"STDIN\"),
"),
("Base","readuntil","readuntil(stream, delim)
Read a string, up to and including the given delimiter byte.
"),
("Base","readlines","readlines(stream)
Read all lines as an array.
"),
("Base","eachline","eachline(stream)
Create an iterable object that will yield each line from a stream.
"),
("Base","readdlm","readdlm(source, delim::Char, T::Type, eol::Char; header=false, skipstart=0, use_mmap, ignore_invalid_chars=false, quotes=true, dims, comments=true, comment_char='#')
Read a matrix from the source where each line (separated by
\"eol\") gives one row, with elements separated by the given
delimeter. The source can be a text file, stream or byte array.
Memory mapped files can be used by passing the byte array
representation of the mapped segment as source.
If \"T\" is a numeric type, the result is an array of that type,
with any non-numeric elements as \"NaN\" for floating-point types,
or zero. Other useful values of \"T\" include \"ASCIIString\",
\"String\", and \"Any\".
If \"header\" is \"true\", the first row of data will be read as
header and the tuple \"(data_cells, header_cells)\" is returned
instead of only \"data_cells\".
Specifying \"skipstart\" will ignore the corresponding number of
initial lines from the input.
If \"use_mmap\" is \"true\", the file specified by \"source\" is
memory mapped for potential speedups. Default is \"true\" except on
Windows. On Windows, you may want to specify \"true\" if the file
is large, and is only read once and not written to.
If \"ignore_invalid_chars\" is \"true\", bytes in \"source\" with
invalid character encoding will be ignored. Otherwise an error is
thrown indicating the offending character position.
If \"quotes\" is \"true\", column enclosed within double-quote (``)
characters are allowed to contain new lines and column delimiters.
Double-quote characters within a quoted field must be escaped with
another double-quote.
Specifying \"dims\" as a tuple of the expected rows and columns
(including header, if any) may speed up reading of large files.
If \"comments\" is \"true\", lines beginning with \"comment_char\"
and text following \"comment_char\" in any line are ignored.
"),
("Base","readdlm","readdlm(source, delim::Char, eol::Char; options...)
If all data is numeric, the result will be a numeric array. If some
elements cannot be parsed as numbers, a cell array of numbers and
strings is returned.
"),
("Base","readdlm","readdlm(source, delim::Char, T::Type; options...)
The end of line delimiter is taken as \"\\n\".
"),
("Base","readdlm","readdlm(source, delim::Char; options...)
The end of line delimiter is taken as \"\\n\". If all data is
numeric, the result will be a numeric array. If some elements
cannot be parsed as numbers, a cell array of numbers and strings is
returned.
"),
("Base","readdlm","readdlm(source, T::Type; options...)
The columns are assumed to be separated by one or more whitespaces.
The end of line delimiter is taken as \"\\n\".
"),
("Base","readdlm","readdlm(source; options...)
The columns are assumed to be separated by one or more whitespaces.
The end of line delimiter is taken as \"\\n\". If all data is
numeric, the result will be a numeric array. If some elements
cannot be parsed as numbers, a cell array of numbers and strings is
returned.
"),
("Base","writedlm","writedlm(f, A, delim='t')
Write \"A\" (either an array type or an iterable collection of
iterable rows) as text to \"f\" (either a filename string or an
\"IO\" stream) using the given delimeter \"delim\" (which defaults
to tab, but can be any printable Julia object, typically a \"Char\"
or \"String\").
For example, two vectors \"x\" and \"y\" of the same length can be
written as two columns of tab-delimited text to \"f\" by either
\"writedlm(f, [x y])\" or by \"writedlm(f, zip(x, y))\".
"),
("Base","readcsv","readcsv(source, [T::Type]; options...)
Equivalent to \"readdlm\" with \"delim\" set to comma.
"),
("Base","writecsv","writecsv(filename, A)
Equivalent to \"writedlm\" with \"delim\" set to comma.
"),
("Base","Base64Pipe","Base64Pipe(ostream)
Returns a new write-only I/O stream, which converts any bytes
written to it into base64-encoded ASCII bytes written to
\"ostream\". Calling \"close\" on the \"Base64Pipe\" stream is
necessary to complete the encoding (but does not close
\"ostream\").
"),
("Base","base64","base64(writefunc, args...)
base64(args...)
Given a \"write\"-like function \"writefunc\", which takes an I/O
stream as its first argument, \"base64(writefunc, args...)\" calls
\"writefunc\" to write \"args...\" to a base64-encoded string, and
returns the string. \"base64(args...)\" is equivalent to
\"base64(write, args...)\": it converts its arguments into bytes
using the standard \"write\" functions and returns the
base64-encoded string.
"),
("Base","display","display(x)
display(d::Display, x)
display(mime, x)
display(d::Display, mime, x)
Display \"x\" using the topmost applicable display in the display
stack, typically using the richest supported multimedia output for
\"x\", with plain-text \"STDOUT\" output as a fallback. The
\"display(d, x)\" variant attempts to display \"x\" on the given
display \"d\" only, throwing a \"MethodError\" if \"d\" cannot
display objects of this type.
There are also two variants with a \"mime\" argument (a MIME type
string, such as \"\"image/png\"\"), which attempt to display \"x\"
using the requesed MIME type *only*, throwing a \"MethodError\" if
this type is not supported by either the display(s) or by \"x\".
With these variants, one can also supply the \"raw\" data in the
requested MIME type by passing \"x::String\" (for MIME types with
text-based storage, such as text/html or application/postscript) or
\"x::Vector{Uint8}\" (for binary MIME types).
"),
("Base","redisplay","redisplay(x)
redisplay(d::Display, x)
redisplay(mime, x)
redisplay(d::Display, mime, x)
By default, the \"redisplay\" functions simply call \"display\".
However, some display backends may override \"redisplay\" to modify
an existing display of \"x\" (if any). Using \"redisplay\" is
also a hint to the backend that \"x\" may be redisplayed several
times, and the backend may choose to defer the display until (for
example) the next interactive prompt.
"),
("Base","displayable","displayable(mime) -> Bool
displayable(d::Display, mime) -> Bool
Returns a boolean value indicating whether the given \"mime\" type
(string) is displayable by any of the displays in the current
display stack, or specifically by the display \"d\" in the second
variant.
"),
("Base","writemime","writemime(stream, mime, x)
The \"display\" functions ultimately call \"writemime\" in order to
write an object \"x\" as a given \"mime\" type to a given I/O
\"stream\" (usually a memory buffer), if possible. In order to
provide a rich multimedia representation of a user-defined type
\"T\", it is only necessary to define a new \"writemime\" method
for \"T\", via: \"writemime(stream, ::MIME\"mime\", x::T) = ...\",
where \"mime\" is a MIME-type string and the function body calls
\"write\" (or similar) to write that representation of \"x\" to
\"stream\". (Note that the \"MIME\"\"\" notation only supports
literal strings; to construct \"MIME\" types in a more flexible
manner use \"MIME{symbol(\"\")}\".)
For example, if you define a \"MyImage\" type and know how to write
it to a PNG file, you could define a function \"writemime(stream,
::MIME\"image/png\", x::MyImage) = ...`\" to allow your images to
be displayed on any PNG-capable \"Display\" (such as IJulia). As
usual, be sure to \"import Base.writemime\" in order to add new
methods to the built-in Julia function \"writemime\".
Technically, the \"MIME\"mime\"\" macro defines a singleton type
for the given \"mime\" string, which allows us to exploit Julia's
dispatch mechanisms in determining how to display objects of any
given type.
"),
("Base","mimewritable","mimewritable(mime, x)
Returns a boolean value indicating whether or not the object \"x\"
can be written as the given \"mime\" type. (By default, this is
determined automatically by the existence of the corresponding
\"writemime\" function for \"typeof(x)\".)
"),
("Base","reprmime","reprmime(mime, x)
Returns a \"String\" or \"Vector{Uint8}\" containing the
representation of \"x\" in the requested \"mime\" type, as written
by \"writemime\" (throwing a \"MethodError\" if no appropriate
\"writemime\" is available). A \"String\" is returned for MIME
types with textual representations (such as \"\"text/html\"\" or
\"\"application/postscript\"\"), whereas binary data is returned as
\"Vector{Uint8}\". (The function \"istext(mime)\" returns whether
or not Julia treats a given \"mime\" type as text.)
As a special case, if \"x\" is a \"String\" (for textual MIME
types) or a \"Vector{Uint8}\" (for binary MIME types), the
\"reprmime\" function assumes that \"x\" is already in the
requested \"mime\" format and simply returns \"x\".
"),
("Base","stringmime","stringmime(mime, x)
Returns a \"String\" containing the representation of \"x\" in the
requested \"mime\" type. This is similar to \"reprmime\" except
that binary data is base64-encoded as an ASCII string.
"),
("Base","pushdisplay","pushdisplay(d::Display)
Pushes a new display \"d\" on top of the global display-backend
stack. Calling \"display(x)\" or \"display(mime, x)\" will display
\"x\" on the topmost compatible backend in the stack (i.e., the
topmost backend that does not throw a \"MethodError\").
"),
("Base","popdisplay","popdisplay()
popdisplay(d::Display)
Pop the topmost backend off of the display-backend stack, or the
topmost copy of \"d\" in the second variant.
"),
("Base","TextDisplay","TextDisplay(stream)
Returns a \"TextDisplay <: Display\", which can display any object
as the text/plain MIME type (only), writing the text representation
to the given I/O stream. (The text representation is the same as
the way an object is printed in the Julia REPL.)
"),
("Base","istext","istext(m::MIME)
Determine whether a MIME type is text data.
"),
("Base","mmap_array","mmap_array(type, dims, stream[, offset])
Create an \"Array\" whose values are linked to a file, using
memory-mapping. This provides a convenient way of working with data
too large to fit in the computer's memory.
The type determines how the bytes of the array are interpreted.
Note that the file must be stored in binary format, and no format
conversions are possible (this is a limitation of operating
systems, not Julia).
dims is a tuple specifying the size of the array.
The file is passed via the stream argument. When you initialize
the stream, use \"\"r\"\" for a \"read-only\" array, and \"\"w+\"\"
to create a new array used to write values to disk.
Optionally, you can specify an offset (in bytes) if, for example,
you want to skip over a header in the file. The default value for
the offset is the current stream position.
**Example**:
# Create a file for mmapping
# (you could alternatively use mmap_array to do this step, too)
A = rand(1:20, 5, 30)
s = open(\"/tmp/mmap.bin\", \"w+\")
# We'll write the dimensions of the array as the first two Ints in the file
write(s, size(A,1))
write(s, size(A,2))
# Now write the data
write(s, A)
close(s)
# Test by reading it back in
s = open(\"/tmp/mmap.bin\") # default is read-only
m = read(s, Int)
n = read(s, Int)
A2 = mmap_array(Int, (m,n), s)
This would create a m-by-n \"Matrix{Int}\", linked to the file
associated with stream \"s\".
A more portable file would need to encode the word size---32 bit or
64 bit---and endianness information in the header. In practice,
consider encoding binary data using standard formats like HDF5
(which can be used with memory-mapping).
"),
("Base","mmap_bitarray","mmap_bitarray([type], dims, stream[, offset])
Create a \"BitArray\" whose values are linked to a file, using
memory-mapping; it has the same purpose, works in the same way, and
has the same arguments, as \"mmap_array()\", but the byte
representation is different. The \"type\" parameter is optional,
and must be \"Bool\" if given.
**Example**: \"B = mmap_bitarray((25,30000), s)\"
This would create a 25-by-30000 \"BitArray\", linked to the file
associated with stream \"s\".
"),
("Base","msync","msync(array)
Forces synchronization between the in-memory version of a memory-
mapped \"Array\" or \"BitArray\" and the on-disk version.
"),
("Base","msync","msync(ptr, len[, flags])
Forces synchronization of the mmap'd memory region from ptr to
ptr+len. Flags defaults to MS_SYNC, but can be a combination of
MS_ASYNC, MS_SYNC, or MS_INVALIDATE. See your platform man page for
specifics. The flags argument is not valid on Windows.
You may not need to call \"msync\", because synchronization is
performed at intervals automatically by the operating system.
However, you can call this directly if, for example, you are
concerned about losing the result of a long-running calculation.
"),
("Base","MS_ASYNC","MS_ASYNC
Enum constant for msync. See your platform man page for details.
(not available on Windows).
"),
("Base","MS_SYNC","MS_SYNC
Enum constant for msync. See your platform man page for details.
(not available on Windows).
"),
("Base","MS_INVALIDATE","MS_INVALIDATE
Enum constant for msync. See your platform man page for details.
(not available on Windows).
"),
("Base","mmap","mmap(len, prot, flags, fd, offset)
Low-level interface to the mmap system call. See the man page.
"),
("Base","munmap","munmap(pointer, len)
Low-level interface for unmapping memory (see the man page). With
mmap_array you do not need to call this directly; the memory is
unmapped for you when the array goes out of scope.
"),
("Base","-","-(x)
Unary minus operator.
"),
("Base","+","+(x, y...)
Addition operator. \"x+y+z+...\" calls this function with all
arguments, i.e. \"+(x, y, z, ...)\".
"),
("Base","-","-(x, y)
Subtraction operator.
"),
("Base","*","*(x, y...)
Multiplication operator. \"x*y*z*...\" calls this function with all
arguments, i.e. \"*(x, y, z, ...)\".
"),
("Base","/","/(x, y)
Right division operator: multiplication of \"x\" by the inverse of
\"y\" on the right. Gives floating-point results for integer
arguments.
"),
("Base","\\","\\(x, y)
Left division operator: multiplication of \"y\" by the inverse of
\"x\" on the left. Gives floating-point results for integer
arguments.
"),
("Base","^","^(x, y)
Exponentiation operator.
"),
("Base",".+",".+(x, y)
Element-wise addition operator.
"),
("Base",".-",".-(x, y)
Element-wise subtraction operator.
"),
("Base",".*",".*(x, y)
Element-wise multiplication operator.
"),
("Base","./","./(x, y)
Element-wise right division operator.
"),
("Base",".\\",".\\(x, y)
Element-wise left division operator.
"),
("Base",".^",".^(x, y)
Element-wise exponentiation operator.
"),
("Base","div","div(a, b)
Compute a/b, truncating to an integer.
"),
("Base","fld","fld(a, b)
Largest integer less than or equal to a/b.
"),
("Base","mod","mod(x, m)
Modulus after division, returning in the range [0,m).
"),
("Base","mod2pi","mod2pi(x)
Modulus after division by 2pi, returning in the range [0,2pi).
This function computes a floating point representation of the
modulus after division by numerically exact 2pi, and is therefore
not exactly the same as mod(x,2pi), which would compute the modulus
of x relative to division by the floating-point number 2pi.
"),
("Base","rem","rem(x, m)
Remainder after division.
"),
("Base","divrem","divrem(x, y)
Returns \"(x/y, x%y)\".
"),
("Base","%","%(x, m)
Remainder after division. The operator form of \"rem\".
"),
("Base","mod1","mod1(x, m)
Modulus after division, returning in the range (0,m]
"),
("Base","rem1","rem1(x, m)
Remainder after division, returning in the range (0,m]
"),
("Base","//","//(num, den)
Divide two integers or rational numbers, giving a \"Rational\"
result.
"),
("Base","rationalize","rationalize([Type=Int], x; tol=eps(x))
Approximate floating point number \"x\" as a Rational number with
components of the given integer type. The result will differ from
\"x\" by no more than \"tol\".
"),
("Base","num","num(x)
Numerator of the rational representation of \"x\"
"),
("Base","den","den(x)
Denominator of the rational representation of \"x\"
"),
("Base","<<","<<(x, n)
Left bit shift operator.
"),
("Base",">>",">>(x, n)
Right bit shift operator, preserving the sign of \"x\".
"),
("Base",">>>",">>>(x, n)
Unsigned right bit shift operator.
"),
("Base",":",":(start[, step], stop)
Range operator. \"a:b\" constructs a range from \"a\" to \"b\" with
a step size of 1, and \"a:s:b\" is similar but uses a step size of
\"s\". These syntaxes call the function \"colon\". The colon is
also used in indexing to select whole dimensions.
"),
("Base","colon","colon(start[, step], stop)
Called by \":\" syntax for constructing ranges.
"),
("Base","range","range(start[, step], length)
Construct a range by length, given a starting value and optional
step (defaults to 1).
"),
("Base","linrange","linrange(start, end, length)
Construct a range by length, given a starting and ending value.
"),
("Base","==","==(x, y)
Generic equality operator, giving a single \"Bool\" result. Falls
back to \"===\". Should be implemented for all types with a notion
of equality, based on the abstract value that an instance
represents. For example, all numeric types are compared by numeric
value, ignoring type. Strings are compared as sequences of
characters, ignoring encoding.
Follows IEEE semantics for floating-point numbers.
Collections should generally implement \"==\" by calling \"==\"
recursively on all contents.
New numeric types should implement this function for two arguments
of the new type, and handle comparison to other types via promotion
rules where possible.
"),
("Base","!=","!=(x, y)
Not-equals comparison operator. Always gives the opposite answer as
\"==\". New types should generally not implement this, and rely on
the fallback definition \"!=(x,y) = !(x==y)\" instead.
"),
("Base","===","===(x, y)
See the \"is()\" operator
"),
("Base","!==","!==(x, y)
Equivalent to \"!is(x, y)\"
"),
("Base","<","<(x, y)
Less-than comparison operator. New numeric types should implement
this function for two arguments of the new type. Because of the
behavior of floating-point NaN values, \"<\" implements a partial
order. Types with a canonical partial order should implement \"<\",
and types with a canonical total order should implement \"isless\".
"),
("Base","<=","<=(x, y)
Less-than-or-equals comparison operator.
"),
("Base",">",">(x, y)
Greater-than comparison operator. Generally, new types should
implement \"<\" instead of this function, and rely on the fallback
definition \">(x,y) = y<x\".
"),
("Base",">=",">=(x, y)
Greater-than-or-equals comparison operator.
"),
("Base",".==",".==(x, y)
Element-wise equality comparison operator.
"),
("Base",".!=",".!=(x, y)
Element-wise not-equals comparison operator.
"),
("Base",".<",".<(x, y)
Element-wise less-than comparison operator.
"),
("Base",".<=",".<=(x, y)
Element-wise less-than-or-equals comparison operator.
"),
("Base",".>",".>(x, y)
Element-wise greater-than comparison operator.
"),
("Base",".>=",".>=(x, y)
Element-wise greater-than-or-equals comparison operator.
"),
("Base","cmp","cmp(x, y)
Return -1, 0, or 1 depending on whether \"x\" is less than, equal
to, or greater than \"y\", respectively. Uses the total order
implemented by \"isless\". For floating-point numbers, uses \"<\"
but throws an error for unordered arguments.
"),
("Base","~","~(x)
Bitwise not
"),
("Base","&","&(x, y)
Bitwise and
"),
("Base","|","|(x, y)
Bitwise or
"),
("Base","\$","\$(x, y)
Bitwise exclusive or
"),
("Base","!","!(x)
Boolean not
"),
("","x && y","x && y
Short-circuiting boolean and
"),
("","x || y","x || y
Short-circuiting boolean or
"),
("Base","A_ldiv_Bc","A_ldiv_Bc(a, b)
Matrix operator A \\ B^H
"),
("Base","A_ldiv_Bt","A_ldiv_Bt(a, b)
Matrix operator A \\ B^T
"),
("Base","A_mul_B","A_mul_B(...)
Matrix operator A B
"),
("Base","A_mul_Bc","A_mul_Bc(...)
Matrix operator A B^H
"),
("Base","A_mul_Bt","A_mul_Bt(...)
Matrix operator A B^T
"),
("Base","A_rdiv_Bc","A_rdiv_Bc(...)
Matrix operator A / B^H
"),
("Base","A_rdiv_Bt","A_rdiv_Bt(a, b)
Matrix operator A / B^T
"),
("Base","Ac_ldiv_B","Ac_ldiv_B(...)
Matrix operator A^H \\ B
"),
("Base","Ac_ldiv_Bc","Ac_ldiv_Bc(...)
Matrix operator A^H \\ B^H
"),
("Base","Ac_mul_B","Ac_mul_B(...)
Matrix operator A^H B
"),
("Base","Ac_mul_Bc","Ac_mul_Bc(...)
Matrix operator A^H B^H
"),
("Base","Ac_rdiv_B","Ac_rdiv_B(a, b)
Matrix operator A^H / B
"),
("Base","Ac_rdiv_Bc","Ac_rdiv_Bc(a, b)
Matrix operator A^H / B^H
"),
("Base","At_ldiv_B","At_ldiv_B(...)
Matrix operator A^T \\ B
"),
("Base","At_ldiv_Bt","At_ldiv_Bt(...)
Matrix operator A^T \\ B^T
"),
("Base","At_mul_B","At_mul_B(...)
Matrix operator A^T B
"),
("Base","At_mul_Bt","At_mul_Bt(...)
Matrix operator A^T B^T
"),
("Base","At_rdiv_B","At_rdiv_B(a, b)
Matrix operator A^T / B
"),
("Base","At_rdiv_Bt","At_rdiv_Bt(a, b)
Matrix operator A^T / B^T
"),
("Base","isapprox","isapprox(x::Number, y::Number; rtol::Real=cbrt(maxeps), atol::Real=sqrt(maxeps))
Inexact equality comparison - behaves slightly different depending
on types of input args:
* For \"FloatingPoint\" numbers, \"isapprox\" returns \"true\" if
\"abs(x-y) <= atol + rtol*max(abs(x), abs(y))\".
* For \"Integer\" and \"Rational\" numbers, \"isapprox\" returns
\"true\" if \"abs(x-y) <= atol\". The *rtol* argument is ignored.
If one of \"x\" and \"y\" is \"FloatingPoint\", the other is
promoted, and the method above is called instead.
* For \"Complex\" numbers, the distance in the complex plane is
compared, using the same criterion as above.
For default tolerance arguments, \"maxeps = max(eps(abs(x)),
eps(abs(y)))\".
"),
("Base","sin","sin(x)
Compute sine of \"x\", where \"x\" is in radians
"),
("Base","cos","cos(x)
Compute cosine of \"x\", where \"x\" is in radians
"),
("Base","tan","tan(x)
Compute tangent of \"x\", where \"x\" is in radians
"),
("Base","sind","sind(x)
Compute sine of \"x\", where \"x\" is in degrees
"),
("Base","cosd","cosd(x)
Compute cosine of \"x\", where \"x\" is in degrees
"),
("Base","tand","tand(x)
Compute tangent of \"x\", where \"x\" is in degrees
"),
("Base","sinpi","sinpi(x)
Compute \\sin(\\pi x) more accurately than \"sin(pi*x)\",
especially for large \"x\".
"),
("Base","cospi","cospi(x)
Compute \\cos(\\pi x) more accurately than \"cos(pi*x)\",
especially for large \"x\".
"),
("Base","sinh","sinh(x)
Compute hyperbolic sine of \"x\"
"),
("Base","cosh","cosh(x)
Compute hyperbolic cosine of \"x\"
"),
("Base","tanh","tanh(x)
Compute hyperbolic tangent of \"x\"
"),
("Base","asin","asin(x)
Compute the inverse sine of \"x\", where the output is in radians
"),
("Base","acos","acos(x)
Compute the inverse cosine of \"x\", where the output is in radians
"),
("Base","atan","atan(x)
Compute the inverse tangent of \"x\", where the output is in
radians
"),
("Base","atan2","atan2(y, x)
Compute the inverse tangent of \"y/x\", using the signs of both
\"x\" and \"y\" to determine the quadrant of the return value.
"),
("Base","asind","asind(x)
Compute the inverse sine of \"x\", where the output is in degrees
"),
("Base","acosd","acosd(x)
Compute the inverse cosine of \"x\", where the output is in degrees
"),
("Base","atand","atand(x)
Compute the inverse tangent of \"x\", where the output is in
degrees
"),
("Base","sec","sec(x)
Compute the secant of \"x\", where \"x\" is in radians
"),
("Base","csc","csc(x)
Compute the cosecant of \"x\", where \"x\" is in radians
"),
("Base","cot","cot(x)
Compute the cotangent of \"x\", where \"x\" is in radians
"),
("Base","secd","secd(x)
Compute the secant of \"x\", where \"x\" is in degrees
"),
("Base","cscd","cscd(x)
Compute the cosecant of \"x\", where \"x\" is in degrees
"),
("Base","cotd","cotd(x)
Compute the cotangent of \"x\", where \"x\" is in degrees
"),
("Base","asec","asec(x)
Compute the inverse secant of \"x\", where the output is in radians
"),
("Base","acsc","acsc(x)
Compute the inverse cosecant of \"x\", where the output is in
radians
"),
("Base","acot","acot(x)
Compute the inverse cotangent of \"x\", where the output is in
radians
"),
("Base","asecd","asecd(x)
Compute the inverse secant of \"x\", where the output is in degrees
"),
("Base","acscd","acscd(x)
Compute the inverse cosecant of \"x\", where the output is in
degrees
"),
("Base","acotd","acotd(x)
Compute the inverse cotangent of \"x\", where the output is in
degrees
"),
("Base","sech","sech(x)
Compute the hyperbolic secant of \"x\"
"),
("Base","csch","csch(x)
Compute the hyperbolic cosecant of \"x\"
"),
("Base","coth","coth(x)
Compute the hyperbolic cotangent of \"x\"
"),
("Base","asinh","asinh(x)
Compute the inverse hyperbolic sine of \"x\"
"),
("Base","acosh","acosh(x)
Compute the inverse hyperbolic cosine of \"x\"
"),
("Base","atanh","atanh(x)
Compute the inverse hyperbolic tangent of \"x\"
"),
("Base","asech","asech(x)
Compute the inverse hyperbolic secant of \"x\"
"),
("Base","acsch","acsch(x)
Compute the inverse hyperbolic cosecant of \"x\"
"),
("Base","acoth","acoth(x)
Compute the inverse hyperbolic cotangent of \"x\"
"),
("Base","sinc","sinc(x)
Compute \\sin(\\pi x) / (\\pi x) if x \\neq 0, and 1 if x = 0.
"),
("Base","cosc","cosc(x)
Compute \\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2) if x \\neq
0, and 0 if x = 0. This is the derivative of \"sinc(x)\".
"),
("Base","deg2rad","deg2rad(x)
Convert \"x\" from degrees to radians
"),
("Base","rad2deg","rad2deg(x)
Convert \"x\" from radians to degrees
"),
("Base","hypot","hypot(x, y)
Compute the \\sqrt{x^2+y^2} avoiding overflow and underflow
"),
("Base","log","log(x)
Compute the natural logarithm of \"x\". Throws \"DomainError\" for
negative \"Real\" arguments. Use complex negative arguments
instead.
"),
("Base","log","log(b, x)
Compute the base \"b\" logarithm of \"x\". Throws \"DomainError\"
for negative \"Real\" arguments.
"),
("Base","log2","log2(x)
Compute the logarithm of \"x\" to base 2. Throws \"DomainError\"
for negative \"Real\" arguments.
"),
("Base","log10","log10(x)
Compute the logarithm of \"x\" to base 10. Throws \"DomainError\"
for negative \"Real\" arguments.
"),
("Base","log1p","log1p(x)
Accurate natural logarithm of \"1+x\". Throws \"DomainError\" for
\"Real\" arguments less than -1.
"),
("Base","frexp","frexp(val)
Return \"(x,exp)\" such that \"x\" has a magnitude in the interval
\"[1/2, 1)\" or 0, and val = x \\times 2^{exp}.
"),
("Base","exp","exp(x)
Compute e^x
"),
("Base","exp2","exp2(x)
Compute 2^x
"),
("Base","exp10","exp10(x)
Compute 10^x
"),
("Base","ldexp","ldexp(x, n)
Compute x \\times 2^n
"),
("Base","modf","modf(x)
Return a tuple (fpart,ipart) of the fractional and integral parts
of a number. Both parts have the same sign as the argument.
"),
("Base","expm1","expm1(x)
Accurately compute e^x-1
"),
("Base","round","round(x[, digits[, base]])
\"round(x)\" returns the nearest integral value of the same type as
\"x\" to \"x\". \"round(x, digits)\" rounds to the specified number
of digits after the decimal place, or before if negative, e.g.,
\"round(pi,2)\" is \"3.14\". \"round(x, digits, base)\" rounds
using a different base, defaulting to 10, e.g., \"round(pi, 1, 8)\"
is \"3.125\".
"),
("Base","ceil","ceil(x[, digits[, base]])
Returns the nearest integral value of the same type as \"x\" not
less than \"x\". \"digits\" and \"base\" work as above.
"),
("Base","floor","floor(x[, digits[, base]])
Returns the nearest integral value of the same type as \"x\" not
greater than \"x\". \"digits\" and \"base\" work as above.
"),
("Base","trunc","trunc(x[, digits[, base]])
Returns the nearest integral value of the same type as \"x\" not
greater in magnitude than \"x\". \"digits\" and \"base\" work as
above.
"),
("Base","iround","iround(x) -> Integer
Returns the nearest integer to \"x\".
"),
("Base","iceil","iceil(x) -> Integer
Returns the nearest integer not less than \"x\".
"),
("Base","ifloor","ifloor(x) -> Integer
Returns the nearest integer not greater than \"x\".
"),
("Base","itrunc","itrunc(x) -> Integer
Returns the nearest integer not greater in magnitude than \"x\".
"),
("Base","signif","signif(x, digits[, base])
Rounds (in the sense of \"round\") \"x\" so that there are
\"digits\" significant digits, under a base \"base\"
representation, default 10. E.g., \"signif(123.456, 2)\" is
\"120.0\", and \"signif(357.913, 4, 2)\" is \"352.0\".
"),
("Base","min","min(x, y, ...)
Return the minimum of the arguments. Operates elementwise over
arrays.
"),
("Base","max","max(x, y, ...)
Return the maximum of the arguments. Operates elementwise over
arrays.
"),
("Base","minmax","minmax(x, y)
Return \"(min(x,y), max(x,y))\". See also: \"extrema()\" that
returns \"(minimum(x), maximum(x))\"
"),
("Base","clamp","clamp(x, lo, hi)
Return x if \"lo <= x <= hi\". If \"x < lo\", return \"lo\". If \"x
> hi\", return \"hi\". Arguments are promoted to a common type.
Operates elementwise over \"x\" if it is an array.
"),
("Base","abs","abs(x)
Absolute value of \"x\"
"),
("Base","abs2","abs2(x)
Squared absolute value of \"x\"
"),
("Base","copysign","copysign(x, y)
Return \"x\" such that it has the same sign as \"y\"
"),
("Base","sign","sign(x)
Return \"+1\" if \"x\" is positive, \"0\" if \"x == 0\", and \"-1\"
if \"x\" is negative.
"),
("Base","signbit","signbit(x)
Returns \"true\" if the value of the sign of \"x\" is negative,
otherwise \"false\".
"),
("Base","flipsign","flipsign(x, y)
Return \"x\" with its sign flipped if \"y\" is negative. For
example \"abs(x) = flipsign(x,x)\".
"),
("Base","sqrt","sqrt(x)
Return \\sqrt{x}. Throws \"DomainError\" for negative \"Real\"
arguments. Use complex negative arguments instead. The prefix
operator \"√\" is equivalent to \"sqrt\".
"),
("Base","isqrt","isqrt(n)
Integer square root: the largest integer \"m\" such that \"m*m <=
n\".
"),
("Base","cbrt","cbrt(x)
Return x^{1/3}. The prefix operator \"∛\" is equivalent to
\"cbrt\".
"),
("Base","erf","erf(x)
Compute the error function of \"x\", defined by
\\frac{2}{\\sqrt{\\pi}} \\int_0^x e^{-t^2} dt for arbitrary complex
\"x\".
"),
("Base","erfc","erfc(x)
Compute the complementary error function of \"x\", defined by 1 -
\\operatorname{erf}(x).
"),
("Base","erfcx","erfcx(x)
Compute the scaled complementary error function of \"x\", defined
by e^{x^2} \\operatorname{erfc}(x). Note also that
\\operatorname{erfcx}(-ix) computes the Faddeeva function w(x).
"),
("Base","erfi","erfi(x)
Compute the imaginary error function of \"x\", defined by -i
\\operatorname{erf}(ix).
"),
("Base","dawson","dawson(x)
Compute the Dawson function (scaled imaginary error function) of
\"x\", defined by \\frac{\\sqrt{\\pi}}{2} e^{-x^2}
\\operatorname{erfi}(x).
"),
("Base","erfinv","erfinv(x)
Compute the inverse error function of a real \"x\", defined by
\\operatorname{erf}(\\operatorname{erfinv}(x)) = x.
"),
("Base","erfcinv","erfcinv(x)
Compute the inverse error complementary function of a real \"x\",
defined by \\operatorname{erfc}(\\operatorname{erfcinv}(x)) = x.
"),
("Base","real","real(z)
Return the real part of the complex number \"z\"
"),
("Base","imag","imag(z)
Return the imaginary part of the complex number \"z\"
"),
("Base","reim","reim(z)
Return both the real and imaginary parts of the complex number
\"z\"
"),
("Base","conj","conj(z)
Compute the complex conjugate of a complex number \"z\"
"),
("Base","angle","angle(z)
Compute the phase angle of a complex number \"z\"
"),
("Base","cis","cis(z)
Return \\exp(iz).
"),
("Base","binomial","binomial(n, k)
Number of ways to choose \"k\" out of \"n\" items
"),
("Base","factorial","factorial(n)
Factorial of n
"),
("Base","factorial","factorial(n, k)
Compute \"factorial(n)/factorial(k)\"
"),
("Base","factor","factor(n) -> Dict
Compute the prime factorization of an integer \"n\". Returns a
dictionary. The keys of the dictionary correspond to the factors,
and hence are of the same type as \"n\". The value associated with
each key indicates the number of times the factor appears in the
factorization.
**Example**: 100=2*2*5*5; then:
julia> factor(100)
[5=>2,2=>2]
"),
("Base","gcd","gcd(x, y)
Greatest common (positive) divisor (or zero if x and y are both
zero).
"),
("Base","lcm","lcm(x, y)
Least common (non-negative) multiple.
"),
("Base","gcdx","gcdx(x, y)
Greatest common (positive) divisor, also returning integer
coefficients \"u\" and \"v\" that solve \"ux+vy == gcd(x,y)\"
"),
("Base","ispow2","ispow2(n) -> Bool
Test whether \"n\" is a power of two
"),
("Base","nextpow2","nextpow2(n)
The smallest power of two not less than \"n\". Returns 0 for
\"n==0\", and returns \"-nextpow2(-n)\" for negative arguments.
"),
("Base","prevpow2","prevpow2(n)
The largest power of two not greater than \"n\". Returns 0 for
\"n==0\", and returns \"-prevpow2(-n)\" for negative arguments.
"),
("Base","nextpow","nextpow(a, x)
The smallest \"a^n\" not less than \"x\", where \"n\" is a non-
negative integer. \"a\" must be greater than 1, and \"x\" must be
greater than 0.
"),
("Base","prevpow","prevpow(a, x)
The largest \"a^n\" not greater than \"x\", where \"n\" is a non-
negative integer. \"a\" must be greater than 1, and \"x\" must not
be less than 1.
"),
("Base","nextprod","nextprod([k_1, k_2, ...], n)
Next integer not less than \"n\" that can be written as \\prod
k_i^{p_i} for integers p_1, p_2, etc.
"),
("Base","prevprod","prevprod([k_1, k_2, ...], n)
Previous integer not greater than \"n\" that can be written as
\\prod k_i^{p_i} for integers p_1, p_2, etc.
"),
("Base","invmod","invmod(x, m)
Take the inverse of \"x\" modulo \"m\": \"y\" such that xy = 1
\\pmod m
"),
("Base","powermod","powermod(x, p, m)
Compute x^p \\pmod m
"),
("Base","gamma","gamma(x)
Compute the gamma function of \"x\"
"),
("Base","lgamma","lgamma(x)
Compute the logarithm of absolute value of \"gamma(x)\"
"),
("Base","lfact","lfact(x)
Compute the logarithmic factorial of \"x\"
"),
("Base","digamma","digamma(x)
Compute the digamma function of \"x\" (the logarithmic derivative
of \"gamma(x)\")
"),
("Base","invdigamma","invdigamma(x)
Compute the inverse digamma function of \"x\".
"),
("Base","trigamma","trigamma(x)
Compute the trigamma function of \"x\" (the logarithmic second
derivative of \"gamma(x)\")
"),
("Base","polygamma","polygamma(m, x)
Compute the polygamma function of order \"m\" of argument \"x\"
(the \"(m+1)th\" derivative of the logarithm of \"gamma(x)\")
"),
("Base","airy","airy(k, x)
kth derivative of the Airy function \\operatorname{Ai}(x).
"),
("Base","airyai","airyai(x)
Airy function \\operatorname{Ai}(x).
"),
("Base","airyprime","airyprime(x)
Airy function derivative \\operatorname{Ai}'(x).
"),
("Base","airyaiprime","airyaiprime(x)
Airy function derivative \\operatorname{Ai}'(x).
"),
("Base","airybi","airybi(x)
Airy function \\operatorname{Bi}(x).
"),
("Base","airybiprime","airybiprime(x)
Airy function derivative \\operatorname{Bi}'(x).
"),
("Base","airyx","airyx(k, x)
scaled kth derivative of the Airy function, return
\\operatorname{Ai}(x) e^{\\frac{2}{3} x \\sqrt{x}} for \"k == 0 ||
k == 1\", and \\operatorname{Ai}(x) e^{- \\left| \\operatorname{Re}
\\left( \\frac{2}{3} x \\sqrt{x} \\right) \\right|} for \"k == 2 ||
k == 3\".
"),
("Base","besselj0","besselj0(x)
Bessel function of the first kind of order 0, J_0(x).
"),
("Base","besselj1","besselj1(x)
Bessel function of the first kind of order 1, J_1(x).
"),
("Base","besselj","besselj(nu, x)
Bessel function of the first kind of order \"nu\", J_\\nu(x).
"),
("Base","besseljx","besseljx(nu, x)
Scaled Bessel function of the first kind of order \"nu\", J_\\nu(x)
e^{- | \\operatorname{Im}(x) |}.
"),
("Base","bessely0","bessely0(x)
Bessel function of the second kind of order 0, Y_0(x).
"),
("Base","bessely1","bessely1(x)
Bessel function of the second kind of order 1, Y_1(x).
"),
("Base","bessely","bessely(nu, x)
Bessel function of the second kind of order \"nu\", Y_\\nu(x).
"),
("Base","besselyx","besselyx(nu, x)
Scaled Bessel function of the second kind of order \"nu\",
Y_\\nu(x) e^{- | \\operatorname{Im}(x) |}.
"),
("Base","hankelh1","hankelh1(nu, x)
Bessel function of the third kind of order \"nu\", H^{(1)}_\\nu(x).
"),
("Base","hankelh1x","hankelh1x(nu, x)
Scaled Bessel function of the third kind of order \"nu\",
H^{(1)}_\\nu(x) e^{-x i}.
"),
("Base","hankelh2","hankelh2(nu, x)
Bessel function of the third kind of order \"nu\", H^{(2)}_\\nu(x).
"),
("Base","hankelh2x","hankelh2x(nu, x)
Scaled Bessel function of the third kind of order \"nu\",
H^{(2)}_\\nu(x) e^{x i}.
"),
("Base","besselh","besselh(nu, k, x)
Bessel function of the third kind of order \"nu\" (Hankel
function). \"k\" is either 1 or 2, selecting \"hankelh1\" or
\"hankelh2\", respectively.
"),
("Base","besseli","besseli(nu, x)
Modified Bessel function of the first kind of order \"nu\",
I_\\nu(x).
"),
("Base","besselix","besselix(nu, x)
Scaled modified Bessel function of the first kind of order \"nu\",
I_\\nu(x) e^{- | \\operatorname{Re}(x) |}.
"),
("Base","besselk","besselk(nu, x)
Modified Bessel function of the second kind of order \"nu\",
K_\\nu(x).
"),
("Base","besselkx","besselkx(nu, x)
Scaled modified Bessel function of the second kind of order \"nu\",
K_\\nu(x) e^x.
"),
("Base","beta","beta(x, y)
Euler integral of the first kind \\operatorname{B}(x,y) =
\\Gamma(x)\\Gamma(y)/\\Gamma(x+y).
"),
("Base","lbeta","lbeta(x, y)
Natural logarithm of the absolute value of the beta function
\\log(|\\operatorname{B}(x,y)|).
"),
("Base","eta","eta(x)
Dirichlet eta function \\eta(s) =
\\sum^\\infty_{n=1}(-)^{n-1}/n^{s}.
"),
("Base","zeta","zeta(s)
Riemann zeta function \\zeta(s).
"),
("Base","zeta","zeta(s, z)
Hurwitz zeta function \\zeta(s, z). (This is equivalent to the
Riemann zeta function \\zeta(s) for the case of \"z=1\".)
"),
("Base","ndigits","ndigits(n, b)
Compute the number of digits in number \"n\" written in base \"b\".
"),
("Base","widemul","widemul(x, y)
Multiply \"x\" and \"y\", giving the result as a larger type.
"),
("Base","@evalpoly","@evalpoly(z, c...)
Evaluate the polynomial \\sum_k c[k] z^{k-1} for the coefficients
\"c[1]\", \"c[2]\", ...; that is, the coefficients are given in
ascending order by power of \"z\". This macro expands to efficient
inline code that uses either Horner's method or, for complex \"z\",
a more efficient Goertzel-like algorithm.
"),
("Base","bin","bin(n[, pad])
Convert an integer to a binary string, optionally specifying a
number of digits to pad to.
"),
("Base","hex","hex(n[, pad])
Convert an integer to a hexadecimal string, optionally specifying a
number of digits to pad to.
"),
("Base","dec","dec(n[, pad])
Convert an integer to a decimal string, optionally specifying a
number of digits to pad to.
"),
("Base","oct","oct(n[, pad])
Convert an integer to an octal string, optionally specifying a
number of digits to pad to.
"),
("Base","base","base(base, n[, pad])
Convert an integer to a string in the given base, optionally
specifying a number of digits to pad to. The base can be specified
as either an integer, or as a \"Uint8\" array of character values
to use as digit symbols.
"),
("Base","digits","digits(n[, base][, pad])
Returns an array of the digits of \"n\" in the given base,
optionally padded with zeros to a specified size. More significant
digits are at higher indexes, such that \"n ==
sum([digits[k]*base^(k-1) for k=1:length(digits)])\".
"),
("Base","bits","bits(n)
A string giving the literal bit representation of a number.
"),
("Base","parseint","parseint([type], str[, base])
Parse a string as an integer in the given base (default 10),
yielding a number of the specified type (default \"Int\").
"),
("Base","parsefloat","parsefloat([type], str)
Parse a string as a decimal floating point number, yielding a
number of the specified type.
"),
("Base","big","big(x)
Convert a number to a maximum precision representation (typically
\"BigInt\" or \"BigFloat\"). See \"BigFloat\" for information about
some pitfalls with floating-point numbers.
"),
("Base","bool","bool(x)
Convert a number or numeric array to boolean
"),
("Base","int","int(x)
Convert a number or array to the default integer type on your
platform. Alternatively, \"x\" can be a string, which is parsed as
an integer.
"),
("Base","uint","uint(x)
Convert a number or array to the default unsigned integer type on
your platform. Alternatively, \"x\" can be a string, which is
parsed as an unsigned integer.
"),
("Base","integer","integer(x)
Convert a number or array to integer type. If \"x\" is already of
integer type it is unchanged, otherwise it converts it to the
default integer type on your platform.
"),
("Base","signed","signed(x)
Convert a number to a signed integer
"),
("Base","unsigned","unsigned(x) -> Unsigned
Convert a number to an unsigned integer
"),
("Base","int8","int8(x)
Convert a number or array to \"Int8\" data type
"),
("Base","int16","int16(x)
Convert a number or array to \"Int16\" data type
"),
("Base","int32","int32(x)
Convert a number or array to \"Int32\" data type
"),
("Base","int64","int64(x)
Convert a number or array to \"Int64\" data type
"),
("Base","int128","int128(x)
Convert a number or array to \"Int128\" data type
"),
("Base","uint8","uint8(x)
Convert a number or array to \"Uint8\" data type
"),
("Base","uint16","uint16(x)
Convert a number or array to \"Uint16\" data type
"),
("Base","uint32","uint32(x)
Convert a number or array to \"Uint32\" data type
"),
("Base","uint64","uint64(x)
Convert a number or array to \"Uint64\" data type
"),
("Base","uint128","uint128(x)
Convert a number or array to \"Uint128\" data type
"),
("Base","float16","float16(x)
Convert a number or array to \"Float16\" data type
"),
("Base","float32","float32(x)
Convert a number or array to \"Float32\" data type
"),
("Base","float64","float64(x)
Convert a number or array to \"Float64\" data type
"),
("Base","float32_isvalid","float32_isvalid(x, out::Vector{Float32}) -> Bool
Convert a number or array to \"Float32\" data type, returning true
if successful. The result of the conversion is stored in
\"out[1]\".
"),
("Base","float64_isvalid","float64_isvalid(x, out::Vector{Float64}) -> Bool
Convert a number or array to \"Float64\" data type, returning true
if successful. The result of the conversion is stored in
\"out[1]\".
"),
("Base","float","float(x)
Convert a number, array, or string to a \"FloatingPoint\" data
type. For numeric data, the smallest suitable \"FloatingPoint\"
type is used. Converts strings to \"Float64\".
This function is not recommended for arrays. It is better to use a
more specific function such as \"float32\" or \"float64\".
"),
("Base","significand","significand(x)
Extract the significand(s) (a.k.a. mantissa), in binary
representation, of a floating-point number or array.
For example, \"significand(15.2)/15.2 == 0.125\", and
\"significand(15.2)*8 == 15.2\"
"),
("Base","exponent","exponent(x) -> Int
Get the exponent of a normalized floating-point number.
"),
("Base","complex64","complex64(r[, i])
Convert to \"r + i*im\" represented as a \"Complex64\" data type.
\"i\" defaults to zero.
"),
("Base","complex128","complex128(r[, i])
Convert to \"r + i*im\" represented as a \"Complex128\" data type.
\"i\" defaults to zero.
"),
("Base","complex","complex(r[, i])
Convert real numbers or arrays to complex. \"i\" defaults to zero.
"),
("Base","char","char(x)
Convert a number or array to \"Char\" data type
"),
("Base","bswap","bswap(n)
Byte-swap an integer
"),
("Base","num2hex","num2hex(f)
Get a hexadecimal string of the binary representation of a floating
point number
"),
("Base","hex2num","hex2num(str)
Convert a hexadecimal string to the floating point number it
represents
"),
("Base","hex2bytes","hex2bytes(s::ASCIIString)
Convert an arbitrarily long hexadecimal string to its binary
representation. Returns an Array{Uint8, 1}, i.e. an array of bytes.
"),
("Base","bytes2hex","bytes2hex(bin_arr::Array{Uint8, 1})
Convert an array of bytes to its hexadecimal representation. All
characters are in lower-case. Returns an ASCIIString.
"),
("Base","one","one(x)
Get the multiplicative identity element for the type of x (x can
also specify the type itself). For matrices, returns an identity
matrix of the appropriate size and type.
"),
("Base","zero","zero(x)
Get the additive identity element for the type of x (x can also
specify the type itself).
"),
("Base","pi","pi
The constant pi
"),
("Base","im","im
The imaginary unit
"),
("Base","e","e
The constant e
"),
("Base","catalan","catalan
Catalan's constant
"),
("Base","Inf","Inf
Positive infinity of type Float64
"),
("Base","Inf32","Inf32
Positive infinity of type Float32
"),
("Base","Inf16","Inf16
Positive infinity of type Float16
"),
("Base","NaN","NaN
A not-a-number value of type Float64
"),
("Base","NaN32","NaN32
A not-a-number value of type Float32
"),
("Base","NaN16","NaN16
A not-a-number value of type Float16
"),
("Base","issubnormal","issubnormal(f) -> Bool
Test whether a floating point number is subnormal
"),
("Base","isfinite","isfinite(f) -> Bool
Test whether a number is finite
"),
("Base","isinf","isinf(f) -> Bool
Test whether a number is infinite
"),
("Base","isnan","isnan(f) -> Bool
Test whether a floating point number is not a number (NaN)
"),
("Base","inf","inf(f)
Returns positive infinity of the floating point type \"f\" or of
the same floating point type as \"f\"
"),
("Base","nan","nan(f)
Returns NaN (not-a-number) of the floating point type \"f\" or of
the same floating point type as \"f\"
"),
("Base","nextfloat","nextfloat(f)
Get the next floating point number in lexicographic order
"),
("Base","prevfloat","prevfloat(f) -> FloatingPoint
Get the previous floating point number in lexicographic order
"),
("Base","isinteger","isinteger(x) -> Bool
Test whether \"x\" or all its elements are numerically equal to
some integer
"),
("Base","isreal","isreal(x) -> Bool
Test whether \"x\" or all its elements are numerically equal to
some real number
"),
("Base","BigInt","BigInt(x)
Create an arbitrary precision integer. \"x\" may be an \"Int\" (or
anything that can be converted to an \"Int\") or a \"String\". The
usual mathematical operators are defined for this type, and results
are promoted to a \"BigInt\".
"),
("Base","BigFloat","BigFloat(x)
Create an arbitrary precision floating point number. \"x\" may be
an \"Integer\", a \"Float64\", a \"String\" or a \"BigInt\". The
usual mathematical operators are defined for this type, and results
are promoted to a \"BigFloat\". Note that because floating-point
numbers are not exactly-representable in decimal notation,
\"BigFloat(2.1)\" may not yield what you expect. You may prefer to
initialize constants using strings, e.g., \"BigFloat(\"2.1\")\".
"),
("Base","get_rounding","get_rounding(T)
Get the current floating point rounding mode for type \"T\". Valid
modes are \"RoundNearest\", \"RoundToZero\", \"RoundUp\",
\"RoundDown\", and \"RoundFromZero\" (\"BigFloat\" only).
"),
("Base","set_rounding","set_rounding(T, mode)
Set the rounding mode of floating point type \"T\". Note that this
may affect other types, for instance changing the rounding mode of
\"Float64\" will change the rounding mode of \"Float32\". See
\"get_rounding\" for available modes
"),
("Base","with_rounding","with_rounding(f::Function, T, mode)
Change the rounding mode of floating point type \"T\" for the
duration of \"f\". It is logically equivalent to:
old = get_rounding(T)
set_rounding(T, mode)
f()
set_rounding(T, old)
See \"get_rounding\" for available rounding modes.
"),
("Base","count_ones","count_ones(x::Integer) -> Integer
Number of ones in the binary representation of \"x\".
**Example**: \"count_ones(7) -> 3\"
"),
("Base","count_zeros","count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of \"x\".
**Example**: \"count_zeros(int32(2 ^ 16 - 1)) -> 16\"
"),
("Base","leading_zeros","leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of \"x\".
**Example**: \"leading_zeros(int32(1)) -> 31\"
"),
("Base","leading_ones","leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of \"x\".
**Example**: \"leading_ones(int32(2 ^ 32 - 2)) -> 31\"
"),
("Base","trailing_zeros","trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of \"x\".
**Example**: \"trailing_zeros(2) -> 1\"
"),
("Base","trailing_ones","trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of \"x\".
**Example**: \"trailing_ones(3) -> 2\"
"),
("Base","isprime","isprime(x::Integer) -> Bool
Returns \"true\" if \"x\" is prime, and \"false\" otherwise.
**Example**:
julia> isprime(3)
true
"),
("Base","primes","primes(n)
Returns a collection of the prime numbers <= \"n\".
"),
("Base","isodd","isodd(x::Integer) -> Bool
Returns \"true\" if \"x\" is odd (that is, not divisible by 2), and
\"false\" otherwise.
**Examples**:
julia> isodd(9)
true
julia> isodd(10)
false
"),
("Base","iseven","iseven(x::Integer) -> Bool
Returns \"true\" is \"x\" is even (that is, divisible by 2), and
\"false\" otherwise.
**Examples**:
julia> iseven(10)
true
julia> iseven(9)
false
"),
("Base","precision","precision(num::FloatingPoint)
Get the precision of a floating point number, as defined by the
effective number of bits in the mantissa.
"),
("Base","get_bigfloat_precision","get_bigfloat_precision()
Get the precision (in bits) currently used for BigFloat arithmetic.
"),
("Base","set_bigfloat_precision","set_bigfloat_precision(x::Int64)
Set the precision (in bits) to be used to BigFloat arithmetic.
"),
("Base","with_bigfloat_precision","with_bigfloat_precision(f::Function, precision::Integer)
Change the BigFloat arithmetic precision (in bits) for the duration
of \"f\". It is logically equivalent to:
old = get_bigfloat_precision()
set_bigfloat_precision(precision)
f()
set_bigfloat_precision(old)
"),
("Base","srand","srand([rng], seed)
Seed the RNG with a \"seed\", which may be an unsigned integer or a
vector of unsigned integers. \"seed\" can even be a filename, in
which case the seed is read from a file. If the argument \"rng\" is
not provided, the default global RNG is seeded.
"),
("Base","MersenneTwister","MersenneTwister([seed])
Create a \"MersenneTwister\" RNG object. Different RNG objects can
have their own seeds, which may be useful for generating different
streams of random numbers.
"),
("Base","rand","rand() -> Float64
Generate a \"Float64\" random number uniformly in [0,1)
"),
("Base","rand!","rand!([rng], A)
Populate the array A with random number generated from the
specified RNG.
"),
("Base","rand","rand(rng::AbstractRNG[, dims...])
Generate a random \"Float64\" number or array of the size specified
by dims, using the specified RNG object. Currently,
\"MersenneTwister\" is the only available Random Number Generator
(RNG), which may be seeded using srand.
"),
("Base","rand","rand(dims or [dims...])
Generate a random \"Float64\" array of the size specified by dims
"),
("Base","rand","rand(Int32|Uint32|Int64|Uint64|Int128|Uint128[, dims...])
Generate a random integer of the given type. Optionally, generate
an array of random integers of the given type by specifying dims.
"),
("Base","rand","rand(r[, dims...])
Generate a random integer in the range \"r\" (for example, \"1:n\"
or \"0:2:10\"). Optionally, generate a random integer array.
"),
("Base","randbool","randbool([dims...])
Generate a random boolean value. Optionally, generate an array of
random boolean values.
"),
("Base","randbool!","randbool!(A)
Fill an array with random boolean values. A may be an \"Array\" or
a \"BitArray\".
"),
("Base","randn","randn([rng], dims or [dims...])
Generate a normally-distributed random number with mean 0 and
standard deviation 1. Optionally generate an array of normally-
distributed random numbers.
"),
("Base","randn!","randn!([rng], A::Array{Float64, N})
Fill the array A with normally-distributed (mean 0, standard
deviation 1) random numbers. Also see the rand function.
"),
("Base","ndims","ndims(A) -> Integer
Returns the number of dimensions of A
"),
("Base","size","size(A)
Returns a tuple containing the dimensions of A
"),
("Base","iseltype","iseltype(A, T)
Tests whether A or its elements are of type T
"),
("Base","length","length(A) -> Integer
Returns the number of elements in A
"),
("Base","countnz","countnz(A)
Counts the number of nonzero values in array A (dense or sparse).
Note that this is not a constant-time operation. For sparse
matrices, one should usually use \"nnz\", which returns the number
of stored values.
"),
("Base","conj!","conj!(A)
Convert an array to its complex conjugate in-place
"),
("Base","stride","stride(A, k)
Returns the distance in memory (in number of elements) between
adjacent elements in dimension k
"),
("Base","strides","strides(A)
Returns a tuple of the memory strides in each dimension
"),
("Base","ind2sub","ind2sub(dims, index) -> subscripts
Returns a tuple of subscripts into an array with dimensions
\"dims\", corresponding to the linear index \"index\"
**Example** \"i, j, ... = ind2sub(size(A), indmax(A))\" provides
the indices of the maximum element
"),
("Base","sub2ind","sub2ind(dims, i, j, k...) -> index
The inverse of \"ind2sub\", returns the linear index corresponding
to the provided subscripts
"),
("Base","Array","Array(type, dims)
Construct an uninitialized dense array. \"dims\" may be a tuple or
a series of integer arguments.
"),
("Base","getindex","getindex(type[, elements...])
Construct a 1-d array of the specified type. This is usually called
with the syntax \"Type[]\". Element values can be specified using
\"Type[a,b,c,...]\".
"),
("Base","cell","cell(dims)
Construct an uninitialized cell array (heterogeneous array).
\"dims\" can be either a tuple or a series of integer arguments.
"),
("Base","zeros","zeros(type, dims)
Create an array of all zeros of specified type. The type defaults
to Float64 if not specified.
"),
("Base","zeros","zeros(A)
Create an array of all zeros with the same element type and shape
as A.
"),
("Base","ones","ones(type, dims)
Create an array of all ones of specified type. The type defaults to
Float64 if not specified.
"),
("Base","ones","ones(A)
Create an array of all ones with the same element type and shape as
A.
"),
("Base","trues","trues(dims)
Create a \"BitArray\" with all values set to true
"),
("Base","falses","falses(dims)
Create a \"BitArray\" with all values set to false
"),
("Base","fill","fill(x, dims)
Create an array filled with the value \"x\"
"),
("Base","fill!","fill!(A, x)
Fill the array \"A\" with the value \"x\"
"),
("Base","reshape","reshape(A, dims)
Create an array with the same data as the given array, but with
different dimensions. An implementation for a particular type of
array may choose whether the data is copied or shared.
"),
("Base","similar","similar(array, element_type, dims)
Create an uninitialized array of the same type as the given array,
but with the specified element type and dimensions. The second and
third arguments are both optional. The \"dims\" argument may be a
tuple or a series of integer arguments.
"),
("Base","reinterpret","reinterpret(type, A)
Change the type-interpretation of a block of memory. For example,
\"reinterpret(Float32, uint32(7))\" interprets the 4 bytes
corresponding to \"uint32(7)\" as a \"Float32\". For arrays, this
constructs an array with the same binary data as the given array,
but with the specified element type.
"),
("Base","eye","eye(n)
n-by-n identity matrix
"),
("Base","eye","eye(m, n)
m-by-n identity matrix
"),
("Base","eye","eye(A)
Constructs an identity matrix of the same dimensions and type as
\"A\".
"),
("Base","linspace","linspace(start, stop, n)
Construct a vector of \"n\" linearly-spaced elements from \"start\"
to \"stop\". See also: \"linrange()\" that constructs a range
object.
"),
("Base","logspace","logspace(start, stop, n)
Construct a vector of \"n\" logarithmically-spaced numbers from
\"10^start\" to \"10^stop\".
"),
("Base","broadcast","broadcast(f, As...)
Broadcasts the arrays \"As\" to a common size by expanding
singleton dimensions, and returns an array of the results
\"f(as...)\" for each position.
"),
("Base","broadcast!","broadcast!(f, dest, As...)
Like \"broadcast\", but store the result of \"broadcast(f, As...)\"
in the \"dest\" array. Note that \"dest\" is only used to store the
result, and does not supply arguments to \"f\" unless it is also
listed in the \"As\", as in \"broadcast!(f, A, A, B)\" to perform
\"A[:] = broadcast(f, A, B)\".
"),
("Base","bitbroadcast","bitbroadcast(f, As...)
Like \"broadcast\", but allocates a \"BitArray\" to store the
result, rather then an \"Array\".
"),
("Base","broadcast_function","broadcast_function(f)
Returns a function \"broadcast_f\" such that
\"broadcast_function(f)(As...) === broadcast(f, As...)\". Most
useful in the form \"const broadcast_f = broadcast_function(f)\".
"),
("Base","broadcast!_function","broadcast!_function(f)
Like \"broadcast_function\", but for \"broadcast!\".
"),
("Base","getindex","getindex(A, inds...)
Returns a subset of array \"A\" as specified by \"inds\", where
each \"ind\" may be an \"Int\", a \"Range\", or a \"Vector\".
"),
("Base","sub","sub(A, inds...)
Returns a SubArray, which stores the input \"A\" and \"inds\"
rather than computing the result immediately. Calling \"getindex\"
on a SubArray computes the indices on the fly.
"),
("Base","parent","parent(A)
Returns the \"parent array\" of an array view type (e.g.,
SubArray), or the array itself if it is not a view
"),
("Base","parentindexes","parentindexes(A)
From an array view \"A\", returns the corresponding indexes in the
parent
"),
("Base","slicedim","slicedim(A, d, i)
Return all the data of \"A\" where the index for dimension \"d\"
equals \"i\". Equivalent to \"A[:,:,...,i,:,:,...]\" where \"i\" is
in position \"d\".
"),
("Base","slice","slice(A, inds...)
Create a view of the given indexes of array \"A\", dropping
dimensions indexed with scalars.
"),
("Base","setindex!","setindex!(A, X, inds...)
Store values from array \"X\" within some subset of \"A\" as
specified by \"inds\".
"),
("Base","broadcast_getindex","broadcast_getindex(A, inds...)
Broadcasts the \"inds\" arrays to a common size like \"broadcast\",
and returns an array of the results \"A[ks...]\", where \"ks\" goes
over the positions in the broadcast.
"),
("Base","broadcast_setindex!","broadcast_setindex!(A, X, inds...)
Broadcasts the \"X\" and \"inds\" arrays to a common size and
stores the value from each position in \"X\" at the indices given
by the same positions in \"inds\".
"),
("Base","cat","cat(dim, A...)
Concatenate the input arrays along the specified dimension
"),
("Base","vcat","vcat(A...)
Concatenate along dimension 1
"),
("Base","hcat","hcat(A...)
Concatenate along dimension 2
"),
("Base","hvcat","hvcat(rows::(Int...), values...)
Horizontal and vertical concatenation in one call. This function is
called for block matrix syntax. The first argument specifies the
number of arguments to concatenate in each block row. For example,
\"[a b;c d e]\" calls \"hvcat((2,3),a,b,c,d,e)\".
If the first argument is a single integer \"n\", then all block
rows are assumed to have \"n\" block columns.
"),
("Base","flipdim","flipdim(A, d)
Reverse \"A\" in dimension \"d\".
"),
("Base","flipud","flipud(A)
Equivalent to \"flipdim(A,1)\".
"),
("Base","fliplr","fliplr(A)
Equivalent to \"flipdim(A,2)\".
"),
("Base","circshift","circshift(A, shifts)
Circularly shift the data in an array. The second argument is a
vector giving the amount to shift in each dimension.
"),
("Base","find","find(A)
Return a vector of the linear indexes of the non-zeros in \"A\"
(determined by \"A[i]!=0\"). A common use of this is to convert a
boolean array to an array of indexes of the \"true\" elements.
"),
("Base","find","find(f, A)
Return a vector of the linear indexes of \"A\" where \"f\" returns
true.
"),
("Base","findn","findn(A)
Return a vector of indexes for each dimension giving the locations
of the non-zeros in \"A\" (determined by \"A[i]!=0\").
"),
("Base","findnz","findnz(A)
Return a tuple \"(I, J, V)\" where \"I\" and \"J\" are the row and
column indexes of the non-zero values in matrix \"A\", and \"V\" is
a vector of the non-zero values.
"),
("Base","findfirst","findfirst(A)
Return the index of the first non-zero value in \"A\" (determined
by \"A[i]!=0\").
"),
("Base","findfirst","findfirst(A, v)
Return the index of the first element equal to \"v\" in \"A\".
"),
("Base","findfirst","findfirst(predicate, A)
Return the index of the first element of \"A\" for which
\"predicate\" returns true.
"),
("Base","findnext","findnext(A, i)
Find the next index >= \"i\" of a non-zero element of \"A\", or
\"0\" if not found.
"),
("Base","findnext","findnext(predicate, A, i)
Find the next index >= \"i\" of an element of \"A\" for which
\"predicate\" returns true, or \"0\" if not found.
"),
("Base","findnext","findnext(A, v, i)
Find the next index >= \"i\" of an element of \"A\" equal to \"v\"
(using \"==\"), or \"0\" if not found.
"),
("Base","permutedims","permutedims(A, perm)
Permute the dimensions of array \"A\". \"perm\" is a vector
specifying a permutation of length \"ndims(A)\". This is a
generalization of transpose for multi-dimensional arrays. Transpose
is equivalent to \"permutedims(A,[2,1])\".
"),
("Base","ipermutedims","ipermutedims(A, perm)
Like \"permutedims()\", except the inverse of the given permutation
is applied.
"),
("Base","squeeze","squeeze(A, dims)
Remove the dimensions specified by \"dims\" from array \"A\"
"),
("Base","vec","vec(Array) -> Vector
Vectorize an array using column-major convention.
"),
("Base","promote_shape","promote_shape(s1, s2)
Check two array shapes for compatibility, allowing trailing
singleton dimensions, and return whichever shape has more
dimensions.
"),
("Base","checkbounds","checkbounds(array, indexes...)
Throw an error if the specified indexes are not in bounds for the
given array.
"),
("Base","randsubseq","randsubseq(A, p) -> Vector
Return a vector consisting of a random subsequence of the given
array \"A\", where each element of \"A\" is included (in order)
with independent probability \"p\". (Complexity is linear in
\"p*length(A)\", so this function is efficient even if \"p\" is
small and \"A\" is large.) Technically, this process is known as
\"Bernoulli sampling\" of \"A\".
"),
("Base","randsubseq!","randsubseq!(S, A, p)
Like \"randsubseq\", but the results are stored in \"S\" (which is
resized as needed).
"),
("Base","cumprod","cumprod(A[, dim])
Cumulative product along a dimension.
"),
("Base","cumprod!","cumprod!(B, A[, dim])
Cumulative product of \"A\" along a dimension, storing the result
in \"B\".
"),
("Base","cumsum","cumsum(A[, dim])
Cumulative sum along a dimension.
"),
("Base","cumsum!","cumsum!(B, A[, dim])
Cumulative sum of \"A\" along a dimension, storing the result in
\"B\".
"),
("Base","cumsum_kbn","cumsum_kbn(A[, dim])
Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier
compensated summation algorithm for additional accuracy.
"),
("Base","cummin","cummin(A[, dim])
Cumulative minimum along a dimension.
"),
("Base","cummax","cummax(A[, dim])
Cumulative maximum along a dimension.
"),
("Base","diff","diff(A[, dim])
Finite difference operator of matrix or vector.
"),
("Base","gradient","gradient(F[, h])
Compute differences along vector \"F\", using \"h\" as the spacing
between points. The default spacing is one.
"),
("Base","rot180","rot180(A)
Rotate matrix \"A\" 180 degrees.
"),
("Base","rotl90","rotl90(A)
Rotate matrix \"A\" left 90 degrees.
"),
("Base","rotr90","rotr90(A)
Rotate matrix \"A\" right 90 degrees.
"),
("Base","reducedim","reducedim(f, A, dims, initial)
Reduce 2-argument function \"f\" along dimensions of \"A\".
\"dims\" is a vector specifying the dimensions to reduce, and
\"initial\" is the initial value to use in the reductions.
The associativity of the reduction is implementation-dependent; if
you need a particular associativity, e.g. left-to-right, you should
write your own loop. See documentation for \"reduce\".
"),
("Base","mapslices","mapslices(f, A, dims)
Transform the given dimensions of array \"A\" using function \"f\".
\"f\" is called on each slice of \"A\" of the form
\"A[...,:,...,:,...]\". \"dims\" is an integer vector specifying
where the colons go in this expression. The results are
concatenated along the remaining dimensions. For example, if
\"dims\" is \"[1,2]\" and A is 4-dimensional, \"f\" is called on
\"A[:,:,i,j]\" for all \"i\" and \"j\".
"),
("Base","sum_kbn","sum_kbn(A)
Returns the sum of all array elements, using the Kahan-Babuska-
Neumaier compensated summation algorithm for additional accuracy.
"),
("Base","cartesianmap","cartesianmap(f, dims)
Given a \"dims\" tuple of integers \"(m, n, ...)\", call \"f\" on
all combinations of integers in the ranges \"1:m\", \"1:n\", etc.
**Example**:
julia> cartesianmap(println, (2,2))
11
21
12
22
"),
("Base","bitpack","bitpack(A::AbstractArray{T, N}) -> BitArray
Converts a numeric array to a packed boolean array
"),
("Base","bitunpack","bitunpack(B::BitArray{N}) -> Array{Bool,N}
Converts a packed boolean array to an array of booleans
"),
("Base","flipbits!","flipbits!(B::BitArray{N}) -> BitArray{N}
Performs a bitwise not operation on B. See *~ operator*.
"),
("Base","rol","rol(B::BitArray{1}, i::Integer) -> BitArray{1}
Left rotation operator.
"),
("Base","ror","ror(B::BitArray{1}, i::Integer) -> BitArray{1}
Right rotation operator.
"),
("Base","nthperm","nthperm(v, k)
Compute the kth lexicographic permutation of a vector.
"),
("Base","nthperm","nthperm(p)
Return the \"k\" that generated permutation \"p\". Note that
\"nthperm(nthperm([1:n], k)) == k\" for \"1 <= k <= factorial(n)\".
"),
("Base","nthperm!","nthperm!(v, k)
In-place version of \"nthperm()\".
"),
("Base","randperm","randperm(n)
Construct a random permutation of the given length.
"),
("Base","invperm","invperm(v)
Return the inverse permutation of v.
"),
("Base","isperm","isperm(v) -> Bool
Returns true if v is a valid permutation.
"),
("Base","permute!","permute!(v, p)
Permute vector \"v\" in-place, according to permutation \"p\". No
checking is done to verify that \"p\" is a permutation.
To return a new permutation, use \"v[p]\". Note that this is
generally faster than \"permute!(v,p)\" for large vectors.
"),
("Base","ipermute!","ipermute!(v, p)
Like permute!, but the inverse of the given permutation is applied.
"),
("Base","randcycle","randcycle(n)
Construct a random cyclic permutation of the given length.
"),
("Base","shuffle","shuffle(v)
Return a randomly permuted copy of \"v\".
"),
("Base","shuffle!","shuffle!(v)
In-place version of \"shuffle()\".
"),
("Base","reverse","reverse(v[, start=1[, stop=length(v)]])
Return a copy of \"v\" reversed from start to stop.
"),
("Base","reverse!","reverse!(v[, start=1[, stop=length(v)]]) -> v
In-place version of \"reverse()\".
"),
("Base","combinations","combinations(arr, n)
Generate all combinations of \"n\" elements from an indexable
object. Because the number of combinations can be very large, this
function returns an iterator object. Use
\"collect(combinations(a,n))\" to get an array of all combinations.
"),
("Base","permutations","permutations(arr)
Generate all permutations of an indexable object. Because the
number of permutations can be very large, this function returns an
iterator object. Use \"collect(permutations(a,n))\" to get an array
of all permutations.
"),
("Base","partitions","partitions(n)
Generate all integer arrays that sum to \"n\". Because the number
of partitions can be very large, this function returns an iterator
object. Use \"collect(partitions(n))\" to get an array of all
partitions. The number of partitions to generete can be efficiently
computed using \"length(partitions(n))\".
"),
("Base","partitions","partitions(n, m)
Generate all arrays of \"m\" integers that sum to \"n\". Because
the number of partitions can be very large, this function returns
an iterator object. Use \"collect(partitions(n,m))\" to get an
array of all partitions. The number of partitions to generete can
be efficiently computed using \"length(partitions(n,m))\".
"),
("Base","partitions","partitions(array)
Generate all set partitions of the elements of an array,
represented as arrays of arrays. Because the number of partitions
can be very large, this function returns an iterator object. Use
\"collect(partitions(array))\" to get an array of all partitions.
The number of partitions to generete can be efficiently computed
using \"length(partitions(array))\".
"),
("Base","partitions","partitions(array, m)
Generate all set partitions of the elements of an array into
exactly m subsets, represented as arrays of arrays. Because the
number of partitions can be very large, this function returns an
iterator object. Use \"collect(partitions(array,m))\" to get an
array of all partitions. The number of partitions into m subsets is
equal to the Stirling number of the second kind and can be
efficiently computed using \"length(partitions(array,m))\".
"),
("Base","mean","mean(v[, region])
Compute the mean of whole array \"v\", or optionally along the
dimensions in \"region\". Note: Julia does not ignore \"NaN\"
values in the computation. For applications requiring the handling
of missing data, the \"DataArray\" package is recommended.
"),
("Base","mean!","mean!(r, v)
Compute the mean of \"v\" over the singleton dimensions of \"r\",
and write results to \"r\".
"),
("Base","std","std(v[, region])
Compute the sample standard deviation of a vector or array \"v\",
optionally along dimensions in \"region\". The algorithm returns an
estimator of the generative distribution's standard deviation under
the assumption that each entry of \"v\" is an IID drawn from that
generative distribution. This computation is equivalent to
calculating \"sqrt(sum((v - mean(v)).^2) / (length(v) - 1))\".
Note: Julia does not ignore \"NaN\" values in the computation. For
applications requiring the handling of missing data, the
\"DataArray\" package is recommended.
"),
("Base","stdm","stdm(v, m)
Compute the sample standard deviation of a vector \"v\" with known
mean \"m\". Note: Julia does not ignore \"NaN\" values in the
computation.
"),
("Base","var","var(v[, region])
Compute the sample variance of a vector or array \"v\", optionally
along dimensions in \"region\". The algorithm will return an
estimator of the generative distribution's variance under the
assumption that each entry of \"v\" is an IID drawn from that
generative distribution. This computation is equivalent to
calculating \"sum((v - mean(v)).^2) / (length(v) - 1)\". Note:
Julia does not ignore \"NaN\" values in the computation. For
applications requiring the handling of missing data, the
\"DataArray\" package is recommended.
"),
("Base","varm","varm(v, m)
Compute the sample variance of a vector \"v\" with known mean
\"m\". Note: Julia does not ignore \"NaN\" values in the
computation.
"),
("Base","median","median(v; checknan::Bool=true)
Compute the median of a vector \"v\". If keyword argument
\"checknan\" is true (the default), an error is raised for data
containing NaN values. Note: Julia does not ignore \"NaN\" values
in the computation. For applications requiring the handling of
missing data, the \"DataArray\" package is recommended.
"),
("Base","median!","median!(v; checknan::Bool=true)
Like \"median\", but may overwrite the input vector.
"),
("Base","hist","hist(v[, n]) -> e, counts
Compute the histogram of \"v\", optionally using approximately
\"n\" bins. The return values are a range \"e\", which correspond
to the edges of the bins, and \"counts\" containing the number of
elements of \"v\" in each bin. Note: Julia does not ignore \"NaN\"
values in the computation.
"),
("Base","hist","hist(v, e) -> e, counts
Compute the histogram of \"v\" using a vector/range \"e\" as the
edges for the bins. The result will be a vector of length
\"length(e) - 1\", such that the element at location \"i\"
satisfies \"sum(e[i] .< v .<= e[i+1])\". Note: Julia does not
ignore \"NaN\" values in the computation.
"),
("Base","hist!","hist!(counts, v, e) -> e, counts
Compute the histogram of \"v\", using a vector/range \"e\" as the
edges for the bins. This function writes the resultant counts to a
pre-allocated array \"counts\".
"),
("Base","hist2d","hist2d(M, e1, e2) -> (edge1, edge2, counts)
Compute a \"2d histogram\" of a set of N points specified by N-by-2
matrix \"M\". Arguments \"e1\" and \"e2\" are bins for each
dimension, specified either as integer bin counts or vectors of bin
edges. The result is a tuple of \"edge1\" (the bin edges used in
the first dimension), \"edge2\" (the bin edges used in the second
dimension), and \"counts\", a histogram matrix of size
\"(length(edge1)-1, length(edge2)-1)\". Note: Julia does not ignore
\"NaN\" values in the computation.
"),
("Base","hist2d!","hist2d!(counts, M, e1, e2) -> (e1, e2, counts)
Compute a \"2d histogram\" with respect to the bins delimited by
the edges given in \"e1\" and \"e2\". This function writes the
results to a pre-allocated array \"counts\".
"),
("Base","histrange","histrange(v, n)
Compute *nice* bin ranges for the edges of a histogram of \"v\",
using approximately \"n\" bins. The resulting step sizes will be 1,
2 or 5 multiplied by a power of 10. Note: Julia does not ignore
\"NaN\" values in the computation.
"),
("Base","midpoints","midpoints(e)
Compute the midpoints of the bins with edges \"e\". The result is a
vector/range of length \"length(e) - 1\". Note: Julia does not
ignore \"NaN\" values in the computation.
"),
("Base","quantile","quantile(v, p)
Compute the quantiles of a vector \"v\" at a specified set of
probability values \"p\". Note: Julia does not ignore \"NaN\"
values in the computation.
"),
("Base","quantile","quantile(v, p)
Compute the quantile of a vector \"v\" at the probability \"p\".
Note: Julia does not ignore \"NaN\" values in the computation.
"),
("Base","quantile!","quantile!(v, p)
Like \"quantile\", but overwrites the input vector.
"),
("Base","cov","cov(v1[, v2][, vardim=1, corrected=true, mean=nothing])
Compute the Pearson covariance between the vector(s) in \"v1\" and
\"v2\". Here, \"v1\" and \"v2\" can be either vectors or matrices.
This function accepts three keyword arguments:
* \"vardim\": the dimension of variables. When \"vardim = 1\",
variables are considered in columns while observations in rows;
when \"vardim = 2\", variables are in rows while observations in
columns. By default, it is set to \"1\".
* \"corrected\": whether to apply Bessel's correction (divide by
\"n-1\" instead of \"n\"). By default, it is set to \"true\".
* \"mean\": allow users to supply mean values that are known. By
default, it is set to \"nothing\", which indicates that the
mean(s) are unknown, and the function will compute the mean.
Users can use \"mean=0\" to indicate that the input data are
centered, and hence there's no need to subtract the mean.
The size of the result depends on the size of \"v1\" and \"v2\".
When both \"v1\" and \"v2\" are vectors, it returns the covariance
between them as a scalar. When either one is a matrix, it returns a
covariance matrix of size \"(n1, n2)\", where \"n1\" and \"n2\" are
the numbers of slices in \"v1\" and \"v2\", which depend on the
setting of \"vardim\".
Note: \"v2\" can be omitted, which indicates \"v2 = v1\".
"),
("Base","cor","cor(v1[, v2][, vardim=1, mean=nothing])
Compute the Pearson correlation between the vector(s) in \"v1\" and
\"v2\".
Users can use the keyword argument \"vardim\" to specify the
variable dimension, and \"mean\" to supply pre-computed mean
values.
"),
("Base","fft","fft(A[, dims])
Performs a multidimensional FFT of the array \"A\". The optional
\"dims\" argument specifies an iterable subset of dimensions (e.g.
an integer, range, tuple, or array) to transform along. Most
efficient if the size of \"A\" along the transformed dimensions is
a product of small primes; see \"nextprod()\". See also
\"plan_fft()\" for even greater efficiency.
A one-dimensional FFT computes the one-dimensional discrete Fourier
transform (DFT) as defined by
\\operatorname{DFT}(A)[k] =
\\sum_{n=1}^{\\operatorname{length}(A)}
\\exp\\left(-i\\frac{2\\pi
(n-1)(k-1)}{\\operatorname{length}(A)} \\right) A[n].
A multidimensional FFT simply performs this operation along each
transformed dimension of \"A\".
"),
("Base","fft!","fft!(A[, dims])
Same as \"fft()\", but operates in-place on \"A\", which must be an
array of complex floating-point numbers.
"),
("Base","ifft","ifft(A[, dims])
Multidimensional inverse FFT.
A one-dimensional inverse FFT computes
\\operatorname{IDFT}(A)[k] =
\\frac{1}{\\operatorname{length}(A)}
\\sum_{n=1}^{\\operatorname{length}(A)}
\\exp\\left(+i\\frac{2\\pi (n-1)(k-1)}
{\\operatorname{length}(A)} \\right) A[n].
A multidimensional inverse FFT simply performs this operation along
each transformed dimension of \"A\".
"),
("Base","ifft!","ifft!(A[, dims])
Same as \"ifft()\", but operates in-place on \"A\".
"),
("Base","bfft","bfft(A[, dims])
Similar to \"ifft()\", but computes an unnormalized inverse
(backward) transform, which must be divided by the product of the
sizes of the transformed dimensions in order to obtain the inverse.
(This is slightly more efficient than \"ifft()\" because it omits a
scaling step, which in some applications can be combined with other
computational steps elsewhere.)
\\operatorname{BDFT}(A)[k] = \\operatorname{length}(A)
\\operatorname{IDFT}(A)[k]
"),
("Base","bfft!","bfft!(A[, dims])
Same as \"bfft()\", but operates in-place on \"A\".
"),
("Base","plan_fft","plan_fft(A[, dims[, flags[, timelimit]]])
Pre-plan an optimized FFT along given dimensions (\"dims\") of
arrays matching the shape and type of \"A\". (The first two
arguments have the same meaning as for \"fft()\".) Returns a
function \"plan(A)\" that computes \"fft(A, dims)\" quickly.
The \"flags\" argument is a bitwise-or of FFTW planner flags,
defaulting to \"FFTW.ESTIMATE\". e.g. passing \"FFTW.MEASURE\" or
\"FFTW.PATIENT\" will instead spend several seconds (or more)
benchmarking different possible FFT algorithms and picking the
fastest one; see the FFTW manual for more information on planner
flags. The optional \"timelimit\" argument specifies a rough upper
bound on the allowed planning time, in seconds. Passing
\"FFTW.MEASURE\" or \"FFTW.PATIENT\" may cause the input array
\"A\" to be overwritten with zeros during plan creation.
\"plan_fft!()\" is the same as \"plan_fft()\" but creates a plan
that operates in-place on its argument (which must be an array of
complex floating-point numbers). \"plan_ifft()\" and so on are
similar but produce plans that perform the equivalent of the
inverse transforms \"ifft()\" and so on.
"),
("Base","plan_ifft","plan_ifft(A[, dims[, flags[, timelimit]]])
Same as \"plan_fft()\", but produces a plan that performs inverse
transforms \"ifft()\".
"),
("Base","plan_bfft","plan_bfft(A[, dims[, flags[, timelimit]]])
Same as \"plan_fft()\", but produces a plan that performs an
unnormalized backwards transform \"bfft()\".
"),
("Base","plan_fft!","plan_fft!(A[, dims[, flags[, timelimit]]])
Same as \"plan_fft()\", but operates in-place on \"A\".
"),
("Base","plan_ifft!","plan_ifft!(A[, dims[, flags[, timelimit]]])
Same as \"plan_ifft()\", but operates in-place on \"A\".
"),
("Base","plan_bfft!","plan_bfft!(A[, dims[, flags[, timelimit]]])
Same as \"plan_bfft()\", but operates in-place on \"A\".
"),
("Base","rfft","rfft(A[, dims])
Multidimensional FFT of a real array A, exploiting the fact that
the transform has conjugate symmetry in order to save roughly half
the computational time and storage costs compared with \"fft()\".
If \"A\" has size \"(n_1, ..., n_d)\", the result has size
\"(floor(n_1/2)+1, ..., n_d)\".
The optional \"dims\" argument specifies an iterable subset of one
or more dimensions of \"A\" to transform, similar to \"fft()\".
Instead of (roughly) halving the first dimension of \"A\" in the
result, the \"dims[1]\" dimension is (roughly) halved in the same
way.
"),
("Base","irfft","irfft(A, d[, dims])
Inverse of \"rfft()\": for a complex array \"A\", gives the
corresponding real array whose FFT yields \"A\" in the first half.
As for \"rfft()\", \"dims\" is an optional subset of dimensions to
transform, defaulting to \"1:ndims(A)\".
\"d\" is the length of the transformed real array along the
\"dims[1]\" dimension, which must satisfy \"d ==
floor(size(A,dims[1])/2)+1\". (This parameter cannot be inferred
from \"size(A)\" due to the possibility of rounding by the
\"floor\" function here.)
"),
("Base","brfft","brfft(A, d[, dims])
Similar to \"irfft()\" but computes an unnormalized inverse
transform (similar to \"bfft()\"), which must be divided by the
product of the sizes of the transformed dimensions (of the real
output array) in order to obtain the inverse transform.
"),
("Base","plan_rfft","plan_rfft(A[, dims[, flags[, timelimit]]])
Pre-plan an optimized real-input FFT, similar to \"plan_fft()\"
except for \"rfft()\" instead of \"fft()\". The first two
arguments, and the size of the transformed result, are the same as
for \"rfft()\".
"),
("Base","plan_brfft","plan_brfft(A, d[, dims[, flags[, timelimit]]])
Pre-plan an optimized real-input unnormalized transform, similar to
\"plan_rfft()\" except for \"brfft()\" instead of \"rfft()\". The
first two arguments and the size of the transformed result, are the
same as for \"brfft()\".
"),
("Base","plan_irfft","plan_irfft(A, d[, dims[, flags[, timelimit]]])
Pre-plan an optimized inverse real-input FFT, similar to
\"plan_rfft()\" except for \"irfft()\" and \"brfft()\",
respectively. The first three arguments have the same meaning as
for \"irfft()\".
"),
("Base","dct","dct(A[, dims])
Performs a multidimensional type-II discrete cosine transform (DCT)
of the array \"A\", using the unitary normalization of the DCT. The
optional \"dims\" argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. Most efficient if the size of \"A\" along the transformed
dimensions is a product of small primes; see \"nextprod()\". See
also \"plan_dct()\" for even greater efficiency.
"),
("Base","dct!","dct!(A[, dims])
Same as \"dct!()\", except that it operates in-place on \"A\",
which must be an array of real or complex floating-point values.
"),
("Base","idct","idct(A[, dims])
Computes the multidimensional inverse discrete cosine transform
(DCT) of the array \"A\" (technically, a type-III DCT with the
unitary normalization). The optional \"dims\" argument specifies an
iterable subset of dimensions (e.g. an integer, range, tuple, or
array) to transform along. Most efficient if the size of \"A\"
along the transformed dimensions is a product of small primes; see
\"nextprod()\". See also \"plan_idct()\" for even greater
efficiency.
"),
("Base","idct!","idct!(A[, dims])
Same as \"idct!()\", but operates in-place on \"A\".
"),
("Base","plan_dct","plan_dct(A[, dims[, flags[, timelimit]]])
Pre-plan an optimized discrete cosine transform (DCT), similar to
\"plan_fft()\" except producing a function that computes \"dct()\".
The first two arguments have the same meaning as for \"dct()\".
"),
("Base","plan_dct!","plan_dct!(A[, dims[, flags[, timelimit]]])
Same as \"plan_dct()\", but operates in-place on \"A\".
"),
("Base","plan_idct","plan_idct(A[, dims[, flags[, timelimit]]])
Pre-plan an optimized inverse discrete cosine transform (DCT),
similar to \"plan_fft()\" except producing a function that computes
\"idct()\". The first two arguments have the same meaning as for
\"idct()\".
"),
("Base","plan_idct!","plan_idct!(A[, dims[, flags[, timelimit]]])
Same as \"plan_idct()\", but operates in-place on \"A\".
"),
("Base","fftshift","fftshift(x)
Swap the first and second halves of each dimension of \"x\".
"),
("Base","fftshift","fftshift(x, dim)
Swap the first and second halves of the given dimension of array
\"x\".
"),
("Base","ifftshift","ifftshift(x[, dim])
Undoes the effect of \"fftshift\".
"),
("Base","filt","filt(b, a, x[, si])
Apply filter described by vectors \"a\" and \"b\" to vector \"x\",
with an optional initial filter state vector \"si\" (defaults to
zeros).
"),
("Base","filt!","filt!(out, b, a, x[, si])
Same as \"filt()\" but writes the result into the \"out\" argument,
which may alias the input \"x\" to modify it in-place.
"),
("Base","deconv","deconv(b, a)
Construct vector \"c\" such that \"b = conv(a,c) + r\". Equivalent
to polynomial division.
"),
("Base","conv","conv(u, v)
Convolution of two vectors. Uses FFT algorithm.
"),
("Base","conv2","conv2(u, v, A)
2-D convolution of the matrix \"A\" with the 2-D separable kernel
generated by the vectors \"u\" and \"v\". Uses 2-D FFT algorithm
"),
("Base","conv2","conv2(B, A)
2-D convolution of the matrix \"B\" with the matrix \"A\". Uses
2-D FFT algorithm
"),
("Base","xcorr","xcorr(u, v)
Compute the cross-correlation of two vectors.
"),
("Base.FFTW","r2r","r2r(A, kind[, dims])
Performs a multidimensional real-input/real-output (r2r) transform
of type \"kind\" of the array \"A\", as defined in the FFTW manual.
\"kind\" specifies either a discrete cosine transform of various
types (\"FFTW.REDFT00\", \"FFTW.REDFT01\", \"FFTW.REDFT10\", or
\"FFTW.REDFT11\"), a discrete sine transform of various types
(\"FFTW.RODFT00\", \"FFTW.RODFT01\", \"FFTW.RODFT10\", or
\"FFTW.RODFT11\"), a real-input DFT with halfcomplex-format output
(\"FFTW.R2HC\" and its inverse \"FFTW.HC2R\"), or a discrete
Hartley transform (\"FFTW.DHT\"). The \"kind\" argument may be an
array or tuple in order to specify different transform types along
the different dimensions of \"A\"; \"kind[end]\" is used for any
unspecified dimensions. See the FFTW manual for precise
definitions of these transform types, at http://www.fftw.org/doc.
The optional \"dims\" argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. \"kind[i]\" is then the transform type for \"dims[i]\", with
\"kind[end]\" being used for \"i > length(kind)\".
See also \"plan_r2r()\" to pre-plan optimized r2r transforms.
"),
("Base.FFTW","r2r!","r2r!(A, kind[, dims])
Same as \"r2r()\", but operates in-place on \"A\", which must be an
array of real or complex floating-point numbers.
"),
("Base.FFTW","plan_r2r","plan_r2r(A, kind[, dims[, flags[, timelimit]]])
Pre-plan an optimized r2r transform, similar to \"Base.plan_fft()\"
except that the transforms (and the first three arguments)
correspond to \"r2r()\" and \"r2r!()\", respectively.
"),
("Base.FFTW","plan_r2r!","plan_r2r!(A, kind[, dims[, flags[, timelimit]]])
Similar to \"Base.plan_fft()\", but corresponds to \"r2r!()\".
"),
("Base","quadgk","quadgk(f, a, b, c...; reltol=sqrt(eps), abstol=0, maxevals=10^7, order=7, norm=vecnorm)
Numerically integrate the function \"f(x)\" from \"a\" to \"b\",
and optionally over additional intervals \"b\" to \"c\" and so on.
Keyword options include a relative error tolerance \"reltol\"
(defaults to \"sqrt(eps)\" in the precision of the endpoints), an
absolute error tolerance \"abstol\" (defaults to 0), a maximum
number of function evaluations \"maxevals\" (defaults to \"10^7\"),
and the \"order\" of the integration rule (defaults to 7).
Returns a pair \"(I,E)\" of the estimated integral \"I\" and an
estimated upper bound on the absolute error \"E\". If \"maxevals\"
is not exceeded then \"E <= max(abstol, reltol*norm(I))\" will
hold. (Note that it is useful to specify a positive \"abstol\" in
cases where \"norm(I)\" may be zero.)
The endpoints \"a\" etcetera can also be complex (in which case the
integral is performed over straight-line segments in the complex
plane). If the endpoints are \"BigFloat\", then the integration
will be performed in \"BigFloat\" precision as well (note: it is
advisable to increase the integration \"order\" in rough proportion
to the precision, for smooth integrands). More generally, the
precision is set by the precision of the integration endpoints
(promoted to floating-point types).
The integrand \"f(x)\" can return any numeric scalar, vector, or
matrix type, or in fact any type supporting \"+\", \"-\",
multiplication by real values, and a \"norm\" (i.e., any normed
vector space). Alternatively, a different norm can be specified by
passing a *norm*-like function as the *norm* keyword argument
(which defaults to *vecnorm*).
The algorithm is an adaptive Gauss-Kronrod integration technique:
the integral in each interval is estimated using a Kronrod rule
(\"2*order+1\" points) and the error is estimated using an embedded
Gauss rule (\"order\" points). The interval with the largest
error is then subdivided into two intervals and the process is
repeated until the desired error tolerance is achieved.
These quadrature rules work best for smooth functions within each
interval, so if your function has a known discontinuity or other
singularity, it is best to subdivide your interval to put the
singularity at an endpoint. For example, if \"f\" has a
discontinuity at \"x=0.7\" and you want to integrate from 0 to 1,
you should use \"quadgk(f, 0,0.7,1)\" to subdivide the interval at
the point of discontinuity. The integrand is never evaluated
exactly at the endpoints of the intervals, so it is possible to
integrate functions that diverge at the endpoints as long as the
singularity is integrable (for example, a \"log(x)\" or
\"1/sqrt(x)\" singularity).
For real-valued endpoints, the starting and/or ending points may be
infinite. (A coordinate transformation is performed internally to
map the infinite interval to a finite one.)
"),
("Base","addprocs","addprocs(n; cman::ClusterManager=LocalManager()) -> List of process identifiers
\"addprocs(4)\" will add 4 processes on the local machine. This can
be used to take advantage of multiple cores.
Keyword argument \"cman\" can be used to provide a custom cluster
manager to start workers. For example Beowulf clusters are
supported via a custom cluster manager implemented in package
\"ClusterManagers\".
See the documentation for package \"ClusterManagers\" for more
information on how to write a custom cluster manager.
"),
("Base","addprocs","addprocs(machines; tunnel=false, dir=JULIA_HOME, sshflags::Cmd=``) -> List of process identifiers
Add processes on remote machines via SSH. Requires julia to be
installed in the same location on each node, or to be available via
a shared file system.
\"machines\" is a vector of host definitions of the form
\"[user@]host[:port] [bind_addr]\". \"user\" defaults to current
user, \"port\" to the standard ssh port. Optionally, in case of
multi-homed hosts, \"bind_addr\" may be used to explicitly specify
an interface.
Keyword arguments:
\"tunnel\" : if \"true\" then SSH tunneling will be used to connect
to the worker.
\"dir\" : specifies the location of the julia binaries on the
worker nodes.
\"sshflags\" : specifies additional ssh options, e.g.
\"sshflags=`-i /home/foo/bar.pem`\" .
"),
("Base","nprocs","nprocs()
Get the number of available processes.
"),
("Base","nworkers","nworkers()
Get the number of available worker processes. This is one less than
nprocs(). Equal to nprocs() if nprocs() == 1.
"),
("Base","procs","procs()
Returns a list of all process identifiers.
"),
("Base","workers","workers()
Returns a list of all worker process identifiers.
"),
("Base","rmprocs","rmprocs(pids...)
Removes the specified workers.
"),
("Base","interrupt","interrupt([pids...])
Interrupt the current executing task on the specified workers. This
is equivalent to pressing Ctrl-C on the local machine. If no
arguments are given, all workers are interrupted.
"),
("Base","myid","myid()
Get the id of the current process.
"),
("Base","pmap","pmap(f, lsts...; err_retry=true, err_stop=false)
Transform collections \"lsts\" by applying \"f\" to each element in
parallel. If \"nprocs() > 1\", the calling process will be
dedicated to assigning tasks. All other available processes will be
used as parallel workers.
If \"err_retry\" is true, it retries a failed application of \"f\"
on a different worker. If \"err_stop\" is true, it takes precedence
over the value of \"err_retry\" and \"pmap\" stops execution on the
first error.
"),
("Base","remotecall","remotecall(id, func, args...)
Call a function asynchronously on the given arguments on the
specified process. Returns a \"RemoteRef\".
"),
("Base","wait","wait([x])
Block the current task until some event occurs, depending on the
type of the argument:
* \"RemoteRef\": Wait for a value to become available for the
specified remote reference.
* \"Condition\": Wait for \"notify\" on a condition.
* \"Process\": Wait for a process or process chain to exit. The
\"exitcode\" field of a process can be used to determine success
or failure.
* \"Task\": Wait for a \"Task\" to finish, returning its result
value.
* \"RawFD\": Wait for changes on a file descriptor (see *poll_fd*
for keyword arguments and return code)
If no argument is passed, the task blocks for an undefined period.
If the task's state is set to \":waiting\", it can only be
restarted by an explicit call to \"schedule\" or \"yieldto\". If
the task's state is \":runnable\", it might be restarted
unpredictably.
Often \"wait\" is called within a \"while\" loop to ensure a
waited-for condition is met before proceeding.
"),
("Base","fetch","fetch(RemoteRef)
Wait for and get the value of a remote reference.
"),
("Base","remotecall_wait","remotecall_wait(id, func, args...)
Perform \"wait(remotecall(...))\" in one message.
"),
("Base","remotecall_fetch","remotecall_fetch(id, func, args...)
Perform \"fetch(remotecall(...))\" in one message.
"),
("Base","put!","put!(RemoteRef, value)
Store a value to a remote reference. Implements \"shared queue of
length 1\" semantics: if a value is already present, blocks until
the value is removed with \"take!\". Returns its first argument.
"),
("Base","take!","take!(RemoteRef)
Fetch the value of a remote reference, removing it so that the
reference is empty again.
"),
("Base","isready","isready(r::RemoteRef)
Determine whether a \"RemoteRef\" has a value stored to it. Note
that this function can cause race conditions, since by the time you
receive its result it may no longer be true. It is recommended that
this function only be used on a \"RemoteRef\" that is assigned
once.
If the argument \"RemoteRef\" is owned by a different node, this
call will block to wait for the answer. It is recommended to wait
for \"r\" in a separate task instead, or to use a local
\"RemoteRef\" as a proxy:
rr = RemoteRef()
@async put!(rr, remotecall_fetch(p, long_computation))
isready(rr) # will not block
"),
("Base","RemoteRef","RemoteRef()
Make an uninitialized remote reference on the local machine.
"),
("Base","RemoteRef","RemoteRef(n)
Make an uninitialized remote reference on process \"n\".
"),
("Base","timedwait","timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)
Waits till \"testcb\" returns \"true\" or for \"secs`\" seconds,
whichever is earlier. \"testcb\" is polled every \"pollint\"
seconds.
"),
("Base","@spawn","@spawn()
Execute an expression on an automatically-chosen process, returning
a \"RemoteRef\" to the result.
"),
("Base","@spawnat","@spawnat()
Accepts two arguments, \"p\" and an expression, and runs the
expression asynchronously on process \"p\", returning a
\"RemoteRef\" to the result.
"),
("Base","@fetch","@fetch()
Equivalent to \"fetch(@spawn expr)\".
"),
("Base","@fetchfrom","@fetchfrom()
Equivalent to \"fetch(@spawnat p expr)\".
"),
("Base","@async","@async()
Schedule an expression to run on the local machine, also adding it
to the set of items that the nearest enclosing \"@sync\" waits for.
"),
("Base","@sync","@sync()
Wait until all dynamically-enclosed uses of \"@async\", \"@spawn\",
\"@spawnat\" and \"@parallel\" are complete.
"),
("Base","@parallel","@parallel()
A parallel for loop of the form
@parallel [reducer] for var = range
body
end
The specified range is partitioned and locally executed across all
workers. In case an optional reducer function is specified,
@parallel performs local reductions on each worker with a final
reduction on the calling process.
Note that without a reducer function, @parallel executes
asynchronously, i.e. it spawns independent tasks on all available
workers and returns immediately without waiting for completion. To
wait for completion, prefix the call with \"@sync\", like
@sync @parallel for var = range
body
end
"),
("Base","DArray","DArray(init, dims[, procs, dist])
Construct a distributed array. The parameter \"init\" is a function
that accepts a tuple of index ranges. This function should allocate
a local chunk of the distributed array and initialize it for the
specified indices. \"dims\" is the overall size of the distributed
array. \"procs\" optionally specifies a vector of process IDs to
use. If unspecified, the array is distributed over all worker
processes only. Typically, when runnning in distributed mode, i.e.,
\"nprocs() > 1\", this would mean that no chunk of the distributed
array exists on the process hosting the interactive julia prompt.
\"dist\" is an integer vector specifying how many chunks the
distributed array should be divided into in each dimension.
For example, the \"dfill\" function that creates a distributed
array and fills it with a value \"v\" is implemented as:
\"dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)\"
"),
("Base","dzeros","dzeros(dims, ...)
Construct a distributed array of zeros. Trailing arguments are the
same as those accepted by \"DArray()\".
"),
("Base","dones","dones(dims, ...)
Construct a distributed array of ones. Trailing arguments are the
same as those accepted by \"DArray()\".
"),
("Base","dfill","dfill(x, dims, ...)
Construct a distributed array filled with value \"x\". Trailing
arguments are the same as those accepted by \"DArray()\".
"),
("Base","drand","drand(dims, ...)
Construct a distributed uniform random array. Trailing arguments
are the same as those accepted by \"DArray()\".
"),
("Base","drandn","drandn(dims, ...)
Construct a distributed normal random array. Trailing arguments are
the same as those accepted by \"DArray()\".
"),
("Base","distribute","distribute(a)
Convert a local array to distributed.
"),
("Base","localpart","localpart(d)
Get the local piece of a distributed array. Returns an empty array
if no local part exists on the calling process.
"),
("Base","localindexes","localindexes(d)
A tuple describing the indexes owned by the local process. Returns
a tuple with empty ranges if no local part exists on the calling
process.
"),
("Base","procs","procs(d)
Get the vector of processes storing pieces of \"d\".
"),
("Base","SharedArray","SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])
Construct a SharedArray of a bitstype \"T\" and size \"dims\"
across the processes specified by \"pids\" - all of which have to
be on the same host.
If \"pids\" is left unspecified, the shared array will be mapped
across all workers on the current host.
If an \"init\" function of the type \"initfn(S::SharedArray)\" is
specified, it is called on all the participating workers.
"),
("Base","procs","procs(S::SharedArray)
Get the vector of processes that have mapped the shared array
"),
("Base","sdata","sdata(S::SharedArray)
Returns the actual \"Array\" object backing \"S\"
"),
("Base","indexpids","indexpids(S::SharedArray)
Returns the index of the current worker into the \"pids\" vector,
i.e., the list of workers mapping the SharedArray
"),
("Base","run","run(command)
Run a command object, constructed with backticks. Throws an error
if anything goes wrong, including the process exiting with a non-
zero status.
"),
("Base","spawn","spawn(command)
Run a command object asynchronously, returning the resulting
\"Process\" object.
"),
("Base","DevNull","DevNull
Used in a stream redirect to discard all data written to it.
Essentially equivalent to /dev/null on Unix or NUL on Windows.
Usage: \"run(`cat test.txt` |> DevNull)\"
"),
("Base","success","success(command)
Run a command object, constructed with backticks, and tell whether
it was successful (exited with a code of 0). An exception is raised
if the process cannot be started.
"),
("Base","process_running","process_running(p::Process)
Determine whether a process is currently running.
"),
("Base","process_exited","process_exited(p::Process)
Determine whether a process has exited.
"),
("Base","kill","kill(p::Process, signum=SIGTERM)
Send a signal to a process. The default is to terminate the
process.
"),
("Base","open","open(command, mode::String=\"r\", stdio=DevNull)
Start running \"command\" asynchronously, and return a tuple
\"(stream,process)\". If \"mode\" is \"\"r\"\", then \"stream\"
reads from the process's standard output and \"stdio\" optionally
specifies the process's standard input stream. If \"mode\" is
\"\"w\"\", then \"stream\" writes to the process's standard input
and \"stdio\" optionally specifies the process's standard output
stream.
"),
("Base","open","open(f::Function, command, mode::String=\"r\", stdio=DevNull)
Similar to \"open(command, mode, stdio)\", but calls \"f(stream)\"
on the resulting read or write stream, then closes the stream and
waits for the process to complete. Returns the value returned by
\"f\".
"),
("Base","readandwrite","readandwrite(command)
Starts running a command asynchronously, and returns a tuple
(stdout,stdin,process) of the output stream and input stream of the
process, and the process object itself.
"),
("Base","ignorestatus","ignorestatus(command)
Mark a command object so that running it will not throw an error if
the result code is non-zero.
"),
("Base","detach","detach(command)
Mark a command object so that it will be run in a new process
group, allowing it to outlive the julia process, and not have
Ctrl-C interrupts passed to it.
"),
("Base","setenv","setenv(command, env; dir=working_dir)
Set environment variables to use when running the given command.
\"env\" is either a dictionary mapping strings to strings, or an
array of strings of the form \"\"var=val\"\".
The \"dir\" keyword argument can be used to specify a working
directory for the command.
"),
("Base","|>","|>(command, command)
|>(command, filename)
|>(filename, command)
Redirect operator. Used for piping the output of a process into
another (first form) or to redirect the standard output/input of a
command to/from a file (second and third forms).
**Examples**:
* \"run(`ls` |> `grep xyz`)\"
* \"run(`ls` |> \"out.txt\")\"
* \"run(\"out.txt\" |> `grep xyz`)\"
"),
("Base",">>",">>(command, filename)
Redirect standard output of a process, appending to the destination
file.
"),
("Base",".>",".>(command, filename)
Redirect the standard error stream of a process.
"),
("Base","gethostname","gethostname() -> String
Get the local machine's host name.
"),
("Base","getipaddr","getipaddr() -> String
Get the IP address of the local machine, as a string of the form
\"x.x.x.x\".
"),
("Base","pwd","pwd() -> String
Get the current working directory.
"),
("Base","cd","cd(dir::String)
Set the current working directory.
"),
("Base","cd","cd(f[, dir])
Temporarily changes the current working directory (HOME if not
specified) and applies function f before returning.
"),
("Base","mkdir","mkdir(path[, mode])
Make a new directory with name \"path\" and permissions \"mode\".
\"mode\" defaults to 0o777, modified by the current file creation
mask.
"),
("Base","mkpath","mkpath(path[, mode])
Create all directories in the given \"path\", with permissions
\"mode\". \"mode\" defaults to 0o777, modified by the current file
creation mask.
"),
("Base","symlink","symlink(target, link)
Creates a symbolic link to \"target\" with the name \"link\".
Note: This function raises an error under operating systems that do not
support soft symbolic links, such as Windows XP.
"),
("Base","getpid","getpid() -> Int32
Get julia's process ID.
"),
("Base","time","time([t::TmStruct])
Get the system time in seconds since the epoch, with fairly high
(typically, microsecond) resolution. When passed a \"TmStruct\",
converts it to a number of seconds since the epoch.
"),
("Base","time_ns","time_ns()
Get the time in nanoseconds. The time corresponding to 0 is
undefined, and wraps every 5.8 years.
"),
("Base","strftime","strftime([format], time)
Convert time, given as a number of seconds since the epoch or a
\"TmStruct\", to a formatted string using the given format.
Supported formats are the same as those in the standard C library.
"),
("Base","strptime","strptime([format], timestr)
Parse a formatted time string into a \"TmStruct\" giving the
seconds, minute, hour, date, etc. Supported formats are the same as
those in the standard C library. On some platforms, timezones will
not be parsed correctly. If the result of this function will be
passed to \"time\" to convert it to seconds since the epoch, the
\"isdst\" field should be filled in manually. Setting it to \"-1\"
will tell the C library to use the current system settings to
determine the timezone.
"),
("Base","TmStruct","TmStruct([seconds])
Convert a number of seconds since the epoch to broken-down format,
with fields \"sec\", \"min\", \"hour\", \"mday\", \"month\",
\"year\", \"wday\", \"yday\", and \"isdst\".
"),
("Base","tic","tic()
Set a timer to be read by the next call to \"toc()\" or \"toq()\".
The macro call \"@time expr\" can also be used to time evaluation.
"),
("Base","toc","toc()
Print and return the time elapsed since the last \"tic()\".
"),
("Base","toq","toq()
Return, but do not print, the time elapsed since the last
\"tic()\".
"),
("Base","@time","@time()
A macro to execute an expression, printing the time it took to
execute and the total number of bytes its execution caused to be
allocated, before returning the value of the expression.
"),
("Base","@elapsed","@elapsed()
A macro to evaluate an expression, discarding the resulting value,
instead returning the number of seconds it took to execute as a
floating-point number.
"),
("Base","@allocated","@allocated()
A macro to evaluate an expression, discarding the resulting value,
instead returning the total number of bytes allocated during
evaluation of the expression.
"),
("Base","EnvHash","EnvHash() -> EnvHash
A singleton of this type provides a hash table interface to
environment variables.
"),
("Base","ENV","ENV
Reference to the singleton \"EnvHash\", providing a dictionary
interface to system environment variables.
"),
("Base","@unix","@unix()
Given \"@unix? a : b\", do \"a\" on Unix systems (including Linux
and OS X) and \"b\" elsewhere. See documentation for Handling
Platform Variations in the Calling C and Fortran Code section of
the manual.
"),
("Base","@osx","@osx()
Given \"@osx? a : b\", do \"a\" on OS X and \"b\" elsewhere. See
documentation for Handling Platform Variations in the Calling C and
Fortran Code section of the manual.
"),
("Base","@linux","@linux()
Given \"@linux? a : b\", do \"a\" on Linux and \"b\" elsewhere. See
documentation for Handling Platform Variations in the Calling C and
Fortran Code section of the manual.
"),
("Base","@windows","@windows()
Given \"@windows? a : b\", do \"a\" on Windows and \"b\" elsewhere.
See documentation for Handling Platform Variations in the Calling C
and Fortran Code section of the manual.
"),
("Base","ccall","ccall((symbol, library) or fptr, RetType, (ArgType1, ...), ArgVar1, ...)
Call function in C-exported shared library, specified by
\"(function name, library)\" tuple, where each component is a
String or :Symbol. Alternatively, ccall may be used to call a
function pointer returned by dlsym, but note that this usage is
generally discouraged to facilitate future static compilation. Note
that the argument type tuple must be a literal tuple, and not a
tuple-valued variable or expression.
"),
("Base","cglobal","cglobal((symbol, library) or ptr[, Type=Void])
Obtain a pointer to a global variable in a C-exported shared
library, specified exactly as in \"ccall\". Returns a
\"Ptr{Type}\", defaulting to \"Ptr{Void}\" if no Type argument is
supplied. The values can be read or written by \"unsafe_load\" or
\"unsafe_store!\", respectively.
"),
("Base","cfunction","cfunction(fun::Function, RetType::Type, (ArgTypes...))
Generate C-callable function pointer from Julia function. Type
annotation of the return value in the callback function is a must
for situations where Julia cannot infer the return type
automatically.
For example:
function foo()
# body
retval::Float64
end
bar = cfunction(foo, Float64, ())
"),
("Base","dlopen","dlopen(libfile::String[, flags::Integer])
Load a shared library, returning an opaque handle.
The optional flags argument is a bitwise-or of zero or more of
RTLD_LOCAL, RTLD_GLOBAL, RTLD_LAZY, RTLD_NOW, RTLD_NODELETE,
RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST. These are converted to
the corresponding flags of the POSIX (and/or GNU libc and/or MacOS)
dlopen command, if possible, or are ignored if the specified
functionality is not available on the current platform. The
default is RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL. An important usage
of these flags, on POSIX platforms, is to specify
RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL in order for the library's
symbols to be available for usage in other shared libraries, in
situations where there are dependencies between shared libraries.
"),
("Base","dlopen_e","dlopen_e(libfile::String[, flags::Integer])
Similar to \"dlopen\", except returns a NULL pointer instead of
raising errors.
"),
("Base","RTLD_DEEPBIND","RTLD_DEEPBIND
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","RTLD_FIRST","RTLD_FIRST
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","RTLD_GLOBAL","RTLD_GLOBAL
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","RTLD_LAZY","RTLD_LAZY
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","RTLD_LOCAL","RTLD_LOCAL
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","RTLD_NODELETE","RTLD_NODELETE
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","RTLD_NOLOAD","RTLD_NOLOAD
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","RTLD_NOW","RTLD_NOW
Enum constant for dlopen. See your platform man page for details,
if applicable.
"),
("Base","dlsym","dlsym(handle, sym)
Look up a symbol from a shared library handle, return callable
function pointer on success.
"),
("Base","dlsym_e","dlsym_e(handle, sym)
Look up a symbol from a shared library handle, silently return NULL
pointer on lookup failure.
"),
("Base","dlclose","dlclose(handle)
Close shared library referenced by handle.
"),
("Base","find_library","find_library(names, locations)
Searches for the first library in \"names\" in the paths in the
\"locations\" list, \"DL_LOAD_PATH\", or system library paths (in
that order) which can successfully be dlopen'd. On success, the
return value will be one of the names (potentially prefixed by one
of the paths in locations). This string can be assigned to a
\"global const\" and used as the library name in future
\"ccall\"'s. On failure, it returns the empty string.
"),
("Base","DL_LOAD_PATH","DL_LOAD_PATH
When calling \"dlopen\", the paths in this list will be searched
first, in order, before searching the system locations for a valid
library handle.
"),
("Base","c_malloc","c_malloc(size::Integer) -> Ptr{Void}
Call \"malloc\" from the C standard library.
"),
("Base","c_calloc","c_calloc(num::Integer, size::Integer) -> Ptr{Void}
Call \"calloc\" from the C standard library.
"),
("Base","c_realloc","c_realloc(addr::Ptr, size::Integer) -> Ptr{Void}
Call \"realloc\" from the C standard library.
"),
("Base","c_free","c_free(addr::Ptr)
Call \"free\" from the C standard library.
"),
("Base","unsafe_load","unsafe_load(p::Ptr{T}, i::Integer)
Load a value of type \"T\" from the address of the ith element
(1-indexed) starting at \"p\". This is equivalent to the C
expression \"p[i-1]\".
"),
("Base","unsafe_store!","unsafe_store!(p::Ptr{T}, x, i::Integer)
Store a value of type \"T\" to the address of the ith element
(1-indexed) starting at \"p\". This is equivalent to the C
expression \"p[i-1] = x\".
"),
("Base","unsafe_copy!","unsafe_copy!(dest::Ptr{T}, src::Ptr{T}, N)
Copy \"N\" elements from a source pointer to a destination, with no
checking. The size of an element is determined by the type of the
pointers.
"),
("Base","unsafe_copy!","unsafe_copy!(dest::Array, do, src::Array, so, N)
Copy \"N\" elements from a source array to a destination, starting
at offset \"so\" in the source and \"do\" in the destination
(1-indexed).
"),
("Base","copy!","copy!(dest, src)
Copy all elements from collection \"src\" to array \"dest\".
Returns \"dest\".
"),
("Base","copy!","copy!(dest, do, src, so, N)
Copy \"N\" elements from collection \"src\" starting at offset
\"so\", to array \"dest\" starting at offset \"do\". Returns
\"dest\".
"),
("Base","pointer","pointer(a[, index])
Get the native address of an array or string element. Be careful to
ensure that a julia reference to \"a\" exists as long as this
pointer will be used.
"),
("Base","pointer","pointer(type, int)
Convert an integer to a pointer of the specified element type.
"),
("Base","pointer_to_array","pointer_to_array(p, dims[, own])
Wrap a native pointer as a Julia Array object. The pointer element
type determines the array element type. \"own\" optionally
specifies whether Julia should take ownership of the memory,
calling \"free\" on the pointer when the array is no longer
referenced.
"),
("Base","pointer_from_objref","pointer_from_objref(obj)
Get the memory address of a Julia object as a \"Ptr\". The
existence of the resulting \"Ptr\" will not protect the object from
garbage collection, so you must ensure that the object remains
referenced for the whole time that the \"Ptr\" will be used.
"),
("Base","unsafe_pointer_to_objref","unsafe_pointer_to_objref(p::Ptr)
Convert a \"Ptr\" to an object reference. Assumes the pointer
refers to a valid heap-allocated Julia object. If this is not the
case, undefined behavior results, hence this function is considered
\"unsafe\" and should be used with care.
"),
("Base","disable_sigint","disable_sigint(f::Function)
Disable Ctrl-C handler during execution of a function, for calling
external code that is not interrupt safe. Intended to be called
using \"do\" block syntax as follows:
disable_sigint() do
# interrupt-unsafe code
...
end
"),
("Base","reenable_sigint","reenable_sigint(f::Function)
Re-enable Ctrl-C handler during execution of a function.
Temporarily reverses the effect of \"disable_sigint\".
"),
("Base","errno","errno([code])
Get the value of the C library's \"errno\". If an argument is
specified, it is used to set the value of \"errno\".
The value of \"errno\" is only valid immediately after a \"ccall\"
to a C library routine that sets it. Specifically, you cannot call
\"errno\" at the next prompt in a REPL, because lots of code is
executed between prompts.
"),
("Base","systemerror","systemerror(sysfunc, iftrue)
Raises a \"SystemError\" for \"errno\" with the descriptive string
\"sysfunc\" if \"bool\" is true
"),
("Base","strerror","strerror(n)
Convert a system call error code to a descriptive string
"),
("Base","Cchar","Cchar
Equivalent to the native \"char\" c-type
"),
("Base","Cuchar","Cuchar
Equivalent to the native \"unsigned char\" c-type (Uint8)
"),
("Base","Cshort","Cshort
Equivalent to the native \"signed short\" c-type (Int16)
"),
("Base","Cushort","Cushort
Equivalent to the native \"unsigned short\" c-type (Uint16)
"),
("Base","Cint","Cint
Equivalent to the native \"signed int\" c-type (Int32)
"),
("Base","Cuint","Cuint
Equivalent to the native \"unsigned int\" c-type (Uint32)
"),
("Base","Clong","Clong
Equivalent to the native \"signed long\" c-type
"),
("Base","Culong","Culong
Equivalent to the native \"unsigned long\" c-type
"),
("Base","Clonglong","Clonglong
Equivalent to the native \"signed long long\" c-type (Int64)
"),
("Base","Culonglong","Culonglong
Equivalent to the native \"unsigned long long\" c-type (Uint64)
"),
("Base","Csize_t","Csize_t
Equivalent to the native \"size_t\" c-type (Uint)
"),
("Base","Cssize_t","Cssize_t
Equivalent to the native \"ssize_t\" c-type
"),
("Base","Cptrdiff_t","Cptrdiff_t
Equivalent to the native \"ptrdiff_t\" c-type (Int)
"),
("Base","Coff_t","Coff_t
Equivalent to the native \"off_t\" c-type
"),
("Base","Cwchar_t","Cwchar_t
Equivalent to the native \"wchar_t\" c-type (Int32)
"),
("Base","Cfloat","Cfloat
Equivalent to the native \"float\" c-type (Float32)
"),
("Base","Cdouble","Cdouble
Equivalent to the native \"double\" c-type (Float64)
"),
("Base","error","error(message::String)
Raise an error with the given message
"),
("Base","throw","throw(e)
Throw an object as an exception
"),
("Base","rethrow","rethrow([e])
Throw an object without changing the current exception backtrace.
The default argument is the current exception (if called within a
\"catch\" block).
"),
("Base","backtrace","backtrace()
Get a backtrace object for the current program point.
"),
("Base","catch_backtrace","catch_backtrace()
Get the backtrace of the current exception, for use within
\"catch\" blocks.
"),
("Base","assert","assert(cond[, text])
Raise an error if \"cond\" is false. Also available as the macro
\"@assert expr\".
"),
("Base","@assert","@assert()
Raise an error if \"cond\" is false. Preferred syntax for writings
assertions.
"),
("Base","ArgumentError","ArgumentError
The parameters given to a function call are not valid.
"),
("Base","BoundsError","BoundsError
An indexing operation into an array tried to access an out-of-
bounds element.
"),
("Base","EOFError","EOFError
No more data was available to read from a file or stream.
"),
("Base","ErrorException","ErrorException
Generic error type. The error message, in the *.msg* field, may
provide more specific details.
"),
("Base","KeyError","KeyError
An indexing operation into an \"Associative\" (\"Dict\") or \"Set\"
like object tried to access or delete a non-existent element.
"),
("Base","LoadError","LoadError
An error occurred while *including*, *requiring*, or *using* a
file. The error specifics should be available in the *.error*
field.
"),
("Base","MethodError","MethodError
A method with the required type signature does not exist in the
given generic function.
"),
("Base","ParseError","ParseError
The expression passed to the *parse* function could not be
interpreted as a valid Julia expression.
"),
("Base","ProcessExitedException","ProcessExitedException
After a client Julia process has exited, further attempts to
reference the dead child will throw this exception.
"),
("Base","SystemError","SystemError
A system call failed with an error code (in the \"errno\" global
variable).
"),
("Base","TypeError","TypeError
A type assertion failure, or calling an intrinsic function with an
incorrect argument type.
"),
("Base","Task","Task(func)
Create a \"Task\" (i.e. thread, or coroutine) to execute the given
function (which must be callable with no arguments). The task exits
when this function returns.
"),
("Base","yieldto","yieldto(task, args...)
Switch to the given task. The first time a task is switched to, the
task's function is called with no arguments. On subsequent
switches, \"args\" are returned from the task's last call to
\"yieldto\". This is a low-level call that only switches tasks, not
considering states or scheduling in any way.
"),
("Base","current_task","current_task()
Get the currently running Task.
"),
("Base","istaskdone","istaskdone(task) -> Bool
Tell whether a task has exited.
"),
("Base","consume","consume(task, values...)
Receive the next value passed to \"produce\" by the specified task.
Additional arguments may be passed, to be returned from the last
\"produce\" call in the producer.
"),
("Base","produce","produce(value)
Send the given value to the last \"consume\" call, switching to the
consumer task. If the next \"consume\" call passes any values, they
are returned by \"produce\".
"),
("Base","yield","yield()
Switch to the scheduler to allow another scheduled task to run. A
task that calls this function is still runnable, and will be
restarted immediately if there are no other runnable tasks.
"),
("Base","task_local_storage","task_local_storage(symbol)
Look up the value of a symbol in the current task's task-local
storage.
"),
("Base","task_local_storage","task_local_storage(symbol, value)
Assign a value to a symbol in the current task's task-local
storage.
"),
("Base","task_local_storage","task_local_storage(body, symbol, value)
Call the function \"body\" with a modified task-local storage, in
which \"value\" is assigned to \"symbol\"; the previous value of
\"symbol\", or lack thereof, is restored afterwards. Useful for
emulating dynamic scoping.
"),
("Base","Condition","Condition()
Create an edge-triggered event source that tasks can wait for.
Tasks that call \"wait\" on a \"Condition\" are suspended and
queued. Tasks are woken up when \"notify\" is later called on the
\"Condition\". Edge triggering means that only tasks waiting at the
time \"notify\" is called can be woken up. For level-triggered
notifications, you must keep extra state to keep track of whether a
notification has happened. The \"RemoteRef\" type does this, and so
can be used for level-triggered events.
"),
("Base","notify","notify(condition, val=nothing; all=true, error=false)
Wake up tasks waiting for a condition, passing them \"val\". If
\"all\" is true (the default), all waiting tasks are woken,
otherwise only one is. If \"error\" is true, the passed value is
raised as an exception in the woken tasks.
"),
("Base","schedule","schedule(t::Task, [val]; error=false)
Add a task to the scheduler's queue. This causes the task to run
constantly when the system is otherwise idle, unless the task
performs a blocking operation such as \"wait\".
If a second argument is provided, it will be passed to the task
(via the return value of \"yieldto\") when it runs again. If
\"error\" is true, the value is raised as an exception in the woken
task.
"),
("Base","@schedule","@schedule()
Wrap an expression in a Task and add it to the scheduler's queue.
"),
("Base","@task","@task()
Wrap an expression in a Task executing it, and return the Task.
This only creates a task, and does not run it.
"),
("Base","sleep","sleep(seconds)
Block the current task for a specified number of seconds. The
minimum sleep time is 1 millisecond or input of \"0.001\".
"),
("Base","Timer","Timer(f::Function)
Create a timer to call the given callback function. The callback is
passed one argument, the timer object itself. The timer can be
started and stopped with \"start_timer\" and \"stop_timer\".
"),
("Base","start_timer","start_timer(t::Timer, delay, repeat)
Start invoking the callback for a \"Timer\" after the specified
initial delay, and then repeating with the given interval. Times
are in seconds. If \"repeat\" is \"0\", the timer is only triggered
once.
"),
("Base","stop_timer","stop_timer(t::Timer)
Stop invoking the callback for a timer.
"),
("Base","module_name","module_name(m::Module) -> Symbol
Get the name of a module as a symbol.
"),
("Base","module_parent","module_parent(m::Module) -> Module
Get a module's enclosing module. \"Main\" is its own parent.
"),
("Base","current_module","current_module() -> Module
Get the *dynamically* current module, which is the module code is
currently being read from. In general, this is not the same as the
module containing the call to this function.
"),
("Base","fullname","fullname(m::Module)
Get the fully-qualified name of a module as a tuple of symbols. For
example, \"fullname(Base.Pkg)\" gives \"(:Base,:Pkg)\", and
\"fullname(Main)\" gives \"()\".
"),
("Base","names","names(x::Module[, all=false[, imported=false]])
Get an array of the names exported by a module, with optionally
more module globals according to the additional parameters.
"),
("Base","names","names(x::DataType)
Get an array of the fields of a data type.
"),
("Base","isconst","isconst([m::Module], s::Symbol) -> Bool
Determine whether a global is declared \"const\" in a given module.
The default module argument is \"current_module()\".
"),
("Base","isgeneric","isgeneric(f::Function) -> Bool
Determine whether a function is generic.
"),
("Base","function_name","function_name(f::Function) -> Symbol
Get the name of a generic function as a symbol, or \":anonymous\".
"),
("Base","function_module","function_module(f::Function, types) -> Module
Determine the module containing a given definition of a generic
function.
"),
("Base","functionloc","functionloc(f::Function, types)
Returns a tuple \"(filename,line)\" giving the location of a method
definition.
"),
("Base","functionlocs","functionlocs(f::Function, types)
Returns an array of the results of \"functionloc\" for all matching
definitions.
"),
("Base","gc","gc()
Perform garbage collection. This should not generally be used.
"),
("Base","gc_disable","gc_disable()
Disable garbage collection. This should be used only with extreme
caution, as it can cause memory use to grow without bound.
"),
("Base","gc_enable","gc_enable()
Re-enable garbage collection after calling \"gc_disable\".
"),
("Base","macroexpand","macroexpand(x)
Takes the expression x and returns an equivalent expression with
all macros removed (expanded).
"),
("Base","expand","expand(x)
Takes the expression x and returns an equivalent expression in
lowered form
"),
("Base","code_lowered","code_lowered(f, types)
Returns an array of lowered ASTs for the methods matching the given
generic function and type signature.
"),
("Base","@code_lowered","@code_lowered()
Evaluates the arguments to the function call, determines their
types, and calls the \"code_lowered\" function on the resulting
expression
"),
("Base","code_typed","code_typed(f, types)
Returns an array of lowered and type-inferred ASTs for the methods
matching the given generic function and type signature.
"),
("Base","@code_typed","@code_typed()
Evaluates the arguments to the function call, determines their
types, and calls the \"code_typed\" function on the resulting
expression
"),
("Base","code_llvm","code_llvm(f, types)
Prints the LLVM bitcodes generated for running the method matching
the given generic function and type signature to STDOUT.
"),
("Base","@code_llvm","@code_llvm()
Evaluates the arguments to the function call, determines their
types, and calls the \"code_llvm\" function on the resulting
expression
"),
("Base","code_native","code_native(f, types)
Prints the native assembly instructions generated for running the
method matching the given generic function and type signature to
STDOUT.
"),
("Base","@code_native","@code_native()
Evaluates the arguments to the function call, determines their
types, and calls the \"code_native\" function on the resulting
expression
"),
("Base","precompile","precompile(f, args::(Any..., ))
Compile the given function *f* for the argument tuple (of types)
*args*, but do not execute it.
"),
("Base.Collections","PriorityQueue{K,V}","PriorityQueue{K,V}([ord])
Construct a new PriorityQueue, with keys of type K and
values/priorites of type V. If an order is not given, the priority
queue is min-ordered using the default comparison for V.
"),
("Base.Collections","enqueue!","enqueue!(pq, k, v)
Insert the a key \"k\" into a priority queue \"pq\" with priority
\"v\".
"),
("Base.Collections","dequeue!","dequeue!(pq)
Remove and return the lowest priority key from a priority queue.
"),
("Base.Collections","peek","peek(pq)
Return the lowest priority key from a priority queue without
removing that key from the queue.
"),
("Base.Collections","heapify","heapify(v[, ord])
Return a new vector in binary heap order, optionally using the
given ordering.
"),
("Base.Collections","heapify!","heapify!(v[, ord])
In-place heapify.
"),
("Base.Collections","isheap","isheap(v[, ord])
Return true iff an array is heap-ordered according to the given
order.
"),
("Base.Collections","heappush!","heappush!(v, x[, ord])
Given a binary heap-ordered array, push a new element \"x\",
preserving the heap property. For efficiency, this function does
not check that the array is indeed heap-ordered.
"),
("Base.Collections","heappop!","heappop!(v[, ord])
Given a binary heap-ordered array, remove and return the lowest
ordered element. For efficiency, this function does not check that
the array is indeed heap-ordered.
"),
("Base","OS_NAME","OS_NAME
A symbol representing the name of the operating system. Possible
values are \":Linux\", \":Darwin\" (OS X), or \":Windows\".
"),
("Base","ARGS","ARGS
An array of the command line arguments passed to Julia, as strings.
"),
("Base","C_NULL","C_NULL
The C null pointer constant, sometimes used when calling external
code.
"),
("Base","CPU_CORES","CPU_CORES
The number of CPU cores in the system.
"),
("Base","WORD_SIZE","WORD_SIZE
Standard word size on the current machine, in bits.
"),
("Base","VERSION","VERSION
An object describing which version of Julia is in use.
"),
("Base","LOAD_PATH","LOAD_PATH
An array of paths (as strings) where the \"require\" function looks
for code.
"),
("Base","isblockdev","isblockdev(path) -> Bool
Returns \"true\" if \"path\" is a block device, \"false\"
otherwise.
"),
("Base","ischardev","ischardev(path) -> Bool
Returns \"true\" if \"path\" is a character device, \"false\"
otherwise.
"),
("Base","isdir","isdir(path) -> Bool
Returns \"true\" if \"path\" is a directory, \"false\" otherwise.
"),
("Base","isexecutable","isexecutable(path) -> Bool
Returns \"true\" if the current user has permission to execute
\"path\", \"false\" otherwise.
"),
("Base","isfifo","isfifo(path) -> Bool
Returns \"true\" if \"path\" is a FIFO, \"false\" otherwise.
"),
("Base","isfile","isfile(path) -> Bool
Returns \"true\" if \"path\" is a regular file, \"false\"
otherwise.
"),
("Base","islink","islink(path) -> Bool
Returns \"true\" if \"path\" is a symbolic link, \"false\"
otherwise.
"),
("Base","ispath","ispath(path) -> Bool
Returns \"true\" if \"path\" is a valid filesystem path, \"false\"
otherwise.
"),
("Base","isreadable","isreadable(path) -> Bool
Returns \"true\" if the current user has permission to read
\"path\", \"false\" otherwise.
"),
("Base","issetgid","issetgid(path) -> Bool
Returns \"true\" if \"path\" has the setgid flag set, \"false\"
otherwise.
"),
("Base","issetuid","issetuid(path) -> Bool
Returns \"true\" if \"path\" has the setuid flag set, \"false\"
otherwise.
"),
("Base","issocket","issocket(path) -> Bool
Returns \"true\" if \"path\" is a socket, \"false\" otherwise.
"),
("Base","issticky","issticky(path) -> Bool
Returns \"true\" if \"path\" has the sticky bit set, \"false\"
otherwise.
"),
("Base","iswritable","iswritable(path) -> Bool
Returns \"true\" if the current user has permission to write to
\"path\", \"false\" otherwise.
"),
("Base","homedir","homedir() -> String
Return the current user's home directory.
"),
("Base","dirname","dirname(path::String) -> String
Get the directory part of a path.
"),
("Base","basename","basename(path::String) -> String
Get the file name part of a path.
"),
("Base","@__FILE__","@__FILE__() -> String
\"@__FILE__\" expands to a string with the absolute path and file
name of the script being run. Returns \"nothing\" if run from a
REPL or an empty string if evaluated by \"julia -e <expr>\".
"),
("Base","isabspath","isabspath(path::String) -> Bool
Determines whether a path is absolute (begins at the root
directory).
"),
("Base","isdirpath","isdirpath(path::String) -> Bool
Determines whether a path refers to a directory (for example, ends
with a path separator).
"),
("Base","joinpath","joinpath(parts...) -> String
Join path components into a full path. If some argument is an
absolute path, then prior components are dropped.
"),
("Base","abspath","abspath(path::String) -> String
Convert a path to an absolute path by adding the current directory
if necessary.
"),
("Base","normpath","normpath(path::String) -> String
Normalize a path, removing \".\" and \"..\" entries.
"),
("Base","realpath","realpath(path::String) -> String
Canonicalize a path by expanding symbolic links and removing \".\"
and \"..\" entries.
"),
("Base","expanduser","expanduser(path::String) -> String
On Unix systems, replace a tilde character at the start of a path
with the current user's home directory.
"),
("Base","splitdir","splitdir(path::String) -> (String, String)
Split a path into a tuple of the directory name and file name.
"),
("Base","splitdrive","splitdrive(path::String) -> (String, String)
On Windows, split a path into the drive letter part and the path
part. On Unix systems, the first component is always the empty
string.
"),
("Base","splitext","splitext(path::String) -> (String, String)
If the last component of a path contains a dot, split the path into
everything before the dot and everything including and after the
dot. Otherwise, return a tuple of the argument unmodified and the
empty string.
"),
("Base","tempname","tempname()
Generate a unique temporary filename.
"),
("Base","tempdir","tempdir()
Obtain the path of a temporary directory.
"),
("Base","mktemp","mktemp()
Returns \"(path, io)\", where \"path\" is the path of a new
temporary file and \"io\" is an open file object for this path.
"),
("Base","mktempdir","mktempdir()
Create a temporary directory and return its path.
"),
("Base.Graphics","Vec2","Vec2(x, y)
Creates a point in two dimensions
"),
("Base.Graphics","BoundingBox","BoundingBox(xmin, xmax, ymin, ymax)
Creates a box in two dimensions with the given edges
"),
("Base.Graphics","BoundingBox","BoundingBox(objs...)
Creates a box in two dimensions that encloses all objects
"),
("Base.Graphics","width","width(obj)
Computes the width of an object
"),
("Base.Graphics","height","height(obj)
Computes the height of an object
"),
("Base.Graphics","xmin","xmin(obj)
Computes the minimum x-coordinate contained in an object
"),
("Base.Graphics","xmax","xmax(obj)
Computes the maximum x-coordinate contained in an object
"),
("Base.Graphics","ymin","ymin(obj)
Computes the minimum y-coordinate contained in an object
"),
("Base.Graphics","ymax","ymax(obj)
Computes the maximum y-coordinate contained in an object
"),
("Base.Graphics","diagonal","diagonal(obj)
Return the length of the diagonal of an object
"),
("Base.Graphics","aspect_ratio","aspect_ratio(obj)
Compute the height/width of an object
"),
("Base.Graphics","center","center(obj)
Return the point in the center of an object
"),
("Base.Graphics","xrange","xrange(obj)
Returns a tuple \"(xmin(obj), xmax(obj))\"
"),
("Base.Graphics","yrange","yrange(obj)
Returns a tuple \"(ymin(obj), ymax(obj))\"
"),
("Base.Graphics","rotate","rotate(obj, angle, origin) -> newobj
Rotates an object around origin by the specified angle (radians),
returning a new object of the same type. Because of type-
constancy, this new object may not always be a strict geometric
rotation of the input; for example, if \"obj\" is a \"BoundingBox\"
the return is the smallest \"BoundingBox\" that encloses the
rotated input.
"),
("Base.Graphics","shift","shift(obj, dx, dy)
Returns an object shifted horizontally and vertically by the
indicated amounts
"),
("Base.Graphics","*","*(obj, s::Real)
Scale the width and height of a graphics object, keeping the center
fixed
"),
("Base.Graphics","+","+(bb1::BoundingBox, bb2::BoundingBox) -> BoundingBox
Returns the smallest box containing both boxes
"),
("Base.Graphics","&","&(bb1::BoundingBox, bb2::BoundingBox) -> BoundingBox
Returns the intersection, the largest box contained in both boxes
"),
("Base.Graphics","deform","deform(bb::BoundingBox, dxmin, dxmax, dymin, dymax)
Returns a bounding box with all edges shifted by the indicated
amounts
"),
("Base.Graphics","isinside","isinside(bb::BoundingBox, x, y)
True if the given point is inside the box
"),
("Base.Graphics","isinside","isinside(bb::BoundingBox, point)
True if the given point is inside the box
"),
("Base","*","*(A, B)
Matrix multiplication
"),
("Base","\\","\\(A, B)
Matrix division using a polyalgorithm. For input matrices \"A\" and
\"B\", the result \"X\" is such that \"A*X == B\" when \"A\" is
square. The solver that is used depends upon the structure of
\"A\". A direct solver is used for upper- or lower triangular
\"A\". For Hermitian \"A\" (equivalent to symmetric \"A\" for non-
complex \"A\") the \"BunchKaufman\" factorization is used.
Otherwise an LU factorization is used. For rectangular \"A\" the
result is the minimum-norm least squares solution computed by
reducing \"A\" to bidiagonal form and solving the bidiagonal least
squares problem. For sparse, square \"A\" the LU factorization
(from UMFPACK) is used.
"),
("Base","dot","dot(x, y)
Compute the dot product. For complex vectors, the first vector is
conjugated.
"),
("Base","cross","cross(x, y)
Compute the cross product of two 3-vectors.
"),
("Base","rref","rref(A)
Compute the reduced row echelon form of the matrix A.
"),
("Base","factorize","factorize(A)
Compute a convenient factorization (including LU, Cholesky, Bunch-
Kaufman, Triangular) of A, based upon the type of the input matrix.
The return value can then be reused for efficient solving of
multiple systems. For example: \"A=factorize(A); x=A\\\\b;
y=A\\\\C\".
"),
("Base","factorize!","factorize!(A)
\"factorize!\" is the same as \"factorize()\", but saves space by
overwriting the input \"A\", instead of creating a copy.
"),
("Base","lu","lu(A) -> L, U, p
Compute the LU factorization of \"A\", such that \"A[p,:] = L*U\".
"),
("Base","lufact","lufact(A[, pivot=true]) -> F
Compute the LU factorization of \"A\". The return type of \"F\"
depends on the type of \"A\". In most cases, if \"A\" is a subtype
\"S\" of AbstractMatrix with an element type \"T`\" supporting
\"+\", \"-\", \"*\" and \"/\" the return type is \"LU{T,S{T}}\". If
pivoting is chosen (default) the element type should also support
\"abs\" and \"<\". When \"A\" is sparse and have element of type
\"Float32\", \"Float64\", \"Complex{Float32}\", or
\"Complex{Float64}\" the return type is \"UmfpackLU\". Some
examples are shown in the table below.
+-------------------------+---------------------------+------------------------------------------+
| Type of input \\\"A\\\" | Type of output \\\"F\\\" | Relationship between \\\"F\\\" and \\\"A\\\" |
+-------------------------+---------------------------+------------------------------------------+
| \\\"Matrix()\\\" | \\\"LU\\\" | \\\"F[:L]*F[:U] == A[F[:p], :]\\\" |
+-------------------------+---------------------------+------------------------------------------+
| \\\"Tridiagonal()\\\" | \\\"LU{T,Tridiagonal{T}}\\\" | N/A |
+-------------------------+---------------------------+------------------------------------------+
| \\\"SparseMatrixCSC()\\\" | \\\"UmfpackLU\\\" | \\\"F[:L]*F[:U] == Rs .* A[F[:p], F[:q]]\\\" |
+-------------------------+---------------------------+------------------------------------------+
The individual components of the factorization \"F\" can be
accessed by indexing:
+-------------+-----------------------------------------+--------+--------------------------+---------------+
| Component | Description | \\\"LU\\\" | \\\"LU{T,Tridiagonal{T}}\\\" | \\\"UmfpackLU\\\" |
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+-------------+-----------------------------------------+--------+--------------------------+---------------+
+--------------------+--------+--------------------------+---------------+
| Supported function | \\\"LU\\\" | \\\"LU{T,Tridiagonal{T}}\\\" | \\\"UmfpackLU\\\" |
+--------------------+--------+--------------------------+---------------+
+--------------------+--------+--------------------------+---------------+
| \\\"\\\\\\\" | ✓ | ✓ | ✓ |
+--------------------+--------+--------------------------+---------------+
+--------------------+--------+--------------------------+---------------+
| \\\"det\\\" | ✓ | ✓ | ✓ |
+--------------------+--------+--------------------------+---------------+
+--------------------+--------+--------------------------+---------------+
"),
("Base","lufact!","lufact!(A) -> LU
\"lufact!\" is the same as \"lufact()\", but saves space by
overwriting the input A, instead of creating a copy. For sparse
\"A\" the \"nzval\" field is not overwritten but the index fields,
\"colptr\" and \"rowval\" are decremented in place, converting from
1-based indices to 0-based indices.
"),
("Base","chol","chol(A[, LU]) -> F
Compute the Cholesky factorization of a symmetric positive definite
matrix \"A\" and return the matrix \"F\". If \"LU\" is \":L\"
(Lower), \"A = L*L'\". If \"LU\" is \":U\" (Upper), \"A = R'*R\".
"),
("Base","cholfact","cholfact(A, [LU,][pivot=false,][tol=-1.0]) -> Cholesky
Compute the Cholesky factorization of a dense symmetric positive
(semi)definite matrix \"A\" and return either a \"Cholesky\" if
\"pivot=false\" or \"CholeskyPivoted\" if \"pivot=true\". \"LU\"
may be \":L\" for using the lower part or \":U\" for the upper
part. The default is to use \":U\". The triangular matrix can be
obtained from the factorization \"F\" with: \"F[:L]\" and
\"F[:U]\". The following functions are available for \"Cholesky\"
objects: \"size\", \"\\\", \"inv\", \"det\". For
\"CholeskyPivoted\" there is also defined a \"rank\". If
\"pivot=false\" a \"PosDefException\" exception is thrown in case
the matrix is not positive definite. The argument \"tol\"
determines the tolerance for determining the rank. For negative
values, the tolerance is the machine precision.
"),
("Base","cholfact","cholfact(A[, ll]) -> CholmodFactor
Compute the sparse Cholesky factorization of a sparse matrix \"A\".
If \"A\" is Hermitian its Cholesky factor is determined. If \"A\"
is not Hermitian the Cholesky factor of \"A*A'\" is determined. A
fill-reducing permutation is used. Methods for \"size\",
\"solve\", \"\\\", \"findn_nzs\", \"diag\", \"det\" and \"logdet\".
One of the solve methods includes an integer argument that can be
used to solve systems involving parts of the factorization only.
The optional boolean argument, \"ll\" determines whether the
factorization returned is of the \"A[p,p] = L*L'\" form, where
\"L\" is lower triangular or \"A[p,p] = L*Diagonal(D)*L'\" form
where \"L\" is unit lower triangular and \"D\" is a non-negative
vector. The default is LDL.
"),
("Base","cholfact!","cholfact!(A, [LU,][pivot=false,][tol=-1.0]) -> Cholesky
\"cholfact!\" is the same as \"cholfact()\", but saves space by
overwriting the input \"A\", instead of creating a copy.
"),
("Base","ldltfact","ldltfact(A) -> LDLtFactorization
Compute a factorization of a positive definite matrix \"A\" such
that \"A=L*Diagonal(d)*L'\" where \"L\" is a unit lower triangular
matrix and \"d\" is a vector with non-negative elements.
"),
("Base","qr","qr(A, [pivot=false,][thin=true]) -> Q, R, [p]
Compute the (pivoted) QR factorization of \"A\" such that either
\"A = Q*R\" or \"A[:,p] = Q*R\". Also see \"qrfact\". The default
is to compute a thin factorization. Note that \"R\" is not extended
with zeros when the full \"Q\" is requested.
"),
("Base","qrfact","qrfact(A[, pivot=false]) -> F
Computes the QR factorization of \"A\". The return type of \"F\"
depends on the element type of \"A\" and whether pivoting is
specified (with \"pivot=true\").
+------------------+-------------------+-----------+---------------------------------------+
| Return type | \\\"eltype(A)\\\" | \\\"pivot\\\" | Relationship between \\\"F\\\" and \\\"A\\\" |
+------------------+-------------------+-----------+---------------------------------------+
| \\\"QR\\\" | not \\\"BlasFloat\\\" | either | \\\"A==F[:Q]*F[:R]\\\" |
+------------------+-------------------+-----------+---------------------------------------+
| \\\"QRCompactWY\\\" | \\\"BlasFloat\\\" | \\\"false\\\" | \\\"A==F[:Q]*F[:R]\\\" |
+------------------+-------------------+-----------+---------------------------------------+
| \\\"QRPivoted\\\" | \\\"BlasFloat\\\" | \\\"true\\\" | \\\"A[:,F[:p]]==F[:Q]*F[:R]\\\" |
+------------------+-------------------+-----------+---------------------------------------+
\"BlasFloat\" refers to any of: \"Float32\", \"Float64\",
\"Complex64\" or \"Complex128\".
The individual components of the factorization \"F\" can be
accessed by indexing:
+-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
| Component | Description | \\\"QR\\\" | \\\"QRCompactWY\\\" | \\\"QRPivoted\\\" |
+-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
| \\\"F[:Q]\\\" | \\\"Q\\\" (orthogonal/unitary) part of \\\"QR\\\" | ✓ (\\\"QRPackedQ\\\") | ✓ (\\\"QRCompactWYQ\\\") | ✓ (\\\"QRPackedQ\\\") |
+-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
| \\\"F[:R]\\\" | \\\"R\\\" (upper right triangular) part of \\\"QR\\\" | ✓ | ✓ | ✓ |
+-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
+-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
+-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
The following functions are available for the \"QR\" objects:
\"size\", \"\\\". When \"A\" is rectangular, \"\\\" will return a
least squares solution and if the solution is not unique, the one
with smallest norm is returned.
Multiplication with respect to either thin or full \"Q\" is
allowed, i.e. both \"F[:Q]*F[:R]\" and \"F[:Q]*A\" are supported. A
\"Q\" matrix can be converted into a regular matrix with \"full()\"
which has a named argument \"thin\".
Note: \"qrfact\" returns multiple types because LAPACK uses several
representations that minimize the memory storage requirements of
products of Householder elementary reflectors, so that the \"Q\"
and \"R\" matrices can be stored compactly rather as two separate
dense matrices.The data contained in \"QR\" or \"QRPivoted\" can
be used to construct the \"QRPackedQ\" type, which is a compact
representation of the rotation matrix:
Q = \\prod_{i=1}^{\\min(m,n)} (I - \\tau_i v_i v_i^T)
where \\tau_i is the scale factor and v_i is the projection
vector associated with the i^{th} Householder elementary
reflector.The data contained in \"QRCompactWY\" can be used to
construct the \"QRCompactWYQ\" type, which is a compact
representation of the rotation matrix
Q = I + Y T Y^T
where \"Y\" is m \\times r lower trapezoidal and \"T\" is r
\\times r upper triangular. The *compact WY* representation
[Schreiber1989] is not to be confused with the older, *WY*
representation [Bischof1987]. (The LAPACK documentation uses
\"V\" in lieu of \"Y\".)
[Bischof1987] C Bischof and C Van Loan, The WY representation for
products of Householder matrices, SIAM J Sci Stat
Comput 8 (1987), s2-s13. doi:10.1137/0908009
[Schreiber1989] R Schreiber and C Van Loan, A storage-efficient WY
representation for products of Householder
transformations, SIAM J Sci Stat Comput 10 (1989),
53-57. doi:10.1137/0910005
"),
("Base","qrfact!","qrfact!(A[, pivot=false])
\"qrfact!\" is the same as \"qrfact()\", but saves space by
overwriting the input \"A\", instead of creating a copy.
"),
("Base","bkfact","bkfact(A) -> BunchKaufman
Compute the Bunch-Kaufman [Bunch1977] factorization of a real
symmetric or complex Hermitian matrix \"A\" and return a
\"BunchKaufman\" object. The following functions are available for
\"BunchKaufman\" objects: \"size\", \"\\\", \"inv\", \"issym\",
\"ishermitian\".
"),
("Base","bkfact!","bkfact!(A) -> BunchKaufman
\"bkfact!\" is the same as \"bkfact()\", but saves space by
overwriting the input \"A\", instead of creating a copy.
"),
("Base","sqrtm","sqrtm(A)
Compute the matrix square root of \"A\". If \"B = sqrtm(A)\", then
\"B*B == A\" within roundoff error.
\"sqrtm\" uses a polyalgorithm, computing the matrix square root
using Schur factorizations (\"schurfact()\") unless it detects the
matrix to be Hermitian or real symmetric, in which case it computes
the matrix square root from an eigendecomposition (\"eigfact()\").
In the latter situation for positive definite matrices, the matrix
square root has \"Real\" elements, otherwise it has \"Complex\"
elements.
"),
("Base","eig","eig(A,[irange,][vl,][vu,][permute=true,][scale=true]) -> D, V
Computes eigenvalues and eigenvectors of \"A\". See \"eigfact()\"
for details on the \"balance\" keyword argument.
**Example**:
julia> eig(a = [1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
([1.0,3.0,18.0],
3x3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0)
\"eig\" is a wrapper around \"eigfact()\", extracting all parts of
the factorization to a tuple; where possible, using \"eigfact()\"
is recommended.
"),
("Base","eig","eig(A, B) -> D, V
Computes generalized eigenvalues and vectors of \"A\" with respect
to \"B\".
\"eig\" is a wrapper around \"eigfact()\", extracting all parts of
the factorization to a tuple; where possible, using \"eigfact()\"
is recommended.
"),
("Base","eigvals","eigvals(A,[irange,][vl,][vu])
Returns the eigenvalues of \"A\". If \"A\" is \"Symmetric()\",
\"Hermitian()\" or \"SymTridiagonal()\", it is possible to
calculate only a subset of the eigenvalues by specifying either a
\"UnitRange()\" \"irange\" covering indices of the sorted
eigenvalues, or a pair \"vl\" and \"vu\" for the lower and upper
boundaries of the eigenvalues.
For general non-symmetric matrices it is possible to specify how
the matrix is balanced before the eigenvector calculation. The
option \"permute=true\" permutes the matrix to become closer to
upper triangular, and \"scale=true\" scales the matrix by its
diagonal elements to make rows and columns more equal in norm. The
default is \"true\" for both options.
"),
("Base","eigmax","eigmax(A)
Returns the largest eigenvalue of \"A\".
"),
("Base","eigmin","eigmin(A)
Returns the smallest eigenvalue of \"A\".
"),
("Base","eigvecs","eigvecs(A, [eigvals,][permute=true,][scale=true]) -> Matrix
Returns a matrix \"M\" whose columns are the eigenvectors of \"A\".
(The \"k``th eigenvector can be obtained from the slice ``M[:,
k]\".) The \"permute\" and \"scale\" keywords are the same as for
\"eigfact()\".
For \"SymTridiagonal()\" matrices, if the optional vector of
eigenvalues \"eigvals\" is specified, returns the specific
corresponding eigenvectors.
"),
("Base","eigfact","eigfact(A,[irange,][vl,][vu,][permute=true,][scale=true]) -> Eigen
Computes the eigenvalue decomposition of \"A\", returning an
\"Eigen\" factorization object \"F\" which contains the eigenvalues
in \"F[:values]\" and the eigenvectors in the columns of the matrix
\"F[:vectors]\". (The \"k``th eigenvector can be obtained from the
slice ``F[:vectors][:, k]\".)
The following functions are available for \"Eigen\" objects:
\"inv\", \"det\".
If \"A\" is \"Symmetric()\", \"Hermitian()\" or
\"SymTridiagonal()\", it is possible to calculate only a subset of
the eigenvalues by specifying either a \"UnitRange()\" \"irange\"
covering indices of the sorted eigenvalues or a pair \"vl\" and
\"vu\" for the lower and upper boundaries of the eigenvalues.
For general nonsymmetric matrices it is possible to specify how the
matrix is balanced before the eigenvector calculation. The option
\"permute=true\" permutes the matrix to become closer to upper
triangular, and \"scale=true\" scales the matrix by its diagonal
elements to make rows and columns more equal in norm. The default
is \"true\" for both options.
"),
("Base","eigfact","eigfact(A, B) -> GeneralizedEigen
Computes the generalized eigenvalue decomposition of \"A\" and
\"B\", returning a \"GeneralizedEigen\" factorization object \"F\"
which contains the generalized eigenvalues in \"F[:values]\" and
the generalized eigenvectors in the columns of the matrix
\"F[:vectors]\". (The \"k``th generalized eigenvector can be
obtained from the slice ``F[:vectors][:, k]\".)
"),
("Base","eigfact!","eigfact!(A[, B])
Same as \"eigfact()\", but saves space by overwriting the input
\"A\" (and \"B\"), instead of creating a copy.
"),
("Base","hessfact","hessfact(A)
Compute the Hessenberg decomposition of \"A\" and return a
\"Hessenberg\" object. If \"F\" is the factorization object, the
unitary matrix can be accessed with \"F[:Q]\" and the Hessenberg
matrix with \"F[:H]\". When \"Q\" is extracted, the resulting type
is the \"HessenbergQ\" object, and may be converted to a regular
matrix with \"full()\".
"),
("Base","hessfact!","hessfact!(A)
\"hessfact!\" is the same as \"hessfact()\", but saves space by
overwriting the input A, instead of creating a copy.
"),
("Base","schurfact","schurfact(A) -> Schur
Computes the Schur factorization of the matrix \"A\". The (quasi)
triangular Schur factor can be obtained from the \"Schur\" object
\"F\" with either \"F[:Schur]\" or \"F[:T]\" and the
unitary/orthogonal Schur vectors can be obtained with
\"F[:vectors]\" or \"F[:Z]\" such that
\"A=F[:vectors]*F[:Schur]*F[:vectors]'\". The eigenvalues of \"A\"
can be obtained with \"F[:values]\".
"),
("Base","schurfact!","schurfact!(A)
Computer the Schur factorization of \"A\", overwriting \"A\" in the
process. See \"schurfact()\"
"),
("Base","schur","schur(A) -> Schur[:T], Schur[:Z], Schur[:values]
See \"schurfact()\"
"),
("Base","schurfact","schurfact(A, B) -> GeneralizedSchur
Computes the Generalized Schur (or QZ) factorization of the
matrices \"A\" and \"B\". The (quasi) triangular Schur factors can
be obtained from the \"Schur\" object \"F\" with \"F[:S]\" and
\"F[:T]\", the left unitary/orthogonal Schur vectors can be
obtained with \"F[:left]\" or \"F[:Q]\" and the right
unitary/orthogonal Schur vectors can be obtained with \"F[:right]\"
or \"F[:Z]\" such that \"A=F[:left]*F[:S]*F[:right]'\" and
\"B=F[:left]*F[:T]*F[:right]'\". The generalized eigenvalues of
\"A\" and \"B\" can be obtained with \"F[:alpha]./F[:beta]\".
"),
("Base","schur","schur(A, B) -> GeneralizedSchur[:S], GeneralizedSchur[:T], GeneralizedSchur[:Q], GeneralizedSchur[:Z]
See \"schurfact()\"
"),
("Base","svdfact","svdfact(A[, thin=true]) -> SVD
Compute the Singular Value Decomposition (SVD) of \"A\" and return
an \"SVD\" object. \"U\", \"S\", \"V\" and \"Vt\" can be obtained
from the factorization \"F\" with \"F[:U]\", \"F[:S]\", \"F[:V]\"
and \"F[:Vt]\", such that \"A = U*diagm(S)*Vt\". If \"thin\" is
\"true\", an economy mode decomposition is returned. The algorithm
produces \"Vt\" and hence \"Vt\" is more efficient to extract than
\"V\". The default is to produce a thin decomposition.
"),
("Base","svdfact!","svdfact!(A[, thin=true]) -> SVD
\"svdfact!\" is the same as \"svdfact()\", but saves space by
overwriting the input A, instead of creating a copy. If \"thin\" is
\"true\", an economy mode decomposition is returned. The default is
to produce a thin decomposition.
"),
("Base","svd","svd(A[, thin=true]) -> U, S, V
Wrapper around \"svdfact\" extracting all parts the factorization
to a tuple. Direct use of \"svdfact\" is therefore generally more
efficient. Computes the SVD of A, returning \"U\", vector \"S\",
and \"V\" such that \"A == U*diagm(S)*V'\". If \"thin\" is
\"true\", an economy mode decomposition is returned. The default is
to produce a thin decomposition.
"),
("Base","svdvals","svdvals(A)
Returns the singular values of \"A\".
"),
("Base","svdvals!","svdvals!(A)
Returns the singular values of \"A\", while saving space by
overwriting the input.
"),
("Base","svdfact","svdfact(A, B) -> GeneralizedSVD
Compute the generalized SVD of \"A\" and \"B\", returning a
\"GeneralizedSVD\" Factorization object \"F\", such that \"A =
F[:U]*F[:D1]*F[:R0]*F[:Q]'\" and \"B =
F[:V]*F[:D2]*F[:R0]*F[:Q]'\".
"),
("Base","svd","svd(A, B) -> U, V, Q, D1, D2, R0
Wrapper around \"svdfact\" extracting all parts the factorization
to a tuple. Direct use of \"svdfact\" is therefore generally more
efficient. The function returns the generalized SVD of \"A\" and
\"B\", returning \"U\", \"V\", \"Q\", \"D1\", \"D2\", and \"R0\"
such that \"A = U*D1*R0*Q'\" and \"B = V*D2*R0*Q'\".
"),
("Base","svdvals","svdvals(A, B)
Return only the singular values from the generalized singular value
decomposition of \"A\" and \"B\".
"),
("Base","triu","triu(M)
Upper triangle of a matrix.
"),
("Base","triu!","triu!(M)
Upper triangle of a matrix, overwriting \"M\" in the process.
"),
("Base","tril","tril(M)
Lower triangle of a matrix.
"),
("Base","tril!","tril!(M)
Lower triangle of a matrix, overwriting \"M\" in the process.
"),
("Base","diagind","diagind(M[, k])
A \"Range\" giving the indices of the \"k\"-th diagonal of the
matrix \"M\".
"),
("Base","diag","diag(M[, k])
The \"k\"-th diagonal of a matrix, as a vector. Use \"diagm\" to
construct a diagonal matrix.
"),
("Base","diagm","diagm(v[, k])
Construct a diagonal matrix and place \"v\" on the \"k\"-th
diagonal.
"),
("Base","scale","scale(A, b)
"),
("Base","scale","scale(b, A)
Scale an array \"A\" by a scalar \"b\", returning a new array.
If \"A\" is a matrix and \"b\" is a vector, then \"scale(A,b)\"
scales each column \"i\" of \"A\" by \"b[i]\" (similar to
\"A*diagm(b)\"), while \"scale(b,A)\" scales each row \"i\" of
\"A\" by \"b[i]\" (similar to \"diagm(b)*A\"), returning a new
array.
Note: for large \"A\", \"scale\" can be much faster than \"A .* b\"
or \"b .* A\", due to the use of BLAS.
"),
("Base","scale!","scale!(A, b)
"),
("Base","scale!","scale!(b, A)
Scale an array \"A\" by a scalar \"b\", similar to \"scale()\" but
overwriting \"A\" in-place.
If \"A\" is a matrix and \"b\" is a vector, then \"scale!(A,b)\"
scales each column \"i\" of \"A\" by \"b[i]\" (similar to
\"A*diagm(b)\"), while \"scale!(b,A)\" scales each row \"i\" of
\"A\" by \"b[i]\" (similar to \"diagm(b)*A\"), again operating in-
place on \"A\".
"),
("Base","Tridiagonal","Tridiagonal(dl, d, du)
Construct a tridiagonal matrix from the lower diagonal, diagonal,
and upper diagonal, respectively. The result is of type
\"Tridiagonal\" and provides efficient specialized linear solvers,
but may be converted into a regular matrix with \"full()\".
"),
("Base","Bidiagonal","Bidiagonal(dv, ev, isupper)
Constructs an upper (\"isupper=true\") or lower (\"isupper=false\")
bidiagonal matrix using the given diagonal (\"dv\") and off-
diagonal (\"ev\") vectors. The result is of type \"Bidiagonal\"
and provides efficient specialized linear solvers, but may be
converted into a regular matrix with \"full()\".
"),
("Base","SymTridiagonal","SymTridiagonal(d, du)
Construct a real symmetric tridiagonal matrix from the diagonal and
upper diagonal, respectively. The result is of type
\"SymTridiagonal\" and provides efficient specialized eigensolvers,
but may be converted into a regular matrix with \"full()\".
"),
("Base","Woodbury","Woodbury(A, U, C, V)
Construct a matrix in a form suitable for applying the Woodbury
matrix identity.
"),
("Base","rank","rank(M)
Compute the rank of a matrix.
"),
("Base","norm","norm(A[, p])
Compute the \"p\"-norm of a vector or the operator norm of a matrix
\"A\", defaulting to the \"p=2\"-norm.
For vectors, \"p\" can assume any numeric value (even though not
all values produce a mathematically valid vector norm). In
particular, \"norm(A, Inf)\" returns the largest value in
\"abs(A)\", whereas \"norm(A, -Inf)\" returns the smallest.
For matrices, valid values of \"p\" are \"1\", \"2\", or \"Inf\".
(Note that for sparse matrices, \"p=2\" is currently not
implemented.) Use \"vecnorm()\" to compute the Frobenius norm.
"),
("Base","vecnorm","vecnorm(A[, p])
For any iterable container \"A\" (including arrays of any
dimension) of numbers, compute the \"p\"-norm (defaulting to
\"p=2\") as if \"A\" were a vector of the corresponding length.
For example, if \"A\" is a matrix and \"p=2\", then this is
equivalent to the Frobenius norm.
"),
("Base","cond","cond(M[, p])
Condition number of the matrix \"M\", computed using the operator
\"p\"-norm. Valid values for \"p\" are \"1\", \"2\" (default), or
\"Inf\".
"),
("Base","condskeel","condskeel(M[, x, p])
\\kappa_S(M, p) & = \\left\\Vert \\left\\vert M \\right\\vert
\\left\\vert M^{-1} \\right\\vert \\right\\Vert_p \\\\
\\kappa_S(M, x, p) & = \\left\\Vert \\left\\vert M \\right\\vert
\\left\\vert M^{-1} \\right\\vert \\left\\vert x \\right\\vert
\\right\\Vert_p
Skeel condition number \\kappa_S of the matrix \"M\", optionally
with respect to the vector \"x\", as computed using the operator
\"p\"-norm. \"p\" is \"Inf\" by default, if not provided. Valid
values for \"p\" are \"1\", \"2\", or \"Inf\".
This quantity is also known in the literature as the Bauer
condition number, relative condition number, or componentwise
relative condition number.
"),
("Base","trace","trace(M)
Matrix trace
"),
("Base","det","det(M)
Matrix determinant
"),
("Base","logdet","logdet(M)
Log of matrix determinant. Equivalent to \"log(det(M))\", but may
provide increased accuracy and/or speed.
"),
("Base","inv","inv(M)
Matrix inverse
"),
("Base","pinv","pinv(M)
Moore-Penrose pseudoinverse
"),
("Base","null","null(M)
Basis for nullspace of \"M\".
"),
("Base","repmat","repmat(A, n, m)
Construct a matrix by repeating the given matrix \"n\" times in
dimension 1 and \"m\" times in dimension 2.
"),
("Base","repeat","repeat(A, inner = Int[], outer = Int[])
Construct an array by repeating the entries of \"A\". The i-th
element of \"inner\" specifies the number of times that the
individual entries of the i-th dimension of \"A\" should be
repeated. The i-th element of \"outer\" specifies the number of
times that a slice along the i-th dimension of \"A\" should be
repeated.
"),
("Base","kron","kron(A, B)
Kronecker tensor product of two vectors or two matrices.
"),
("Base","blkdiag","blkdiag(A...)
Concatenate matrices block-diagonally. Currently only implemented
for sparse matrices.
"),
("Base","linreg","linreg(x, y) -> [a; b]
Linear Regression. Returns \"a\" and \"b\" such that \"a+b*x\" is
the closest line to the given points \"(x,y)\". In other words,
this function determines parameters \"[a, b]\" that minimize the
squared error between \"y\" and \"a+b*x\".
**Example**:
using PyPlot;
x = float([1:12])
y = [5.5; 6.3; 7.6; 8.8; 10.9; 11.79; 13.48; 15.02; 17.77; 20.81; 22.0; 22.99]
a, b = linreg(x,y) # Linear regression
plot(x, y, \"o\") # Plot (x,y) points
plot(x, [a+b*i for i in x]) # Plot the line determined by the linear regression
"),
("Base","linreg","linreg(x, y, w)
Weighted least-squares linear regression.
"),
("Base","expm","expm(A)
Matrix exponential.
"),
("Base","lyap","lyap(A, C)
Computes the solution \"X\" to the continuous Lyapunov equation
\"AX + XA' + C = 0\", where no eigenvalue of \"A\" has a zero real
part and no two eigenvalues are negative complex conjugates of each
other.
"),
("Base","sylvester","sylvester(A, B, C)
Computes the solution \"X\" to the Sylvester equation \"AX + XB + C
= 0\", where \"A\", \"B\" and \"C\" have compatible dimensions and
\"A\" and \"-B\" have no eigenvalues with equal real part.
"),
("Base","issym","issym(A) -> Bool
Test whether a matrix is symmetric.
"),
("Base","isposdef","isposdef(A) -> Bool
Test whether a matrix is positive definite.
"),
("Base","isposdef!","isposdef!(A) -> Bool
Test whether a matrix is positive definite, overwriting \"A\" in
the processes.
"),
("Base","istril","istril(A) -> Bool
Test whether a matrix is lower triangular.
"),
("Base","istriu","istriu(A) -> Bool
Test whether a matrix is upper triangular.
"),
("Base","ishermitian","ishermitian(A) -> Bool
Test whether a matrix is Hermitian.
"),
("Base","transpose","transpose(A)
The transposition operator (\".'\").
"),
("Base","ctranspose","ctranspose(A)
The conjugate transposition operator (\"'\").
"),
("Base","eigs","eigs(A[, B], ; nev=6, which=\"LM\", tol=0.0, maxiter=1000, sigma=nothing, ritzvec=true, v0=zeros((0, ))) -> (d[, v], nconv, niter, nmult, resid)
\"eigs\" computes eigenvalues \"d\" of \"A\" using Lanczos or
Arnoldi iterations for real symmetric or general nonsymmetric
matrices respectively. If \"B\" is provided, the generalized eigen-
problem is solved. The following keyword arguments are supported:
* \"nev\": Number of eigenvalues
* \"ncv\": Number of Krylov vectors used in the computation;
should satisfy \"nev+1 <= ncv <= n\" for real symmetric
problems and \"nev+2 <= ncv <= n\" for other problems; default
is \"ncv = max(20,2*nev+1)\".
* \"which\": type of eigenvalues to compute. See the note below.
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\"which\\\" | type of eigenvalues |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\":LM\\\" | eigenvalues of largest magnitude (default) |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\":SM\\\" | eigenvalues of smallest magnitude |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\":LR\\\" | eigenvalues of largest real part |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\":SR\\\" | eigenvalues of smallest real part |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\":LI\\\" | eigenvalues of largest imaginary part (nonsymmetric or complex \\\"A\\\" only) |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\":SI\\\" | eigenvalues of smallest imaginary part (nonsymmetric or complex \\\"A\\\" only) |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
| \\\":BE\\\" | compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real symmetric \\\"A\\\" only) |
+-----------+-----------------------------------------------------------------------------------------------------------------------------+
* \"tol\": tolerance (tol \\le 0.0 defaults to
\"DLAMCH('EPS')\")
* \"maxiter\": Maximum number of iterations (default = 300)
* \"sigma\": Specifies the level shift used in inverse
iteration. If \"nothing\" (default), defaults to ordinary
(forward) iterations. Otherwise, find eigenvalues close to
\"sigma\" using shift and invert iterations.
* \"ritzvec\": Returns the Ritz vectors \"v\" (eigenvectors) if
\"true\"
* \"v0\": starting vector from which to start the iterations
\"eigs\" returns the \"nev\" requested eigenvalues in \"d\", the
corresponding Ritz vectors \"v\" (only if \"ritzvec=true\"), the
number of converged eigenvalues \"nconv\", the number of iterations
\"niter\" and the number of matrix vector multiplications
\"nmult\", as well as the final residual vector \"resid\".
Note: The \"sigma\" and \"which\" keywords interact: the description of
eigenvalues searched for by \"which\" do _not_ necessarily refer
to the eigenvalues of \"A\", but rather the linear operator
constructed by the specification of the iteration mode implied by
\"sigma\".
+-----------------+------------------------------------+------------------------------------+
| \\\"sigma\\\" | iteration mode | \\\"which\\\" refers to eigenvalues of |
+-----------------+------------------------------------+------------------------------------+
| \\\"nothing\\\" | ordinary (forward) | A |
+-----------------+------------------------------------+------------------------------------+
| real or complex | inverse with level shift \\\"sigma\\\" | (A - \\\\sigma I )^{-1} |
+-----------------+------------------------------------+------------------------------------+
"),
("Base","peakflops","peakflops(n; parallel=false)
\"peakflops\" computes the peak flop rate of the computer by using
BLAS double precision \"gemm!()\". By default, if no arguments are
specified, it multiplies a matrix of size \"n x n\", where \"n =
2000\". If the underlying BLAS is using multiple threads, higher
flop rates are realized. The number of BLAS threads can be set with
\"blas_set_num_threads(n)\".
If the keyword argument \"parallel\" is set to \"true\",
\"peakflops\" is run in parallel on all the worker processors. The
flop rate of the entire parallel computer is returned. When running
in parallel, only 1 BLAS thread is used. The argument \"n\" still
refers to the size of the problem that is solved on each processor.
"),
("Base.LinAlg.BLAS","dot","dot(n, X, incx, Y, incy)
Dot product of two vectors consisting of \"n\" elements of array
\"X\" with stride \"incx\" and \"n\" elements of array \"Y\" with
stride \"incy\".
"),
("Base.LinAlg.BLAS","dotu","dotu(n, X, incx, Y, incy)
Dot function for two complex vectors.
"),
("Base.LinAlg.BLAS","dotc","dotc(n, X, incx, U, incy)
Dot function for two complex vectors conjugating the first vector.
"),
("Base.LinAlg.BLAS","blascopy!","blascopy!(n, X, incx, Y, incy)
Copy \"n\" elements of array \"X\" with stride \"incx\" to array
\"Y\" with stride \"incy\". Returns \"Y\".
"),
("Base.LinAlg.BLAS","nrm2","nrm2(n, X, incx)
2-norm of a vector consisting of \"n\" elements of array \"X\" with
stride \"incx\".
"),
("Base.LinAlg.BLAS","asum","asum(n, X, incx)
sum of the absolute values of the first \"n\" elements of array
\"X\" with stride \"incx\".
"),
("Base.LinAlg.BLAS","axpy!","axpy!(n, a, X, incx, Y, incy)
Overwrite \"Y\" with \"a*X + Y\". Returns \"Y\".
"),
("Base.LinAlg.BLAS","scal!","scal!(n, a, X, incx)
Overwrite \"X\" with \"a*X\". Returns \"X\".
"),
("Base.LinAlg.BLAS","scal","scal(n, a, X, incx)
Returns \"a*X\".
"),
("Base.LinAlg.BLAS","syrk!","syrk!(uplo, trans, alpha, A, beta, C)
Rank-k update of the symmetric matrix \"C\" as \"alpha*A*A.' +
beta*C\" or \"alpha*A.'*A + beta*C\" according to whether \"trans\"
is 'N' or 'T'. When \"uplo\" is 'U' the upper triangle of \"C\" is
updated ('L' for lower triangle). Returns \"C\".
"),
("Base.LinAlg.BLAS","syrk","syrk(uplo, trans, alpha, A)
Returns either the upper triangle or the lower triangle, according
to \"uplo\" ('U' or 'L'), of \"alpha*A*A.'\" or \"alpha*A.'*A\",
according to \"trans\" ('N' or 'T').
"),
("Base.LinAlg.BLAS","herk!","herk!(uplo, trans, alpha, A, beta, C)
Methods for complex arrays only. Rank-k update of the Hermitian
matrix \"C\" as \"alpha*A*A' + beta*C\" or \"alpha*A'*A + beta*C\"
according to whether \"trans\" is 'N' or 'T'. When \"uplo\" is 'U'
the upper triangle of \"C\" is updated ('L' for lower triangle).
Returns \"C\".
"),
("Base.LinAlg.BLAS","herk","herk(uplo, trans, alpha, A)
Methods for complex arrays only. Returns either the upper triangle
or the lower triangle, according to \"uplo\" ('U' or 'L'), of
\"alpha*A*A'\" or \"alpha*A'*A\", according to \"trans\" ('N' or
'T').
"),
("Base.LinAlg.BLAS","gbmv!","gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)
Update vector \"y\" as \"alpha*A*x + beta*y\" or \"alpha*A'*x +
beta*y\" according to \"trans\" ('N' or 'T'). The matrix \"A\" is
a general band matrix of dimension \"m\" by \"size(A,2)\" with
\"kl\" sub-diagonals and \"ku\" super-diagonals. Returns the
updated \"y\".
"),
("Base.LinAlg.BLAS","gbmv","gbmv(trans, m, kl, ku, alpha, A, x, beta, y)
Returns \"alpha*A*x\" or \"alpha*A'*x\" according to \"trans\" ('N'
or 'T'). The matrix \"A\" is a general band matrix of dimension
\"m\" by \"size(A,2)\" with \"kl\" sub-diagonals and \"ku\" super-
diagonals.
"),
("Base.LinAlg.BLAS","sbmv!","sbmv!(uplo, k, alpha, A, x, beta, y)
Update vector \"y\" as \"alpha*A*x + beta*y\" where \"A\" is a a
symmetric band matrix of order \"size(A,2)\" with \"k\" super-
diagonals stored in the argument \"A\". The storage layout for
\"A\" is described the reference BLAS module, level-2 BLAS at
http://www.netlib.org/lapack/explore-html/.
Returns the updated \"y\".
"),
("Base.LinAlg.BLAS","sbmv","sbmv(uplo, k, alpha, A, x)
Returns \"alpha*A*x\" where \"A\" is a symmetric band matrix of
order \"size(A,2)\" with \"k\" super-diagonals stored in the
argument \"A\".
"),
("Base.LinAlg.BLAS","sbmv","sbmv(uplo, k, A, x)
Returns \"A*x\" where \"A\" is a symmetric band matrix of order
\"size(A,2)\" with \"k\" super-diagonals stored in the argument
\"A\".
"),
("Base.LinAlg.BLAS","gemm!","gemm!(tA, tB, alpha, A, B, beta, C)
Update \"C\" as \"alpha*A*B + beta*C\" or the other three variants
according to \"tA\" (transpose \"A\") and \"tB\". Returns the
updated \"C\".
"),
("Base.LinAlg.BLAS","gemm","gemm(tA, tB, alpha, A, B)
Returns \"alpha*A*B\" or the other three variants according to
\"tA\" (transpose \"A\") and \"tB\".
"),
("Base.LinAlg.BLAS","gemm","gemm(tA, tB, A, B)
Returns \"A*B\" or the other three variants according to \"tA\"
(transpose \"A\") and \"tB\".
"),
("Base.LinAlg.BLAS","gemv!","gemv!(tA, alpha, A, x, beta, y)
Update the vector \"y\" as \"alpha*A*x + beta*x\" or \"alpha*A'x +
beta*x\" according to \"tA\" (transpose \"A\"). Returns the updated
\"y\".
"),
("Base.LinAlg.BLAS","gemv","gemv(tA, alpha, A, x)
Returns \"alpha*A*x\" or \"alpha*A'x\" according to \"tA\"
(transpose \"A\").
"),
("Base.LinAlg.BLAS","gemv","gemv(tA, A, x)
Returns \"A*x\" or \"A'x\" according to \"tA\" (transpose \"A\").
"),
("Base.LinAlg.BLAS","symm!","symm!(side, ul, alpha, A, B, beta, C)
Update \"C\" as \"alpha*A*B + beta*C\" or \"alpha*B*A + beta*C\"
according to \"side\". \"A\" is assumed to be symmetric. Only the
\"ul\" triangle of \"A\" is used. Returns the updated \"C\".
"),
("Base.LinAlg.BLAS","symm","symm(side, ul, alpha, A, B)
Returns \"alpha*A*B\" or \"alpha*B*A\" according to \"side\". \"A\"
is assumed to be symmetric. Only the \"ul\" triangle of \"A\" is
used.
"),
("Base.LinAlg.BLAS","symm","symm(side, ul, A, B)
Returns \"A*B\" or \"B*A\" according to \"side\". \"A\" is assumed
to be symmetric. Only the \"ul\" triangle of \"A\" is used.
"),
("Base.LinAlg.BLAS","symm","symm(tA, tB, alpha, A, B)
Returns \"alpha*A*B\" or the other three variants according to
\"tA\" (transpose \"A\") and \"tB\".
"),
("Base.LinAlg.BLAS","symv!","symv!(ul, alpha, A, x, beta, y)
Update the vector \"y\" as \"alpha*A*y + beta*y\". \"A\" is assumed
to be symmetric. Only the \"ul\" triangle of \"A\" is used.
Returns the updated \"y\".
"),
("Base.LinAlg.BLAS","symv","symv(ul, alpha, A, x)
Returns \"alpha*A*x\". \"A\" is assumed to be symmetric. Only the
\"ul\" triangle of \"A\" is used.
"),
("Base.LinAlg.BLAS","symv","symv(ul, A, x)
Returns \"A*x\". \"A\" is assumed to be symmetric. Only the
\"ul\" triangle of \"A\" is used.
"),
("Base.LinAlg.BLAS","trmm!","trmm!(side, ul, tA, dA, alpha, A, B)
Update \"B\" as \"alpha*A*B\" or one of the other three variants
determined by \"side\" (A on left or right) and \"tA\" (transpose
A). Only the \"ul\" triangle of \"A\" is used. \"dA\" indicates if
\"A\" is unit-triangular (the diagonal is assumed to be all ones).
Returns the updated \"B\".
"),
("Base.LinAlg.BLAS","trmm","trmm(side, ul, tA, dA, alpha, A, B)
Returns \"alpha*A*B\" or one of the other three variants determined
by \"side\" (A on left or right) and \"tA\" (transpose A). Only the
\"ul\" triangle of \"A\" is used. \"dA\" indicates if \"A\" is
unit-triangular (the diagonal is assumed to be all ones).
"),
("Base.LinAlg.BLAS","trsm!","trsm!(side, ul, tA, dA, alpha, A, B)
Overwrite \"B\" with the solution to \"A*X = alpha*B\" or one of
the other three variants determined by \"side\" (A on left or right
of \"X\") and \"tA\" (transpose A). Only the \"ul\" triangle of
\"A\" is used. \"dA\" indicates if \"A\" is unit-triangular (the
diagonal is assumed to be all ones). Returns the updated \"B\".
"),
("Base.LinAlg.BLAS","trsm","trsm(side, ul, tA, dA, alpha, A, B)
Returns the solution to \"A*X = alpha*B\" or one of the other three
variants determined by \"side\" (A on left or right of \"X\") and
\"tA\" (transpose A). Only the \"ul\" triangle of \"A\" is used.
\"dA\" indicates if \"A\" is unit-triangular (the diagonal is
assumed to be all ones).
"),
("Base.LinAlg.BLAS","trmv!","trmv!(side, ul, tA, dA, alpha, A, b)
Update \"b\" as \"alpha*A*b\" or one of the other three variants
determined by \"side\" (A on left or right) and \"tA\" (transpose
A). Only the \"ul\" triangle of \"A\" is used. \"dA\" indicates if
\"A\" is unit-triangular (the diagonal is assumed to be all ones).
Returns the updated \"b\".
"),
("Base.LinAlg.BLAS","trmv","trmv(side, ul, tA, dA, alpha, A, b)
Returns \"alpha*A*b\" or one of the other three variants determined
by \"side\" (A on left or right) and \"tA\" (transpose A). Only the
\"ul\" triangle of \"A\" is used. \"dA\" indicates if \"A\" is
unit-triangular (the diagonal is assumed to be all ones).
"),
("Base.LinAlg.BLAS","trsv!","trsv!(ul, tA, dA, A, b)
Overwrite \"b\" with the solution to \"A*x = b\" or one of the
other two variants determined by \"tA\" (transpose A) and \"ul\"
(triangle of \"A\" used). \"dA\" indicates if \"A\" is unit-
triangular (the diagonal is assumed to be all ones). Returns the
updated \"b\".
"),
("Base.LinAlg.BLAS","trsv","trsv(ul, tA, dA, A, b)
Returns the solution to \"A*x = b\" or one of the other two
variants determined by \"tA\" (transpose A) and \"ul\" (triangle of
\"A\" is used.) \"dA\" indicates if \"A\" is unit-triangular (the
diagonal is assumed to be all ones).
"),
("Base.LinAlg.BLAS","blas_set_num_threads","blas_set_num_threads(n)
Set the number of threads the BLAS library should use.
"),
("Base.Pkg","dir","dir() -> String
Returns the absolute path of the package directory. This defaults
to \"joinpath(homedir(),\".julia\")\" on all platforms (i.e.
\"~/.julia\" in UNIX shell syntax). If the \"JULIA_PKGDIR\"
environment variable is set, that path is used instead. If
\"JULIA_PKGDIR\" is a relative path, it is interpreted relative to
whatever the current working directory is.
"),
("Base.Pkg","dir","dir(names...) -> String
Equivalent to \"normpath(Pkg.dir(),names...)\" – i.e. it appends
path components to the package directory and normalizes the
resulting path. In particular, \"Pkg.dir(pkg)\" returns the path to
the package \"pkg\".
"),
("Base.Pkg","init","init()
Initialize \"Pkg.dir()\" as a package directory. This will be done
automatically when the \"JULIA_PKGDIR\" is not set and
\"Pkg.dir()\" uses its default value.
"),
("Base.Pkg","resolve","resolve()
Determines an optimal, consistent set of package versions to
install or upgrade to. The optimal set of package versions is based
on the contents of \"Pkg.dir(\"REQUIRE\")\" and the state of
installed packages in \"Pkg.dir()\", Packages that are no longer
required are moved into \"Pkg.dir(\".trash\")\".
"),
("Base.Pkg","edit","edit()
Opens \"Pkg.dir(\"REQUIRE\")\" in the editor specified by the
\"VISUAL\" or \"EDITOR\" environment variables; when the editor
command returns, it runs \"Pkg.resolve()\" to determine and install
a new optimal set of installed package versions.
"),
("Base.Pkg","add","add(pkg, vers...)
Add a requirement entry for \"pkg\" to \"Pkg.dir(\"REQUIRE\")\" and
call \"Pkg.resolve()\". If \"vers\" are given, they must be
\"VersionNumber\" objects and they specify acceptable version
intervals for \"pkg\".
"),
("Base.Pkg","rm","rm(pkg)
Remove all requirement entries for \"pkg\" from
\"Pkg.dir(\"REQUIRE\")\" and call \"Pkg.resolve()\".
"),
("Base.Pkg","clone","clone(url[, pkg])
Clone a package directly from the git URL \"url\". The package does
not need to be a registered in \"Pkg.dir(\"METADATA\")\". The
package repo is cloned by the name \"pkg\" if provided; if not
provided, \"pkg\" is determined automatically from \"url\".
"),
("Base.Pkg","clone","clone(pkg)
If \"pkg\" has a URL registered in \"Pkg.dir(\"METADATA\")\", clone
it from that URL on the default branch. The package does not need
to have any registered versions.
"),
("Base.Pkg","available","available() -> Vector{ASCIIString}
Returns the names of available packages.
"),
("Base.Pkg","available","available(pkg) -> Vector{VersionNumber}
Returns the version numbers available for package \"pkg\".
"),
("Base.Pkg","installed","installed() -> Dict{ASCIIString,VersionNumber}
Returns a dictionary mapping installed package names to the
installed version number of each package.
"),
("Base.Pkg","installed","installed(pkg) -> Nothing | VersionNumber
If \"pkg\" is installed, return the installed version number,
otherwise return \"nothing\".
"),
("Base.Pkg","status","status()
Prints out a summary of what packages are installed and what
version and state they're in.
"),
("Base.Pkg","update","update()
Update package the metadata repo – kept in
\"Pkg.dir(\"METADATA\")\" – then update any fixed packages that can
safely be pulled from their origin; then call \"Pkg.resolve()\" to
determine a new optimal set of packages versions.
"),
("Base.Pkg","checkout","checkout(pkg[, branch=\"master\"])
Checkout the \"Pkg.dir(pkg)\" repo to the branch \"branch\".
Defaults to checking out the \"master\" branch. To go back to using
the newest compatible released version, use \"Pkg.free(pkg)\"
"),
("Base.Pkg","pin","pin(pkg)
Pin \"pkg\" at the current version. To go back to using the newest
compatible released version, use \"Pkg.free(pkg)\"
"),
("Base.Pkg","pin","pin(pkg, version)
Pin \"pkg\" at registered version \"version\".
"),
("Base.Pkg","free","free(pkg)
Free the package \"pkg\" to be managed by the package manager
again. It calls \"Pkg.resolve()\" to determine optimal package
versions after. This is an inverse for both \"Pkg.checkout\" and
\"Pkg.pin\".
"),
("Base.Pkg","build","build()
Run the build scripts for all installed packages in depth-first
recursive order.
"),
("Base.Pkg","build","build(pkgs...)
Run the build script in \"deps/build.jl\" for each package in
\"pkgs\" and all of their dependencies in depth-first recursive
order. This is called automatically by \"Pkg.resolve()\" on all
installed or updated packages.
"),
("Base.Pkg","generate","generate(pkg, license)
Generate a new package named \"pkg\" with one of these license
keys: \"\"MIT\"\" or \"\"BSD\"\". If you want to make a package
with a different license, you can edit it afterwards. Generate
creates a git repo at \"Pkg.dir(pkg)\" for the package and inside
it \"LICENSE.md\", \"README.md\", the julia entrypoint
\"\$pkg/src/\$pkg.jl\", and a travis test file, \".travis.yml\".
"),
("Base.Pkg","register","register(pkg[, url])
Register \"pkg\" at the git URL \"url\", defaulting to the
configured origin URL of the git repo \"Pkg.dir(pkg)\".
"),
("Base.Pkg","tag","tag(pkg[, ver[, commit]])
Tag \"commit\" as version \"ver\" of package \"pkg\" and create a
version entry in \"METADATA\". If not provided, \"commit\" defaults
to the current commit of the \"pkg\" repo. If \"ver\" is one of the
symbols \":patch\", \":minor\", \":major\" the next patch, minor or
major version is used. If \"ver\" is not provided, it defaults to
\":patch\".
"),
("Base.Pkg","publish","publish()
For each new package version tagged in \"METADATA\" not already
published, make sure that the tagged package commits have been
pushed to the repo at the registered URL for the package and if
they all have, open a pull request to \"METADATA\".
"),
("Base.Pkg","test","test()
Run the tests for all installed packages ensuring that each
package's test dependencies are installed for the duration of the
test. A package is tested by running its \"test/runtests.jl\" file
and test dependencies are specified in \"test/REQUIRE\".
"),
("Base.Pkg","test","test(pkgs...)
Run the tests for each package in \"pkgs\" ensuring that each
package's test dependencies are installed for the duration of the
test. A package is tested by running its \"test/runtests.jl\" file
and test dependencies are specified in \"test/REQUIRE\".
"),
("Base","@profile","@profile()
\"@profile <expression>\" runs your expression while taking
periodic backtraces. These are appended to an internal buffer of
backtraces.
"),
("Base.Profile","clear","clear()
Clear any existing backtraces from the internal buffer.
"),
("Base.Profile","print","print([io::IO = STDOUT], [data::Vector]; format = :tree, C = false, combine = true, cols = tty_cols())
Prints profiling results to \"io\" (by default, \"STDOUT\"). If you
do not supply a \"data\" vector, the internal buffer of accumulated
backtraces will be used. \"format\" can be \":tree\" or \":flat\".
If \"C==true\", backtraces from C and Fortran code are shown.
\"combine==true\" merges instruction pointers that correspond to
the same line of code. \"cols\" controls the width of the display.
"),
("Base.Profile","print","print([io::IO = STDOUT], data::Vector, lidict::Dict; format = :tree, combine = true, cols = tty_cols())
Prints profiling results to \"io\". This variant is used to examine
results exported by a previous call to \"Profile.retrieve()\".
Supply the vector \"data\" of backtraces and a dictionary
\"lidict\" of line information.
"),
("Base.Profile","init","init(; n::Integer, delay::Float64)
Configure the \"delay\" between backtraces (measured in seconds),
and the number \"n\" of instruction pointers that may be stored.
Each instruction pointer corresponds to a single line of code;
backtraces generally consist of a long list of instruction
pointers. Default settings can be obtained by calling this function
with no arguments, and each can be set independently using keywords
or in the order \"(n, delay)\".
"),
("Base.Profile","fetch","fetch() -> data
Returns a reference to the internal buffer of backtraces. Note that
subsequent operations, like \"Profile.clear()\", can affect
\"data\" unless you first make a copy. Note that the values in
\"data\" have meaning only on this machine in the current session,
because it depends on the exact memory addresses used in JIT-
compiling. This function is primarily for internal use;
\"Profile.retrieve()\" may be a better choice for most users.
"),
("Base.Profile","retrieve","retrieve() -> data, lidict
\"Exports\" profiling results in a portable format, returning the
set of all backtraces (\"data\") and a dictionary that maps the
(session-specific) instruction pointers in \"data\" to \"LineInfo\"
values that store the file name, function name, and line number.
This function allows you to save profiling results for future
analysis.
"),
("Base","sort!","sort!(v, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])
Sort the vector \"v\" in place. \"QuickSort\" is used by default
for numeric arrays while \"MergeSort\" is used for other arrays.
You can specify an algorithm to use via the \"alg\" keyword (see
Sorting Algorithms for available algorithms). The \"by\" keyword
lets you provide a function that will be applied to each element
before comparison; the \"lt\" keyword allows providing a custom
\"less than\" function; use \"rev=true\" to reverse the sorting
order. These options are independent and can be used together in
all possible combinations: if both \"by\" and \"lt\" are specified,
the \"lt\" function is applied to the result of the \"by\"
function; \"rev=true\" reverses whatever ordering specified via the
\"by\" and \"lt\" keywords.
"),
("Base","sort","sort(v, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])
Variant of \"sort!\" that returns a sorted copy of \"v\" leaving
\"v\" itself unmodified.
"),
("Base","sort","sort(A, dim, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])
Sort a multidimensional array \"A\" along the given dimension.
"),
("Base","sortperm","sortperm(v, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])
Return a permutation vector of indices of \"v\" that puts it in
sorted order. Specify \"alg\" to choose a particular sorting
algorithm (see Sorting Algorithms). \"MergeSort\" is used by
default, and since it is stable, the resulting permutation will be
the lexicographically first one that puts the input array into
sorted order – i.e. indices of equal elements appear in ascending
order. If you choose a non-stable sorting algorithm such as
\"QuickSort\", a different permutation that puts the array into
order may be returned. The order is specified using the same
keywords as \"sort!\".
"),
("Base","sortrows","sortrows(A, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])
Sort the rows of matrix \"A\" lexicographically.
"),
("Base","sortcols","sortcols(A, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])
Sort the columns of matrix \"A\" lexicographically.
"),
("Base","issorted","issorted(v, [by=<transform>,] [lt=<comparison>,] [rev=false])
Test whether a vector is in sorted order. The \"by\", \"lt\" and
\"rev\" keywords modify what order is considered to be sorted just
as they do for \"sort\".
"),
("Base","searchsorted","searchsorted(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])
Returns the range of indices of \"a\" which compare as equal to
\"x\" according to the order specified by the \"by\", \"lt\" and
\"rev\" keywords, assuming that \"a\" is already sorted in that
order. Returns an empty range located at the insertion point if
\"a\" does not contain values equal to \"x\".
"),
("Base","searchsortedfirst","searchsortedfirst(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])
Returns the index of the first value in \"a\" greater than or equal
to \"x\", according to the specified order. Returns \"length(a)+1\"
if \"x\" is greater than all values in \"a\".
"),
("Base","searchsortedlast","searchsortedlast(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])
Returns the index of the last value in \"a\" less than or equal to
\"x\", according to the specified order. Returns \"0\" if \"x\" is
less than all values in \"a\".
"),
("Base","select!","select!(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])
Partially sort the vector \"v\" in place, according to the order
specified by \"by\", \"lt\" and \"rev\" so that the value at index
\"k\" (or range of adjacent values if \"k\" is a range) occurs at
the position where it would appear if the array were fully sorted.
If \"k\" is a single index, that values is returned; if \"k\" is a
range, an array of values at those indices is returned. Note that
\"select!\" does not fully sort the input array, but does leave the
returned elements where they would be if the array were fully
sorted.
"),
("Base","select","select(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])
Variant of \"select!\" which copies \"v\" before partially sorting
it, thereby returning the same thing as \"select!\" but leaving
\"v\" unmodified.
"),
("Base","sparse","sparse(I, J, V[, m, n, combine])
Create a sparse matrix \"S\" of dimensions \"m x n\" such that
\"S[I[k], J[k]] = V[k]\". The \"combine\" function is used to
combine duplicates. If \"m\" and \"n\" are not specified, they are
set to \"max(I)\" and \"max(J)\" respectively. If the \"combine\"
function is not supplied, duplicates are added by default.
"),
("Base","sparsevec","sparsevec(I, V[, m, combine])
Create a sparse matrix \"S\" of size \"m x 1\" such that \"S[I[k]]
= V[k]\". Duplicates are combined using the \"combine\" function,
which defaults to \"+\" if it is not provided. In julia, sparse
vectors are really just sparse matrices with one column. Given
Julia's Compressed Sparse Columns (CSC) storage format, a sparse
column matrix with one column is sparse, whereas a sparse row
matrix with one row ends up being dense.
"),
("Base","sparsevec","sparsevec(D::Dict[, m])
Create a sparse matrix of size \"m x 1\" where the row values are
keys from the dictionary, and the nonzero values are the values
from the dictionary.
"),
("Base","issparse","issparse(S)
Returns \"true\" if \"S\" is sparse, and \"false\" otherwise.
"),
("Base","sparse","sparse(A)
Convert a dense matrix \"A\" into a sparse matrix.
"),
("Base","sparsevec","sparsevec(A)
Convert a dense vector \"A\" into a sparse matrix of size \"m x
1\". In julia, sparse vectors are really just sparse matrices with
one column.
"),
("Base","full","full(S)
Convert a sparse matrix \"S\" into a dense matrix.
"),
("Base","nnz","nnz(A)
Returns the number of stored (filled) elements in a sparse matrix.
"),
("Base","spzeros","spzeros(m, n)
Create an empty sparse matrix of size \"m x n\".
"),
("Base","spones","spones(S)
Create a sparse matrix with the same structure as that of \"S\",
but with every nonzero element having the value \"1.0\".
"),
("Base","speye","speye(type, m[, n])
Create a sparse identity matrix of specified type of size \"m x
m\". In case \"n\" is supplied, create a sparse identity matrix of
size \"m x n\".
"),
("Base","spdiagm","spdiagm(B, d[, m, n])
Construct a sparse diagonal matrix. \"B\" is a tuple of vectors
containing the diagonals and \"d\" is a tuple containing the
positions of the diagonals. In the case the input contains only one
diagonaly, \"B\" can be a vector (instead of a tuple) and \"d\" can
be the diagonal position (instead of a tuple), defaulting to 0
(diagonal). Optionally, \"m\" and \"n\" specify the size of the
resulting sparse matrix.
"),
("Base","sprand","sprand(m, n, p[, rng])
Create a random \"m\" by \"n\" sparse matrix, in which the
probability of any element being nonzero is independently given by
\"p\" (and hence the mean density of nonzeros is also exactly
\"p\"). Nonzero values are sampled from the distribution specified
by \"rng\". The uniform distribution is used in case \"rng\" is not
specified.
"),
("Base","sprandn","sprandn(m, n, p)
Create a random \"m\" by \"n\" sparse matrix with the specified
(independent) probability \"p\" of any entry being nonzero, where
nonzero values are sampled from the normal distribution.
"),
("Base","sprandbool","sprandbool(m, n, p)
Create a random \"m\" by \"n\" sparse boolean matrix with the
specified (independent) probability \"p\" of any entry being
\"true\".
"),
("Base","etree","etree(A[, post])
Compute the elimination tree of a symmetric sparse matrix \"A\"
from \"triu(A)\" and, optionally, its post-ordering permutation.
"),
("Base","symperm","symperm(A, p)
Return the symmetric permutation of A, which is \"A[p,p]\". A
should be symmetric and sparse, where only the upper triangular
part of the matrix is stored. This algorithm ignores the lower
triangular part of the matrix. Only the upper triangular part of
the result is returned as well.
"),
("Base","nonzeros","nonzeros(A)
Return a vector of the structural nonzero values in sparse matrix
\"A\". This includes zeros that are explicitly stored in the sparse
matrix. The returned vector points directly to the internal nonzero
storage of \"A\", and any modifications to the returned vector will
mutate \"A\" as well.
"),
("Base.Test","@test","@test(ex)
Test the expression \"ex\" and calls the current handler to handle
the result.
"),
("Base.Test","@test_throws","@test_throws(extype, ex)
Test that the expression \"ex\" throws an exception of type
\"extype\" and calls the current handler to handle the result.
"),
("Base.Test","@test_approx_eq","@test_approx_eq(a, b)
Test two floating point numbers \"a\" and \"b\" for equality taking
in account small numerical errors.
"),
("Base.Test","@test_approx_eq_eps","@test_approx_eq_eps(a, b, tol)
Test two floating point numbers \"a\" and \"b\" for equality taking
in account a margin of tolerance given by \"tol\".
"),
("Base.Test","with_handler","with_handler(f, handler)
Run the function \"f\" using the \"handler\" as the handler.
"),
("Base","runtests","runtests([tests=[\"all\"][, numcores=iceil(CPU_CORES/2)]])
Run the Julia unit tests listed in \"tests\", which can be either a
string or an array of strings, using \"numcores\" processors.
"),
}
|