File: helpdb.jl

package info (click to toggle)
julia 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 17,868 kB
  • ctags: 13,696
  • sloc: ansic: 102,603; lisp: 86,819; sh: 12,179; cpp: 8,793; makefile: 3,069; ruby: 1,594; python: 936; pascal: 697; xml: 532; java: 510; f90: 403; asm: 102; perl: 77; sql: 6
file content (11054 lines) | stat: -rw-r--r-- 288,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
# automatically generated from files in doc/stdlib/ -- do not edit here

{

("Base","exit","exit([code])

   Quit (or control-D at the prompt). The default exit code is zero,
   indicating that the processes completed successfully.

"),

("Base","quit","quit()

   Quit the program indicating that the processes completed
   succesfully. This function calls \"exit(0)\" (see \"exit()\").

"),

("Base","atexit","atexit(f)

   Register a zero-argument function to be called at exit.

"),

("Base","isinteractive","isinteractive() -> Bool

   Determine whether Julia is running an interactive session.

"),

("Base","whos","whos([Module,] [pattern::Regex])

   Print information about global variables in a module, optionally
   restricted to those matching \"pattern\".

"),

("Base","edit","edit(file::String[, line])

   Edit a file optionally providing a line number to edit at. Returns
   to the julia prompt when you quit the editor.

"),

("Base","edit","edit(function[, types])

   Edit the definition of a function, optionally specifying a tuple of
   types to indicate which method to edit.

"),

("Base","@edit","@edit()

   Evaluates the arguments to the function call, determines their
   types, and calls the \"edit\" function on the resulting expression

"),

("Base","less","less(file::String[, line])

   Show a file using the default pager, optionally providing a
   starting line number. Returns to the julia prompt when you quit the
   pager.

"),

("Base","less","less(function[, types])

   Show the definition of a function using the default pager,
   optionally specifying a tuple of types to indicate which method to
   see.

"),

("Base","@less","@less()

   Evaluates the arguments to the function call, determines their
   types, and calls the \"less\" function on the resulting expression

"),

("Base","clipboard","clipboard(x)

   Send a printed form of \"x\" to the operating system clipboard
   (\"copy\").

"),

("Base","clipboard","clipboard() -> String

   Return a string with the contents of the operating system clipboard
   (\"paste\").

"),

("Base","require","require(file::String...)

   Load source files once, in the context of the \"Main\" module, on
   every active node, searching standard locations for files.
   \"require\" is considered a top-level operation, so it sets the
   current \"include\" path but does not use it to search for files
   (see help for \"include\"). This function is typically used to load
   library code, and is implicitly called by \"using\" to load
   packages.

   When searching for files, \"require\" first looks in the current
   working directory, then looks for package code under \"Pkg.dir()\",
   then tries paths in the global array \"LOAD_PATH\".

"),

("Base","reload","reload(file::String)

   Like \"require\", except forces loading of files regardless of
   whether they have been loaded before. Typically used when
   interactively developing libraries.

"),

("Base","include","include(path::String)

   Evaluate the contents of a source file in the current context.
   During including, a task-local include path is set to the directory
   containing the file. Nested calls to \"include\" will search
   relative to that path. All paths refer to files on node 1 when
   running in parallel, and files will be fetched from node 1. This
   function is typically used to load source interactively, or to
   combine files in packages that are broken into multiple source
   files.

"),

("Base","include_string","include_string(code::String)

   Like \"include\", except reads code from the given string rather
   than from a file. Since there is no file path involved, no path
   processing or fetching from node 1 is done.

"),

("Base","help","help(name)

   Get help for a function. \"name\" can be an object or a string.

"),

("Base","apropos","apropos(string)

   Search documentation for functions related to \"string\".

"),

("Base","which","which(f, types)

   Return the method of \"f\" (a \"Method\" object) that will be
   called for arguments with the given types.

"),

("Base","@which","@which()

   Evaluates the arguments to the function call, determines their
   types, and calls the \"which\" function on the resulting expression

"),

("Base","methods","methods(f[, types])

   Show all methods of \"f\" with their argument types.

   If \"types\" is specified, an array of methods whose types match is
   returned.

"),

("Base","methodswith","methodswith(typ[, showparents])

   Return an array of methods with an argument of type \"typ\". If
   optional \"showparents\" is \"true\", also return arguments with a
   parent type of \"typ\", excluding type \"Any\".

"),

("Base","@show","@show()

   Show an expression and result, returning the result

"),

("Base","versioninfo","versioninfo([verbose::Bool])

   Print information about the version of Julia in use. If the
   \"verbose\" argument is true, detailed system information is shown
   as well.

"),

("Base","workspace","workspace()

   Replace the top-level module (\"Main\") with a new one, providing a
   clean workspace. The previous \"Main\" module is made available as
   \"LastMain\". A previously-loaded package can be accessed using a
   statement such as \"using LastMain.Package\".

   This function should only be used interactively.

"),

("Base","is","is(x, y) -> Bool

   Determine whether \"x\" and \"y\" are identical, in the sense that
   no program could distinguish them. Compares mutable objects by
   address in memory, and compares immutable objects (such as numbers)
   by contents at the bit level. This function is sometimes called
   \"egal\". The \"===\" operator is an alias for this function.

"),

("Base","isa","isa(x, type) -> Bool

   Determine whether \"x\" is of the given \"type\".

"),

("Base","isequal","isequal(x, y)

   Similar to \"==\", except treats all floating-point \"NaN\" values
   as equal to each other, and treats \"-0.0\" as unequal to \"0.0\".
   For values that are not floating-point, \"isequal\" is the same as
   \"==\".

   \"isequal\" is the comparison function used by hash tables
   (\"Dict\"). \"isequal(x,y)\" must imply that \"hash(x) ==
   hash(y)\".

   Collections typically implement \"isequal\" by calling \"isequal\"
   recursively on all contents.

   Scalar types generally do not need to implement \"isequal\", unless
   they represent floating-point numbers amenable to a more efficient
   implementation than that provided as a generic fallback (based on
   \"isnan\", \"signbit\", and \"==\").

"),

("Base","isless","isless(x, y)

   Test whether \"x\" is less than \"y\", according to a canonical
   total order. Values that are normally unordered, such as \"NaN\",
   are ordered in an arbitrary but consistent fashion. This is the
   default comparison used by \"sort\". Non-numeric types with a
   canonical total order should implement this function. Numeric types
   only need to implement it if they have special values such as
   \"NaN\".

"),

("Base","ifelse","ifelse(condition::Bool, x, y)

   Return \"x\" if \"condition\" is true, otherwise return \"y\". This
   differs from \"?\" or \"if\" in that it is an ordinary function, so
   all the arguments are evaluated first.

"),

("Base","lexcmp","lexcmp(x, y)

   Compare \"x\" and \"y\" lexicographically and return -1, 0, or 1
   depending on whether \"x\" is less than, equal to, or greater than
   \"y\", respectively. This function should be defined for
   lexicographically comparable types, and \"lexless\" will call
   \"lexcmp\" by default.

"),

("Base","lexless","lexless(x, y)

   Determine whether \"x\" is lexicographically less than \"y\".

"),

("Base","typeof","typeof(x)

   Get the concrete type of \"x\".

"),

("Base","tuple","tuple(xs...)

   Construct a tuple of the given objects.

"),

("Base","ntuple","ntuple(n, f::Function)

   Create a tuple of length \"n\", computing each element as \"f(i)\",
   where \"i\" is the index of the element.

"),

("Base","object_id","object_id(x)

   Get a unique integer id for \"x\". \"object_id(x)==object_id(y)\"
   if and only if \"is(x,y)\".

"),

("Base","hash","hash(x[, h])

   Compute an integer hash code such that \"isequal(x,y)\" implies
   \"hash(x)==hash(y)\". The optional second argument \"h\" is a hash
   code to be mixed with the result. New types should implement the
   2-argument form.

"),

("Base","finalizer","finalizer(x, function)

   Register a function \"f(x)\" to be called when there are no
   program-accessible references to \"x\". The behavior of this
   function is unpredictable if \"x\" is of a bits type.

"),

("Base","copy","copy(x)

   Create a shallow copy of \"x\": the outer structure is copied, but
   not all internal values. For example, copying an array produces a
   new array with identically-same elements as the original.

"),

("Base","deepcopy","deepcopy(x)

   Create a deep copy of \"x\": everything is copied recursively,
   resulting in a fully independent object. For example, deep-copying
   an array produces a new array whose elements are deep-copies of the
   original elements.

   As a special case, functions can only be actually deep-copied if
   they are anonymous, otherwise they are just copied. The difference
   is only relevant in the case of closures, i.e. functions which may
   contain hidden internal references.

   While it isn't normally necessary, user-defined types can override
   the default \"deepcopy\" behavior by defining a specialized version
   of the function \"deepcopy_internal(x::T, dict::ObjectIdDict)\"
   (which shouldn't otherwise be used), where \"T\" is the type to be
   specialized for, and \"dict\" keeps track of objects copied so far
   within the recursion. Within the definition, \"deepcopy_internal\"
   should be used in place of \"deepcopy\", and the \"dict\" variable
   should be updated as appropriate before returning.

"),

("Base","isdefined","isdefined([object], index | symbol)

   Tests whether an assignable location is defined. The arguments can
   be an array and index, a composite object and field name (as a
   symbol), or a module and a symbol. With a single symbol argument,
   tests whether a global variable with that name is defined in
   \"current_module()\".

"),

("Base","convert","convert(type, x)

   Try to convert \"x\" to the given type. Conversions from floating
   point to integer, rational to integer, and complex to real will
   raise an \"InexactError\" if \"x\" cannot be represented exactly in
   the new type.

"),

("Base","promote","promote(xs...)

   Convert all arguments to their common promotion type (if any), and
   return them all (as a tuple).

"),

("Base","oftype","oftype(x, y)

   Convert \"y\" to the type of \"x\".

"),

("Base","widen","widen(type | x)

   If the argument is a type, return a \"larger\" type (for numeric
   types, this will be a type with at least as much range and
   precision as the argument, and usually more). Otherwise the
   argument \"x\" is converted to \"widen(typeof(x))\".

   **Examples**:

      julia> widen(Int32)
      Int64

      julia> widen(1.5f0)
      1.5

"),

("Base","identity","identity(x)

   The identity function. Returns its argument.

"),

("Base","super","super(T::DataType)

   Return the supertype of DataType T

"),

("Base","issubtype","issubtype(type1, type2)

   True if and only if all values of \"type1\" are also of \"type2\".
   Can also be written using the \"<:\" infix operator as \"type1 <:
   type2\".

"),

("Base","<:","<:(T1, T2)

   Subtype operator, equivalent to \"issubtype(T1,T2)\".

"),

("Base","subtypes","subtypes(T::DataType)

   Return a list of immediate subtypes of DataType T.  Note that all
   currently loaded subtypes are included, including those not visible
   in the current module.

"),

("Base","subtypetree","subtypetree(T::DataType)

   Return a nested list of all subtypes of DataType T.  Note that all
   currently loaded subtypes are included, including those not visible
   in the current module.

"),

("Base","typemin","typemin(type)

   The lowest value representable by the given (real) numeric type.

"),

("Base","typemax","typemax(type)

   The highest value representable by the given (real) numeric type.

"),

("Base","realmin","realmin(type)

   The smallest in absolute value non-subnormal value representable by
   the given floating-point type

"),

("Base","realmax","realmax(type)

   The highest finite value representable by the given floating-point
   type

"),

("Base","maxintfloat","maxintfloat(type)

   The largest integer losslessly representable by the given floating-
   point type

"),

("Base","sizeof","sizeof(type)

   Size, in bytes, of the canonical binary representation of the given
   type, if any.

"),

("Base","eps","eps([type])

   The distance between 1.0 and the next larger representable
   floating-point value of \"type\". Only floating-point types are
   sensible arguments. If \"type\" is omitted, then \"eps(Float64)\"
   is returned.

"),

("Base","eps","eps(x)

   The distance between \"x\" and the next larger representable
   floating-point value of the same type as \"x\".

"),

("Base","promote_type","promote_type(type1, type2)

   Determine a type big enough to hold values of each argument type
   without loss, whenever possible. In some cases, where no type
   exists which to which both types can be promoted losslessly, some
   loss is tolerated; for example, \"promote_type(Int64,Float64)\"
   returns \"Float64\" even though strictly, not all \"Int64\" values
   can be represented exactly as \"Float64\" values.

"),

("Base","promote_rule","promote_rule(type1, type2)

   Specifies what type should be used by \"promote\" when given values
   of types \"type1\" and \"type2\". This function should not be
   called directly, but should have definitions added to it for new
   types as appropriate.

"),

("Base","getfield","getfield(value, name::Symbol)

   Extract a named field from a value of composite type. The syntax
   \"a.b\" calls \"getfield(a, :b)\", and the syntax \"a.(b)\" calls
   \"getfield(a, b)\".

"),

("Base","setfield!","setfield!(value, name::Symbol, x)

   Assign \"x\" to a named field in \"value\" of composite type. The
   syntax \"a.b = c\" calls \"setfield!(a, :b, c)\", and the syntax
   \"a.(b) = c\" calls \"setfield!(a, b, c)\".

"),

("Base","fieldoffsets","fieldoffsets(type)

   The byte offset of each field of a type relative to the data start.
   For example, we could use it in the following manner to summarize
   information about a struct type:

      structinfo(T) = [zip(fieldoffsets(T),names(T),T.types)...]
      structinfo(StatStruct)

"),

("Base","fieldtype","fieldtype(value, name::Symbol)

   Determine the declared type of a named field in a value of
   composite type.

"),

("Base","isimmutable","isimmutable(v)

   True if value \"v\" is immutable.  See *Immutable Composite Types*
   for a discussion of immutability.

"),

("Base","isbits","isbits(T)

   True if \"T\" is a \"plain data\" type, meaning it is immutable and
   contains no references to other values. Typical examples are
   numeric types such as \"Uint8\", \"Float64\", and
   \"Complex{Float64}\".

"),

("Base","isleaftype","isleaftype(T)

   Determine whether \"T\" is a concrete type that can have instances,
   meaning its only subtypes are itself and \"None\" (but \"T\" itself
   is not \"None\").

"),

("Base","typejoin","typejoin(T, S)

   Compute a type that contains both \"T\" and \"S\".

"),

("Base","typeintersect","typeintersect(T, S)

   Compute a type that contains the intersection of \"T\" and \"S\".
   Usually this will be the smallest such type or one close to it.

"),

("Base","apply","apply(f, x...)

   Accepts a function and several arguments, each of which must be
   iterable. The elements generated by all the arguments are appended
   into a single list, which is then passed to \"f\" as its argument
   list.

   **Example**:

      # Define a function f
      julia> function f(x, y)
                 x + y
             end

      # Apply f with 1 and 2 as arguments
      julia> apply(f, [1 2])
      3

   \"apply\" is called to implement the \"...\" argument splicing
   syntax, and is usually not called directly: \"apply(f,x) ===
   f(x...)\"

"),

("Base","method_exists","method_exists(f, tuple) -> Bool

   Determine whether the given generic function has a method matching
   the given tuple of argument types.

   **Example**:

      julia> method_exists(length, (Array,))
      true

"),

("Base","applicable","applicable(f, args...) -> Bool

   Determine whether the given generic function has a method
   applicable to the given arguments.

   **Examples**:

      julia> function f(x, y)
                 x + y
             end

      julia> applicable(f, 1)
      false

      julia> applicable(f, 1, 2)
      true

"),

("Base","invoke","invoke(f, (types...), args...)

   Invoke a method for the given generic function matching the
   specified types (as a tuple), on the specified arguments. The
   arguments must be compatible with the specified types. This allows
   invoking a method other than the most specific matching method,
   which is useful when the behavior of a more general definition is
   explicitly needed (often as part of the implementation of a more
   specific method of the same function).

"),

("Base","|>","|>(x, f)

   Applies a function to the preceding argument. This allows for easy
   function chaining.

   **Example**: \"[1:5] |> x->x.^2 |> sum |> inv\"

"),

("Base","eval","eval([m::Module], expr::Expr)

   Evaluate an expression in the given module and return the result.
   Every module (except those defined with \"baremodule\") has its own
   1-argument definition of \"eval\", which evaluates expressions in
   that module.

"),

("Base","@eval","@eval()

   Evaluate an expression and return the value.

"),

("Base","evalfile","evalfile(path::String)

   Evaluate all expressions in the given file, and return the value of
   the last one. No other processing (path searching, fetching from
   node 1, etc.) is performed.

"),

("Base","esc","esc(e::ANY)

   Only valid in the context of an Expr returned from a macro.
   Prevents the macro hygiene pass from turning embedded variables
   into gensym variables. See the *Macros* section of the
   Metaprogramming chapter of the manual for more details and
   examples.

"),

("Base","gensym","gensym([tag])

   Generates a symbol which will not conflict with other variable
   names.

"),

("Base","@gensym","@gensym()

   Generates a gensym symbol for a variable. For example, *@gensym x
   y* is transformed into *x = gensym(\"x\"); y = gensym(\"y\")*.

"),

("Base","parse","parse(str, start; greedy=true, raise=true)

   Parse the expression string and return an expression (which could
   later be passed to eval for execution). Start is the index of the
   first character to start parsing. If \"greedy\" is true (default),
   \"parse\" will try to consume as much input as it can; otherwise,
   it will stop as soon as it has parsed a valid expression. If
   \"raise\" is true (default), syntax errors will raise an error;
   otherwise, \"parse\" will return an expression that will raise an
   error upon evaluation.

"),

("Base","parse","parse(str; raise=true)

   Parse the whole string greedily, returning a single expression.  An
   error is thrown if there are additional characters after the first
   expression. If \"raise\" is true (default), syntax errors will
   raise an error; otherwise, \"parse\" will return an expression that
   will raise an error upon evaluation.

"),

("Base","start","start(iter) -> state

   Get initial iteration state for an iterable object

"),

("Base","done","done(iter, state) -> Bool

   Test whether we are done iterating

"),

("Base","next","next(iter, state) -> item, state

   For a given iterable object and iteration state, return the current
   item and the next iteration state

"),

("Base","zip","zip(iters...)

   For a set of iterable objects, returns an iterable of tuples, where
   the \"i\"th tuple contains the \"i\"th component of each input
   iterable.

   Note that \"zip\" is its own inverse: \"[zip(zip(a...)...)...] ==
   [a...]\".

"),

("Base","enumerate","enumerate(iter)

   Return an iterator that yields \"(i, x)\" where \"i\" is an index
   starting at 1, and \"x\" is the \"ith\" value from the given
   iterator. It's useful when you need not only the values *x* over
   which you are iterating, but also the index *i* of the iterations.

   **Example**:

      julia> a = [\"a\", \"b\", \"c\"]
      julia> for (index, value) in enumerate(a)
                 println(\"\$index \$value\")
             end
      1 a
      2 b
      3 c

"),

("Base","isempty","isempty(collection) -> Bool

   Determine whether a collection is empty (has no elements).

   **Examples**:

      julia> a = []
      julia> isempty(a)
      true

      julia> b = [1 2 3]
      julia> isempty(b)
      false

"),

("Base","empty!","empty!(collection) -> collection

   Remove all elements from a \"collection\".

"),

("Base","length","length(collection) -> Integer

   For ordered, indexable collections, the maximum index \"i\" for
   which \"getindex(collection, i)\" is valid. For unordered
   collections, the number of elements.

"),

("Base","endof","endof(collection) -> Integer

   Returns the last index of the collection.

   **Example**:

      julia> endof([1,2,4])
      3

"),

("Base","in","in(item, collection) -> Bool

   Determine whether an item is in the given collection, in the sense
   that it is \"==\" to one of the values generated by iterating over
   the collection. Some collections need a slightly different
   definition; for example Sets check whether the item is \"isequal\"
   to one of the elements. Dicts look for \"(key,value)\" pairs, and
   the key is compared using \"isequal\". To test for the presence of
   a key in a dictionary, use \"haskey\" or \"k in keys(dict)\".

"),

("Base","eltype","eltype(collection)

   Determine the type of the elements generated by iterating
   \"collection\". For associative collections, this will be a
   \"(key,value)\" tuple type.

"),

("Base","indexin","indexin(a, b)

   Returns a vector containing the highest index in \"b\" for each
   value in \"a\" that is a member of \"b\" . The output vector
   contains 0 wherever \"a\" is not a member of \"b\".

"),

("Base","findin","findin(a, b)

   Returns the indices of elements in collection \"a\" that appear in
   collection \"b\"

"),

("Base","unique","unique(itr[, dim])

   Returns an array containing only the unique elements of the
   iterable \"itr\", in the order that the first of each set of
   equivalent elements originally appears. If \"dim\" is specified,
   returns unique regions of the array \"itr\" along \"dim\".

"),

("Base","reduce","reduce(op, v0, itr)

   Reduce the given collection \"ìtr\" with the given binary operator.
   Reductions for certain commonly-used operators have special
   implementations which should be used instead: \"maximum(itr)\",
   \"minimum(itr)\", \"sum(itr)\", \"prod(itr)\", \"any(itr)\",
   \"all(itr)\".

   The associativity of the reduction is implementation-dependent.
   This means that you can't use non-associative operations like \"-\"
   because it is undefined whether \"reduce(-,[1,2,3])\" should be
   evaluated as \"(1-2)-3\" or \"1-(2-3)\". Use \"foldl\" or \"foldr\"
   instead for guaranteed left or right associativity.

   Some operations accumulate error, and parallelism will also be
   easier if the reduction can be executed in groups. Future versions
   of Julia might change the algorithm. Note that the elements are not
   reordered if you use an ordered collection.

"),

("Base","reduce","reduce(op, itr)

   Like \"reduce\" but using the first element as v0.

"),

("Base","foldl","foldl(op, v0, itr)

   Like \"reduce\", but with guaranteed left associativity.

"),

("Base","foldl","foldl(op, itr)

   Like \"foldl\", but using the first element as v0.

"),

("Base","foldr","foldr(op, v0, itr)

   Like \"reduce\", but with guaranteed right associativity.

"),

("Base","foldr","foldr(op, itr)

   Like \"foldr\", but using the last element as v0.

"),

("Base","maximum","maximum(itr)

   Returns the largest element in a collection.

"),

("Base","maximum","maximum(A, dims)

   Compute the maximum value of an array over the given dimensions.

"),

("Base","maximum!","maximum!(r, A)

   Compute the maximum value of \"A\" over the singleton dimensions of
   \"r\", and write results to \"r\".

"),

("Base","minimum","minimum(itr)

   Returns the smallest element in a collection.

"),

("Base","minimum","minimum(A, dims)

   Compute the minimum value of an array over the given dimensions.

"),

("Base","minimum!","minimum!(r, A)

   Compute the minimum value of \"A\" over the singleton dimensions of
   \"r\", and write results to \"r\".

"),

("Base","extrema","extrema(itr)

   Compute both the minimum and maximum element in a single pass, and
   return them as a 2-tuple.

"),

("Base","indmax","indmax(itr) -> Integer

   Returns the index of the maximum element in a collection.

"),

("Base","indmin","indmin(itr) -> Integer

   Returns the index of the minimum element in a collection.

"),

("Base","findmax","findmax(itr) -> (x, index)

   Returns the maximum element and its index.

"),

("Base","findmax","findmax(A, dims) -> (maxval, index)

   For an array input, returns the value and index of the maximum over
   the given dimensions.

"),

("Base","findmin","findmin(itr) -> (x, index)

   Returns the minimum element and its index.

"),

("Base","findmin","findmin(A, dims) -> (minval, index)

   For an array input, returns the value and index of the minimum over
   the given dimensions.

"),

("Base","maxabs","maxabs(itr)

   Compute the maximum absolute value of a collection of values.

"),

("Base","maxabs","maxabs(A, dims)

   Compute the maximum absolute values over given dimensions.

"),

("Base","maxabs!","maxabs!(r, A)

   Compute the maximum absolute values over the singleton dimensions
   of \"r\", and write values to \"r\".

"),

("Base","minabs","minabs(itr)

   Compute the minimum absolute value of a collection of values.

"),

("Base","minabs","minabs(A, dims)

   Compute the minimum absolute values over given dimensions.

"),

("Base","minabs!","minabs!(r, A)

   Compute the minimum absolute values over the singleton dimensions
   of \"r\", and write values to \"r\".

"),

("Base","sum","sum(itr)

   Returns the sum of all elements in a collection.

"),

("Base","sum","sum(A, dims)

   Sum elements of an array over the given dimensions.

"),

("Base","sum!","sum!(r, A)

   Sum elements of \"A\" over the singleton dimensions of \"r\", and
   write results to \"r\".

"),

("Base","sum","sum(f, itr)

   Sum the results of calling function \"f\" on each element of
   \"itr\".

"),

("Base","sumabs","sumabs(itr)

   Sum absolute values of all elements in a collection. This is
   equivalent to *sum(abs(itr))* but faster.

"),

("Base","sumabs","sumabs(A, dims)

   Sum absolute values of elements of an array over the given
   dimensions.

"),

("Base","sumabs!","sumabs!(r, A)

   Sum absolute values of elements of \"A\" over the singleton
   dimensions of \"r\", and write results to \"r\".

"),

("Base","sumabs2","sumabs2(itr)

   Sum squared absolute values of all elements in a collection. This
   is equivalent to *sum(abs2(itr))* but faster.

"),

("Base","sumabs2","sumabs2(A, dims)

   Sum squared absolute values of elements of an array over the given
   dimensions.

"),

("Base","sumabs2!","sumabs2!(r, A)

   Sum squared absolute values of elements of \"A\" over the singleton
   dimensions of \"r\", and write results to \"r\".

"),

("Base","prod","prod(itr)

   Returns the product of all elements of a collection.

"),

("Base","prod","prod(A, dims)

   Multiply elements of an array over the given dimensions.

"),

("Base","prod!","prod!(r, A)

   Multiply elements of \"A\" over the singleton dimensions of \"r\",
   and write results to \"r\".

"),

("Base","any","any(itr) -> Bool

   Test whether any elements of a boolean collection are true.

"),

("Base","any","any(A, dims)

   Test whether any values along the given dimensions of an array are
   true.

"),

("Base","any!","any!(r, A)

   Test whether any values in \"A\" along the singleton dimensions of
   \"r\" are true, and write results to \"r\".

"),

("Base","all","all(itr) -> Bool

   Test whether all elements of a boolean collection are true.

"),

("Base","all","all(A, dims)

   Test whether all values along the given dimensions of an array are
   true.

"),

("Base","all!","all!(r, A)

   Test whether all values in \"A\" along the singleton dimensions of
   \"r\" are true, and write results to \"r\".

"),

("Base","count","count(p, itr) -> Integer

   Count the number of elements in \"itr\" for which predicate \"p\"
   returns true.

"),

("Base","any","any(p, itr) -> Bool

   Determine whether predicate \"p\" returns true for any elements of
   \"itr\".

"),

("Base","all","all(p, itr) -> Bool

   Determine whether predicate \"p\" returns true for all elements of
   \"itr\".

   **Example**:

      julia> all(i->(4<=i<=6), [4,5,6])
      true

"),

("Base","map","map(f, c...) -> collection

   Transform collection \"c\" by applying \"f\" to each element. For
   multiple collection arguments, apply \"f\" elementwise.

   **Examples**:

      julia> map((x) -> x * 2, [1, 2, 3])
      [2, 4, 6]
      julia> map(+, [1, 2, 3], [10, 20, 30])
      [11, 22, 33]

"),

("Base","map!","map!(function, collection)

   In-place version of \"map()\".

"),

("Base","map!","map!(function, destination, collection...)

   Like \"map()\", but stores the result in \"destination\" rather
   than a new collection. \"destination\" must be at least as large as
   the first collection.

"),

("Base","mapreduce","mapreduce(f, op, itr)

   Applies function \"f\" to each element in \"itr\" and then reduces
   the result using the binary function \"op\".

   **Example**: \"mapreduce(x->x^2, +, [1:3]) == 1 + 4 + 9 == 14\"

   The associativity of the reduction is implementation-dependent; if
   you need a particular associativity, e.g. left-to-right, you should
   write your own loop. See documentation for \"reduce\".

"),

("Base","first","first(coll)

   Get the first element of an iterable collection.

"),

("Base","last","last(coll)

   Get the last element of an ordered collection, if it can be
   computed in O(1) time. This is accomplished by calling \"endof\" to
   get the last index.

"),

("Base","step","step(r)

   Get the step size of a \"Range\" object.

"),

("Base","collect","collect(collection)

   Return an array of all items in a collection. For associative
   collections, returns (key, value) tuples.

"),

("Base","collect","collect(element_type, collection)

   Return an array of type \"Array{element_type,1}\" of all items in a
   collection.

"),

("Base","issubset","issubset(a, b)

   Determine whether every element of \"a\" is also in \"b\", using
   the \"in\" function.

"),

("Base","filter","filter(function, collection)

   Return a copy of \"collection\", removing elements for which
   \"function\" is false. For associative collections, the function is
   passed two arguments (key and value).

"),

("Base","filter!","filter!(function, collection)

   Update \"collection\", removing elements for which \"function\" is
   false. For associative collections, the function is passed two
   arguments (key and value).

"),

("Base","getindex","getindex(collection, key...)

   Retrieve the value(s) stored at the given key or index within a
   collection. The syntax \"a[i,j,...]\" is converted by the compiler
   to \"getindex(a, i, j, ...)\".

"),

("Base","setindex!","setindex!(collection, value, key...)

   Store the given value at the given key or index within a
   collection. The syntax \"a[i,j,...] = x\" is converted by the
   compiler to \"setindex!(a, x, i, j, ...)\".

"),

("Base","Dict","Dict()

   \"Dict{K,V}()\" constructs a hashtable with keys of type K and
   values of type V. The literal syntax is \"{\"A\"=>1, \"B\"=>2}\"
   for a \"Dict{Any,Any}\", or \"[\"A\"=>1, \"B\"=>2]\" for a \"Dict\"
   of inferred type.

"),

("Base","haskey","haskey(collection, key) -> Bool

   Determine whether a collection has a mapping for a given key.

"),

("Base","get","get(collection, key, default)

   Return the value stored for the given key, or the given default
   value if no mapping for the key is present.

"),

("Base","get","get(f::Function, collection, key)

   Return the value stored for the given key, or if no mapping for the
   key is present, return \"f()\".  Use \"get!\" to also store the
   default value in the dictionary.

   This is intended to be called using \"do\" block syntax:

      get(dict, key) do
          # default value calculated here
          time()
      end

"),

("Base","get!","get!(collection, key, default)

   Return the value stored for the given key, or if no mapping for the
   key is present, store \"key => default\", and return \"default\".

"),

("Base","get!","get!(f::Function, collection, key)

   Return the value stored for the given key, or if no mapping for the
   key is present, store \"key => f()\", and return \"f()\".

   This is intended to be called using \"do\" block syntax:

      get!(dict, key) do
          # default value calculated here
          time()
      end

"),

("Base","getkey","getkey(collection, key, default)

   Return the key matching argument \"key\" if one exists in
   \"collection\", otherwise return \"default\".

"),

("Base","delete!","delete!(collection, key)

   Delete the mapping for the given key in a collection, and return
   the colection.

"),

("Base","pop!","pop!(collection, key[, default])

   Delete and return the mapping for \"key\" if it exists in
   \"collection\", otherwise return \"default\", or throw an error if
   default is not specified.

"),

("Base","keys","keys(collection)

   Return an iterator over all keys in a collection.
   \"collect(keys(d))\" returns an array of keys.

"),

("Base","values","values(collection)

   Return an iterator over all values in a collection.
   \"collect(values(d))\" returns an array of values.

"),

("Base","merge","merge(collection, others...)

   Construct a merged collection from the given collections.

"),

("Base","merge!","merge!(collection, others...)

   Update collection with pairs from the other collections

"),

("Base","sizehint","sizehint(s, n)

   Suggest that collection \"s\" reserve capacity for at least \"n\"
   elements. This can improve performance.

"),

("Base","Set","Set([itr])

   Construct a \"Set\" of the values generated by the given iterable
   object, or an empty set. Should be used instead of \"IntSet\" for
   sparse integer sets, or for sets of arbitrary objects.

"),

("Base","IntSet","IntSet([itr])

   Construct a sorted set of the integers generated by the given
   iterable object, or an empty set. Implemented as a bit string, and
   therefore designed for dense integer sets. Only non-negative
   integers can be stored. If the set will be sparse (for example
   holding a single very large integer), use \"Set\" instead.

"),

("Base","union","union(s1, s2...)

   Construct the union of two or more sets. Maintains order with
   arrays.

"),

("Base","union!","union!(s, iterable)

   Union each element of \"iterable\" into set \"s\" in-place.

"),

("Base","intersect","intersect(s1, s2...)

   Construct the intersection of two or more sets. Maintains order and
   multiplicity of the first argument for arrays and ranges.

"),

("Base","setdiff","setdiff(s1, s2)

   Construct the set of elements in \"s1\" but not \"s2\". Maintains
   order with arrays. Note that both arguments must be collections,
   and both will be iterated over. In particular,
   \"setdiff(set,element)\" where \"element\" is a potential member of
   \"set\", will not work in general.

"),

("Base","setdiff!","setdiff!(s, iterable)

   Remove each element of \"iterable\" from set \"s\" in-place.

"),

("Base","symdiff","symdiff(s1, s2...)

   Construct the symmetric difference of elements in the passed in
   sets or arrays. Maintains order with arrays.

"),

("Base","symdiff!","symdiff!(s, n)

   IntSet s is destructively modified to toggle the inclusion of
   integer \"n\".

"),

("Base","symdiff!","symdiff!(s, itr)

   For each element in \"itr\", destructively toggle its inclusion in
   set \"s\".

"),

("Base","symdiff!","symdiff!(s1, s2)

   Construct the symmetric difference of IntSets \"s1\" and \"s2\",
   storing the result in \"s1\".

"),

("Base","complement","complement(s)

   Returns the set-complement of IntSet s.

"),

("Base","complement!","complement!(s)

   Mutates IntSet s into its set-complement.

"),

("Base","intersect!","intersect!(s1, s2)

   Intersects IntSets s1 and s2 and overwrites the set s1 with the
   result. If needed, s1 will be expanded to the size of s2.

"),

("Base","issubset","issubset(A, S) -> Bool

   True if \"A ⊆ S\" (A is a subset of or equal to S)

"),

("Base","push!","push!(collection, items...) -> collection

   Insert items at the end of a collection.

"),

("Base","pop!","pop!(collection) -> item

   Remove the last item in a collection and return it.

"),

("Base","unshift!","unshift!(collection, items...) -> collection

   Insert items at the beginning of a collection.

"),

("Base","shift!","shift!(collection) -> item

   Remove the first item in a collection.

"),

("Base","insert!","insert!(collection, index, item)

   Insert an item at the given index.

"),

("Base","deleteat!","deleteat!(collection, index)

   Remove the item at the given index, and return the modified
   collection. Subsequent items are shifted to fill the resulting gap.

"),

("Base","deleteat!","deleteat!(collection, itr)

   Remove the items at the indices given by *itr*, and return the
   modified collection. Subsequent items are shifted to fill the
   resulting gap.  *itr* must be sorted and unique.

"),

("Base","splice!","splice!(collection, index[, replacement]) -> item

   Remove the item at the given index, and return the removed item.
   Subsequent items are shifted down to fill the resulting gap. If
   specified, replacement values from an ordered collection will be
   spliced in place of the removed item.

   To insert \"replacement\" before an index \"n\" without removing
   any items, use \"splice!(collection, n:n-1, replacement)\".

"),

("Base","splice!","splice!(collection, range[, replacement]) -> items

   Remove items in the specified index range, and return a collection
   containing the removed items. Subsequent items are shifted down to
   fill the resulting gap. If specified, replacement values from an
   ordered collection will be spliced in place of the removed items.

   To insert \"replacement\" before an index \"n\" without removing
   any items, use \"splice!(collection, n:n-1, replacement)\".

"),

("Base","resize!","resize!(collection, n) -> collection

   Resize collection to contain \"n\" elements.

"),

("Base","append!","append!(collection, items) -> collection.

   Add the elements of \"items\" to the end of a collection.
   \"append!([1],[2,3]) => [1,2,3]\"

"),

("Base","prepend!","prepend!(collection, items) -> collection

   Insert the elements of \"items\" to the beginning of a collection.
   \"prepend!([3],[1,2]) => [1,2,3]\"

"),

("Base","length","length(s)

   The number of characters in string \"s\".

"),

("Base","sizeof","sizeof(s::String)

   The number of bytes in string \"s\".

"),

("Base","*","*(s, t)

   Concatenate strings. The \"*\" operator is an alias to this
   function.

   **Example**:

      julia> \"Hello \" * \"world\"
      \"Hello world\"

"),

("Base","^","^(s, n)

   Repeat \"n\" times the string \"s\". The \"^\" operator is an alias
   to this function.

   **Example**:

      julia> \"Test \"^3
      \"Test Test Test \"

"),

("Base","string","string(xs...)

   Create a string from any values using the \"print\" function.

"),

("Base","repr","repr(x)

   Create a string from any value using the \"showall\" function.

"),

("Base","bytestring","bytestring(::Ptr{Uint8}[, length])

   Create a string from the address of a C (0-terminated) string
   encoded in ASCII or UTF-8. A copy is made; the ptr can be safely
   freed. If \"length\" is specified, the string does not have to be
   0-terminated.

"),

("Base","bytestring","bytestring(s)

   Convert a string to a contiguous byte array representation
   appropriate for passing it to C functions. The string will be
   encoded as either ASCII or UTF-8.

"),

("Base","ascii","ascii(::Array{Uint8, 1})

   Create an ASCII string from a byte array.

"),

("Base","ascii","ascii(s)

   Convert a string to a contiguous ASCII string (all characters must
   be valid ASCII characters).

"),

("Base","utf8","utf8(::Array{Uint8, 1})

   Create a UTF-8 string from a byte array.

"),

("Base","utf8","utf8(s)

   Convert a string to a contiguous UTF-8 string (all characters must
   be valid UTF-8 characters).

"),

("Base","normalize_string","normalize_string(s, normalform::Symbol)

   Normalize the string \"s\" according to one of the four \"normal
   forms\" of the Unicode standard: \"normalform\" can be \":NFC\",
   \":NFD\", \":NFKC\", or \":NFKD\".  Normal forms C (canonical
   composition) and D (canonical decomposition) convert different
   visually identical representations of the same abstract string into
   a single canonical form, with form C being more compact.  Normal
   forms KC and KD additionally canonicalize \"compatibility
   equivalents\": they convert characters that are abstractly similar
   but visually distinct into a single canonical choice (e.g. they
   expand ligatures into the individual characters), with form KC
   being more compact.

   Alternatively, finer control and additional transformations may be
   be obtained by calling *normalize_string(s; keywords...)*, where
   any number of the following boolean keywords options (which all
   default to \"false\" except for \"compose\") are specified:

   * \"compose=false\": do not perform canonical composition

   * \"decompose=true\": do canonical decomposition instead of
     canonical composition (\"compose=true\" is ignored if present)

   * \"compat=true\": compatibility equivalents are canonicalized

   * \"casefold=true\": perform Unicode case folding, e.g. for case-
     insensitive string comparison

   * \"newline2lf=true\", \"newline2ls=true\", or \"newline2ps=true\":
     convert various newline sequences (LF, CRLF, CR, NEL) into a
     linefeed (LF), line-separation (LS), or paragraph-separation (PS)
     character, respectively

   * \"stripmark=true\": strip diacritical marks (e.g. accents)

   * \"stripignore=true\": strip Unicode's \"default ignorable\"
     characters (e.g. the soft hyphen or the left-to-right marker)

   * \"stripcc=true\": strip control characters; horizontal tabs and
     form feeds are converted to spaces; newlines are also converted
     to spaces unless a newline-conversion flag was specified

   * \"rejectna=true\": throw an error if unassigned code points are
     found

   * \"stable=true\": enforce Unicode Versioning Stability

   For example, NFKC corresponds to the options \"compose=true,
   compat=true, stable=true\".

"),

("Base","is_valid_ascii","is_valid_ascii(s) -> Bool

   Returns true if the string or byte vector is valid ASCII, false
   otherwise.

"),

("Base","is_valid_utf8","is_valid_utf8(s) -> Bool

   Returns true if the string or byte vector is valid UTF-8, false
   otherwise.

"),

("Base","is_valid_char","is_valid_char(c) -> Bool

   Returns true if the given char or integer is a valid Unicode code
   point.

"),

("Base","is_assigned_char","is_assigned_char(c) -> Bool

   Returns true if the given char or integer is an assigned Unicode
   code point.

"),

("Base","ismatch","ismatch(r::Regex, s::String) -> Bool

   Test whether a string contains a match of the given regular
   expression.

"),

("Base","match","match(r::Regex, s::String[, idx::Integer[, addopts]])

   Search for the first match of the regular expression \"r\" in \"s\"
   and return a RegexMatch object containing the match, or nothing if
   the match failed. The matching substring can be retrieved by
   accessing \"m.match\" and the captured sequences can be retrieved
   by accessing \"m.captures\" The optional \"idx\" argument specifies
   an index at which to start the search.

"),

("Base","eachmatch","eachmatch(r::Regex, s::String[, overlap::Bool=false])

   Search for all matches of a the regular expression \"r\" in \"s\"
   and return a iterator over the matches. If overlap is true, the
   matching sequences are allowed to overlap indices in the original
   string, otherwise they must be from distinct character ranges.

"),

("Base","matchall","matchall(r::Regex, s::String[, overlap::Bool=false]) -> Vector{String}

   Return a vector of the matching substrings from eachmatch.

"),

("Base","lpad","lpad(string, n, p)

   Make a string at least \"n\" characters long by padding on the left
   with copies of \"p\".

"),

("Base","rpad","rpad(string, n, p)

   Make a string at least \"n\" characters long by padding on the
   right with copies of \"p\".

"),

("Base","search","search(string, chars[, start])

   Search for the first occurance of the given characters within the
   given string. The second argument may be a single character, a
   vector or a set of characters, a string, or a regular expression
   (though regular expressions are only allowed on contiguous strings,
   such as ASCII or UTF-8 strings). The third argument optionally
   specifies a starting index. The return value is a range of indexes
   where the matching sequence is found, such that \"s[search(s,x)] ==
   x\":

   \"search(string, \"substring\")\" = \"start:end\" such that
   \"string[start:end] == \"substring\"\", or \"0:-1\" if unmatched.

   \"search(string, 'c')\"         = \"index\" such that
   \"string[index] == 'c'\", or \"0\" if unmatched.

"),

("Base","rsearch","rsearch(string, chars[, start])

   Similar to \"search\", but returning the last occurance of the
   given characters within the given string, searching in reverse from
   \"start\".

"),

("Base","searchindex","searchindex(string, substring[, start])

   Similar to \"search\", but return only the start index at which the
   substring is found, or 0 if it is not.

"),

("Base","rsearchindex","rsearchindex(string, substring[, start])

   Similar to \"rsearch\", but return only the start index at which
   the substring is found, or 0 if it is not.

"),

("Base","contains","contains(haystack, needle)

   Determine whether the second argument is a substring of the first.

"),

("Base","replace","replace(string, pat, r[, n])

   Search for the given pattern \"pat\", and replace each occurrence
   with \"r\". If \"n\" is provided, replace at most \"n\"
   occurrences.  As with search, the second argument may be a single
   character, a vector or a set of characters, a string, or a regular
   expression. If \"r\" is a function, each occurrence is replaced
   with \"r(s)\" where \"s\" is the matched substring.

"),

("Base","split","split(string, [chars, [limit,] [include_empty]])

   Return an array of substrings by splitting the given string on
   occurrences of the given character delimiters, which may be
   specified in any of the formats allowed by \"search\"'s second
   argument (i.e. a single character, collection of characters,
   string, or regular expression). If \"chars\" is omitted, it
   defaults to the set of all space characters, and \"include_empty\"
   is taken to be false. The last two arguments are also optional:
   they are are a maximum size for the result and a flag determining
   whether empty fields should be included in the result.

"),

("Base","rsplit","rsplit(string, [chars, [limit,] [include_empty]])

   Similar to \"split\", but starting from the end of the string.

"),

("Base","strip","strip(string[, chars])

   Return \"string\" with any leading and trailing whitespace removed.
   If \"chars\" (a character, or vector or set of characters) is
   provided, instead remove characters contained in it.

"),

("Base","lstrip","lstrip(string[, chars])

   Return \"string\" with any leading whitespace removed. If \"chars\"
   (a character, or vector or set of characters) is provided, instead
   remove characters contained in it.

"),

("Base","rstrip","rstrip(string[, chars])

   Return \"string\" with any trailing whitespace removed. If
   \"chars\" (a character, or vector or set of characters) is
   provided, instead remove characters contained in it.

"),

("Base","beginswith","beginswith(string, prefix | chars)

   Returns \"true\" if \"string\" starts with \"prefix\". If the
   second argument is a vector or set of characters, tests whether the
   first character of \"string\" belongs to that set.

"),

("Base","endswith","endswith(string, suffix | chars)

   Returns \"true\" if \"string\" ends with \"suffix\". If the second
   argument is a vector or set of characters, tests whether the last
   character of \"string\" belongs to that set.

"),

("Base","uppercase","uppercase(string)

   Returns \"string\" with all characters converted to uppercase.

"),

("Base","lowercase","lowercase(string)

   Returns \"string\" with all characters converted to lowercase.

"),

("Base","ucfirst","ucfirst(string)

   Returns \"string\" with the first character converted to uppercase.

"),

("Base","lcfirst","lcfirst(string)

   Returns \"string\" with the first character converted to lowercase.

"),

("Base","join","join(strings, delim)

   Join an array of strings into a single string, inserting the given
   delimiter between adjacent strings.

"),

("Base","chop","chop(string)

   Remove the last character from a string

"),

("Base","chomp","chomp(string)

   Remove a trailing newline from a string

"),

("Base","ind2chr","ind2chr(string, i)

   Convert a byte index to a character index

"),

("Base","chr2ind","chr2ind(string, i)

   Convert a character index to a byte index

"),

("Base","isvalid","isvalid(str, i)

   Tells whether index \"i\" is valid for the given string

"),

("Base","nextind","nextind(str, i)

   Get the next valid string index after \"i\". Returns a value
   greater than \"endof(str)\" at or after the end of the string.

"),

("Base","prevind","prevind(str, i)

   Get the previous valid string index before \"i\". Returns a value
   less than \"1\" at the beginning of the string.

"),

("Base","randstring","randstring(len)

   Create a random ASCII string of length \"len\", consisting of
   upper- and lower-case letters and the digits 0-9

"),

("Base","charwidth","charwidth(c)

   Gives the number of columns needed to print a character.

"),

("Base","strwidth","strwidth(s)

   Gives the number of columns needed to print a string.

"),

("Base","isalnum","isalnum(c::Union(Char, String)) -> Bool

   Tests whether a character is alphanumeric, or whether this is true
   for all elements of a string.

"),

("Base","isalpha","isalpha(c::Union(Char, String)) -> Bool

   Tests whether a character is alphabetic, or whether this is true
   for all elements of a string.

"),

("Base","isascii","isascii(c::Union(Char, String)) -> Bool

   Tests whether a character belongs to the ASCII character set, or
   whether this is true for all elements of a string.

"),

("Base","isblank","isblank(c::Union(Char, String)) -> Bool

   Tests whether a character is a tab or space, or whether this is
   true for all elements of a string.

"),

("Base","iscntrl","iscntrl(c::Union(Char, String)) -> Bool

   Tests whether a character is a control character, or whether this
   is true for all elements of a string.

"),

("Base","isdigit","isdigit(c::Union(Char, String)) -> Bool

   Tests whether a character is a numeric digit (0-9), or whether this
   is true for all elements of a string.

"),

("Base","isgraph","isgraph(c::Union(Char, String)) -> Bool

   Tests whether a character is printable, and not a space, or whether
   this is true for all elements of a string.

"),

("Base","islower","islower(c::Union(Char, String)) -> Bool

   Tests whether a character is a lowercase letter, or whether this is
   true for all elements of a string.

"),

("Base","isprint","isprint(c::Union(Char, String)) -> Bool

   Tests whether a character is printable, including space, or whether
   this is true for all elements of a string.

"),

("Base","ispunct","ispunct(c::Union(Char, String)) -> Bool

   Tests whether a character is printable, and not a space or
   alphanumeric, or whether this is true for all elements of a string.

"),

("Base","isspace","isspace(c::Union(Char, String)) -> Bool

   Tests whether a character is any whitespace character, or whether
   this is true for all elements of a string.

"),

("Base","isupper","isupper(c::Union(Char, String)) -> Bool

   Tests whether a character is an uppercase letter, or whether this
   is true for all elements of a string.

"),

("Base","isxdigit","isxdigit(c::Union(Char, String)) -> Bool

   Tests whether a character is a valid hexadecimal digit, or whether
   this is true for all elements of a string.

"),

("Base","symbol","symbol(str) -> Symbol

   Convert a string to a \"Symbol\".

"),

("Base","escape_string","escape_string(str::String) -> String

   General escaping of traditional C and Unicode escape sequences. See
   \"print_escaped()\" for more general escaping.

"),

("Base","unescape_string","unescape_string(s::String) -> String

   General unescaping of traditional C and Unicode escape sequences.
   Reverse of \"escape_string()\". See also \"print_unescaped()\".

"),

("Base","utf16","utf16(s)

   Create a UTF-16 string from a byte array, array of \"Uint16\", or
   any other string type.  (Data must be valid UTF-16.  Conversions of
   byte arrays check for a byte-order marker in the first two bytes,
   and do not include it in the resulting string.)

   Note that the resulting \"UTF16String\" data is terminated by the
   NUL codepoint (16-bit zero), which is not treated as a character in
   the string (so that it is mostly invisible in Julia); this allows
   the string to be passed directly to external functions requiring
   NUL-terminated data.  This NUL is appended automatically by the
   *utf16(s)* conversion function.  If you have a \"Uint16\" array
   \"A\" that is already NUL-terminated valid UTF-16 data, then you
   can instead use *UTF16String(A)`* to construct the string without
   making a copy of the data and treating the NUL as a terminator
   rather than as part of the string.

"),

("Base","utf16","utf16(::Union(Ptr{Uint16}, Ptr{Int16})[, length])

   Create a string from the address of a NUL-terminated UTF-16 string.
   A copy is made; the pointer can be safely freed. If \"length\" is
   specified, the string does not have to be NUL-terminated.

"),

("Base","is_valid_utf16","is_valid_utf16(s) -> Bool

   Returns true if the string or \"Uint16\" array is valid UTF-16.

"),

("Base","utf32","utf32(s)

   Create a UTF-32 string from a byte array, array of \"Uint32\", or
   any other string type.  (Conversions of byte arrays check for a
   byte-order marker in the first four bytes, and do not include it in
   the resulting string.)

   Note that the resulting \"UTF32String\" data is terminated by the
   NUL codepoint (32-bit zero), which is not treated as a character in
   the string (so that it is mostly invisible in Julia); this allows
   the string to be passed directly to external functions requiring
   NUL-terminated data.  This NUL is appended automatically by the
   *utf32(s)* conversion function.  If you have a \"Uint32\" array
   \"A\" that is already NUL-terminated UTF-32 data, then you can
   instead use *UTF32String(A)`* to construct the string without
   making a copy of the data and treating the NUL as a terminator
   rather than as part of the string.

"),

("Base","utf32","utf32(::Union(Ptr{Char}, Ptr{Uint32}, Ptr{Int32})[, length])

   Create a string from the address of a NUL-terminated UTF-32 string.
   A copy is made; the pointer can be safely freed. If \"length\" is
   specified, the string does not have to be NUL-terminated.

"),

("Base","wstring","wstring(s)

   This is a synonym for either \"utf32(s)\" or \"utf16(s)\",
   depending on whether \"Cwchar_t\" is 32 or 16 bits, respectively.
   The synonym \"WString\" for \"UTF32String\" or \"UTF16String\" is
   also provided.

"),

("Base","STDOUT","STDOUT

   Global variable referring to the standard out stream.

"),

("Base","STDERR","STDERR

   Global variable referring to the standard error stream.

"),

("Base","STDIN","STDIN

   Global variable referring to the standard input stream.

"),

("Base","open","open(file_name[, read, write, create, truncate, append]) -> IOStream

   Open a file in a mode specified by five boolean arguments. The
   default is to open files for reading only. Returns a stream for
   accessing the file.

"),

("Base","open","open(file_name[, mode]) -> IOStream

   Alternate syntax for open, where a string-based mode specifier is
   used instead of the five booleans. The values of \"mode\"
   correspond to those from \"fopen(3)\" or Perl \"open\", and are
   equivalent to setting the following boolean groups:

   +------+-----------------------------------+
   | r    | read                              |
   +------+-----------------------------------+
   | r+   | read, write                       |
   +------+-----------------------------------+
   | w    | write, create, truncate           |
   +------+-----------------------------------+
   | w+   | read, write, create, truncate     |
   +------+-----------------------------------+
   | a    | write, create, append             |
   +------+-----------------------------------+
   | a+   | read, write, create, append       |
   +------+-----------------------------------+

"),

("Base","open","open(f::function, args...)

   Apply the function \"f\" to the result of \"open(args...)\" and
   close the resulting file descriptor upon completion.

   **Example**: \"open(readall, \"file.txt\")\"

"),

("Base","IOBuffer","IOBuffer() -> IOBuffer

   Create an in-memory I/O stream.

"),

("Base","IOBuffer","IOBuffer(size::Int)

   Create a fixed size IOBuffer. The buffer will not grow dynamically.

"),

("Base","IOBuffer","IOBuffer(string)

   Create a read-only IOBuffer on the data underlying the given string

"),

("Base","IOBuffer","IOBuffer([data][, readable, writable[, maxsize]])

   Create an IOBuffer, which may optionally operate on a pre-existing
   array. If the readable/writable arguments are given, they restrict
   whether or not the buffer may be read from or written to
   respectively. By default the buffer is readable but not writable.
   The last argument optionally specifies a size beyond which the
   buffer may not be grown.

"),

("Base","takebuf_array","takebuf_array(b::IOBuffer)

   Obtain the contents of an \"IOBuffer\" as an array, without
   copying.

"),

("Base","takebuf_string","takebuf_string(b::IOBuffer)

   Obtain the contents of an \"IOBuffer\" as a string, without
   copying.

"),

("Base","fdio","fdio([name::String], fd::Integer[, own::Bool]) -> IOStream

   Create an \"IOStream\" object from an integer file descriptor. If
   \"own\" is true, closing this object will close the underlying
   descriptor. By default, an \"IOStream\" is closed when it is
   garbage collected. \"name\" allows you to associate the descriptor
   with a named file.

"),

("Base","flush","flush(stream)

   Commit all currently buffered writes to the given stream.

"),

("Base","flush_cstdio","flush_cstdio()

   Flushes the C \"stdout\" and \"stderr\" streams (which may have
   been written to by external C code).

"),

("Base","close","close(stream)

   Close an I/O stream. Performs a \"flush\" first.

"),

("Base","write","write(stream, x)

   Write the canonical binary representation of a value to the given
   stream.

"),

("Base","read","read(stream, type)

   Read a value of the given type from a stream, in canonical binary
   representation.

"),

("Base","read","read(stream, type, dims)

   Read a series of values of the given type from a stream, in
   canonical binary representation. \"dims\" is either a tuple or a
   series of integer arguments specifying the size of \"Array\" to
   return.

"),

("Base","read!","read!(stream, array::Array)

   Read binary data from a stream, filling in the argument \"array\".

"),

("Base","readbytes!","readbytes!(stream, b::Vector{Uint8}, nb=length(b))

   Read at most \"nb\" bytes from the stream into \"b\", returning the
   number of bytes read (increasing the size of \"b\" as needed).

"),

("Base","readbytes","readbytes(stream, nb=typemax(Int))

   Read at most \"nb\" bytes from the stream, returning a
   \"Vector{Uint8}\" of the bytes read.

"),

("Base","position","position(s)

   Get the current position of a stream.

"),

("Base","seek","seek(s, pos)

   Seek a stream to the given position.

"),

("Base","seekstart","seekstart(s)

   Seek a stream to its beginning.

"),

("Base","seekend","seekend(s)

   Seek a stream to its end.

"),

("Base","skip","skip(s, offset)

   Seek a stream relative to the current position.

"),

("Base","mark","mark(s)

   Add a mark at the current position of stream \"s\".  Returns the
   marked position.

   See also \"unmark()\", \"reset()\", \"ismarked()\"

"),

("Base","unmark","unmark(s)

   Remove a mark from stream \"s\". Returns \"true\" if the stream was
   marked, \"false\" otherwise.

   See also \"mark()\", \"reset()\", \"ismarked()\"

"),

("Base","reset","reset(s)

   Reset a stream \"s\" to a previously marked position, and remove
   the mark. Returns the previously marked position. Throws an error
   if the stream is not marked.

   See also \"mark()\", \"unmark()\", \"ismarked()\"

"),

("Base","ismarked","ismarked(s)

   Returns true if stream \"s\" is marked.

   See also \"mark()\", \"unmark()\", \"reset()\"

"),

("Base","eof","eof(stream) -> Bool

   Tests whether an I/O stream is at end-of-file. If the stream is not
   yet exhausted, this function will block to wait for more data if
   necessary, and then return \"false\". Therefore it is always safe
   to read one byte after seeing \"eof\" return \"false\". \"eof\"
   will return \"false\" as long as buffered data is still available,
   even if the remote end of a connection is closed.

"),

("Base","isreadonly","isreadonly(stream) -> Bool

   Determine whether a stream is read-only.

"),

("Base","isopen","isopen(stream) -> Bool

   Determine whether a stream is open (i.e. has not been closed yet).
   If the connection has been closed remotely (in case of e.g. a
   socket), \"isopen\" will return \"false\" even though buffered data
   may still be available. Use \"eof\" to check if necessary.

"),

("Base","ntoh","ntoh(x)

   Converts the endianness of a value from Network byte order (big-
   endian) to that used by the Host.

"),

("Base","hton","hton(x)

   Converts the endianness of a value from that used by the Host to
   Network byte order (big-endian).

"),

("Base","ltoh","ltoh(x)

   Converts the endianness of a value from Little-endian to that used
   by the Host.

"),

("Base","htol","htol(x)

   Converts the endianness of a value from that used by the Host to
   Little-endian.

"),

("Base","ENDIAN_BOM","ENDIAN_BOM

   The 32-bit byte-order-mark indicates the native byte order of the
   host machine. Little-endian machines will contain the value
   0x04030201. Big-endian machines will contain the value 0x01020304.

"),

("Base","serialize","serialize(stream, value)

   Write an arbitrary value to a stream in an opaque format, such that
   it can be read back by \"deserialize\". The read-back value will be
   as identical as possible to the original. In general, this process
   will not work if the reading and writing are done by different
   versions of Julia, or an instance of Julia with a different system
   image.

"),

("Base","deserialize","deserialize(stream)

   Read a value written by \"serialize\".

"),

("Base","print_escaped","print_escaped(io, str::String, esc::String)

   General escaping of traditional C and Unicode escape sequences,
   plus any characters in esc are also escaped (with a backslash).

"),

("Base","print_unescaped","print_unescaped(io, s::String)

   General unescaping of traditional C and Unicode escape sequences.
   Reverse of \"print_escaped()\".

"),

("Base","print_joined","print_joined(io, items, delim[, last])

   Print elements of \"items\" to \"io\" with \"delim\" between them.
   If \"last\" is specified, it is used as the final delimiter instead
   of \"delim\".

"),

("Base","print_shortest","print_shortest(io, x)

   Print the shortest possible representation of number \"x\" as a
   floating point number, ensuring that it would parse to the exact
   same number.

"),

("Base","fd","fd(stream)

   Returns the file descriptor backing the stream or file. Note that
   this function only applies to synchronous *File*'s and *IOStream*'s
   not to any of the asynchronous streams.

"),

("Base","redirect_stdout","redirect_stdout()

   Create a pipe to which all C and Julia level STDOUT output will be
   redirected. Returns a tuple (rd,wr) representing the pipe ends.
   Data written to STDOUT may now be read from the rd end of the pipe.
   The wr end is given for convenience in case the old STDOUT object
   was cached by the user and needs to be replaced elsewhere.

"),

("Base","redirect_stdout","redirect_stdout(stream)

   Replace STDOUT by stream for all C and julia level output to
   STDOUT. Note that *stream* must be a TTY, a Pipe or a TcpSocket.

"),

("Base","redirect_stderr","redirect_stderr([stream])

   Like redirect_stdout, but for STDERR

"),

("Base","redirect_stdin","redirect_stdin([stream])

   Like redirect_stdout, but for STDIN. Note that the order of the
   return tuple is still (rd,wr), i.e. data to be read from STDIN, may
   be written to wr.

"),

("Base","readchomp","readchomp(x)

   Read the entirety of x as a string but remove trailing newlines.
   Equivalent to chomp(readall(x)).

"),

("Base","readdir","readdir([dir]) -> Vector{ByteString}

   Returns the files and directories in the directory *dir* (or the
   current working directory if not given).

"),

("Base","truncate","truncate(file, n)

   Resize the file or buffer given by the first argument to exactly
   *n* bytes, filling previously unallocated space with '0' if the
   file or buffer is grown

"),

("Base","skipchars","skipchars(stream, predicate; linecomment::Char)

   Advance the stream until before the first character for which
   \"predicate\" returns false. For example \"skipchars(stream,
   isspace)\" will skip all whitespace. If keyword argument
   \"linecomment\" is specified, characters from that character
   through the end of a line will also be skipped.

"),

("Base","countlines","countlines(io[, eol::Char])

   Read io until the end of the stream/file and count the number of
   non-empty lines. To specify a file pass the filename as the first
   argument. EOL markers other than 'n' are supported by passing them
   as the second argument.

"),

("Base","PipeBuffer","PipeBuffer()

   An IOBuffer that allows reading and performs writes by appending.
   Seeking and truncating are not supported. See IOBuffer for the
   available constructors.

"),

("Base","PipeBuffer","PipeBuffer(data::Vector{Uint8}[, maxsize])

   Create a PipeBuffer to operate on a data vector, optionally
   specifying a size beyond which the underlying Array may not be
   grown.

"),

("Base","readavailable","readavailable(stream)

   Read all available data on the stream, blocking the task only if no
   data is available.

"),

("Base","stat","stat(file)

   Returns a structure whose fields contain information about the
   file. The fields of the structure are:

   +-----------+------------------------------------------------------------------------+
   | size      | The size (in bytes) of the file                                        |
   +-----------+------------------------------------------------------------------------+
   | device    | ID of the device that contains the file                                |
   +-----------+------------------------------------------------------------------------+
   | inode     | The inode number of the file                                           |
   +-----------+------------------------------------------------------------------------+
   | mode      | The protection mode of the file                                        |
   +-----------+------------------------------------------------------------------------+
   | nlink     | The number of hard links to the file                                   |
   +-----------+------------------------------------------------------------------------+
   | uid       | The user id of the owner of the file                                   |
   +-----------+------------------------------------------------------------------------+
   | gid       | The group id of the file owner                                         |
   +-----------+------------------------------------------------------------------------+
   | rdev      | If this file refers to a device, the ID of the device it refers to     |
   +-----------+------------------------------------------------------------------------+
   | blksize   | The file-system preffered block size for the file                      |
   +-----------+------------------------------------------------------------------------+
   | blocks    | The number of such blocks allocated                                    |
   +-----------+------------------------------------------------------------------------+
   | mtime     | Unix timestamp of when the file was last modified                      |
   +-----------+------------------------------------------------------------------------+
   | ctime     | Unix timestamp of when the file was created                            |
   +-----------+------------------------------------------------------------------------+

"),

("Base","lstat","lstat(file)

   Like stat, but for symbolic links gets the info for the link itself
   rather than the file it refers to. This function must be called on
   a file path rather than a file object or a file descriptor.

"),

("Base","ctime","ctime(file)

   Equivalent to stat(file).ctime

"),

("Base","mtime","mtime(file)

   Equivalent to stat(file).mtime

"),

("Base","filemode","filemode(file)

   Equivalent to stat(file).mode

"),

("Base","filesize","filesize(path...)

   Equivalent to stat(file).size

"),

("Base","uperm","uperm(file)

   Gets the permissions of the owner of the file as a bitfield of

   +------+-----------------------+
   | 01   | Execute Permission    |
   +------+-----------------------+
   | 02   | Write Permission      |
   +------+-----------------------+
   | 04   | Read Permission       |
   +------+-----------------------+

   For allowed arguments, see \"stat\".

"),

("Base","gperm","gperm(file)

   Like uperm but gets the permissions of the group owning the file

"),

("Base","operm","operm(file)

   Like uperm but gets the permissions for people who neither own the
   file nor are a member of the group owning the file

"),

("Base","cp","cp(src::String, dst::String)

   Copy a file from *src* to *dest*.

"),

("Base","download","download(url[, localfile])

   Download a file from the given url, optionally renaming it to the
   given local file name. Note that this function relies on the
   availability of external tools such as \"curl\", \"wget\" or
   \"fetch\" to download the file and is provided for convenience. For
   production use or situations in which more options are need, please
   use a package that provides the desired functionality instead.

"),

("Base","mv","mv(src::String, dst::String)

   Move a file from *src* to *dst*.

"),

("Base","rm","rm(path::String; recursive=false)

   Delete the file, link, or empty directory at the given path. If
   \"recursive=true\" is passed and the path is a directory, then all
   contents are removed recursively.

"),

("Base","touch","touch(path::String)

   Update the last-modified timestamp on a file to the current time.

"),

("Base","connect","connect([host], port) -> TcpSocket

   Connect to the host \"host\" on port \"port\"

"),

("Base","connect","connect(path) -> Pipe

   Connect to the Named Pipe/Domain Socket at \"path\"

"),

("Base","listen","listen([addr], port) -> TcpServer

   Listen on port on the address specified by \"addr\". By default
   this listens on localhost only. To listen on all interfaces pass,
   \"IPv4(0)\" or \"IPv6(0)\" as appropriate.

"),

("Base","listen","listen(path) -> PipeServer

   Listens on/Creates a Named Pipe/Domain Socket

"),

("Base","getaddrinfo","getaddrinfo(host)

   Gets the IP address of the \"host\" (may have to do a DNS lookup)

"),

("Base","parseip","parseip(addr)

   Parse a string specifying an IPv4 or IPv6 ip address.

"),

("Base","IPv4","IPv4(host::Integer) -> IPv4

   Returns IPv4 object from ip address formatted as Integer

"),

("Base","IPv6","IPv6(host::Integer) -> IPv6

   Returns IPv6 object from ip address formatted as Integer

"),

("Base","nb_available","nb_available(stream)

   Returns the number of bytes available for reading before a read
   from this stream or buffer will block.

"),

("Base","accept","accept(server[, client])

   Accepts a connection on the given server and returns a connection
   to the client. An uninitialized client stream may be provided, in
   which case it will be used instead of creating a new stream.

"),

("Base","listenany","listenany(port_hint) -> (Uint16, TcpServer)

   Create a TcpServer on any port, using hint as a starting point.
   Returns a tuple of the actual port that the server was created on
   and the server itself.

"),

("Base","watch_file","watch_file(cb=false, s; poll=false)

   Watch file or directory \"s\" and run callback \"cb\" when \"s\" is
   modified. The \"poll\" parameter specifies whether to use file
   system event monitoring or polling. The callback function \"cb\"
   should accept 3 arguments: \"(filename, events, status)\" where
   \"filename\" is the name of file that was modified, \"events\" is
   an object with boolean fields \"changed\" and \"renamed\" when
   using file system event monitoring, or \"readable\" and
   \"writable\" when using polling, and \"status\" is always 0. Pass
   \"false\" for \"cb\" to not use a callback function.

"),

("Base","poll_fd","poll_fd(fd, seconds::Real; readable=false, writable=false)

   Poll a file descriptor fd for changes in the read or write
   availability and with a timeout given by the second argument. If
   the timeout is not needed, use \"wait(fd)\" instead. The keyword
   arguments determine which of read and/or write status should be
   monitored and at least one of them needs to be set to true. The
   returned value is an object with boolean fields \"readable\",
   \"writable\", and \"timedout\", giving the result of the polling.

"),

("Base","poll_file","poll_file(s, interval_seconds::Real, seconds::Real)

   Monitor a file for changes by polling every *interval_seconds*
   seconds for *seconds* seconds. A return value of true indicates the
   file changed, a return value of false indicates a timeout.

"),

("Base","show","show(x)

   Write an informative text representation of a value to the current
   output stream. New types should overload \"show(io, x)\" where the
   first argument is a stream. The representation used by \"show\"
   generally includes Julia-specific formatting and type information.

"),

("Base","showcompact","showcompact(x)

   Show a more compact representation of a value. This is used for
   printing array elements. If a new type has a different compact
   representation, it should overload \"showcompact(io, x)\" where the
   first argument is a stream.

"),

("Base","showall","showall(x)

   Similar to \"show\", except shows all elements of arrays.

"),

("Base","summary","summary(x)

   Return a string giving a brief description of a value. By default
   returns \"string(typeof(x))\". For arrays, returns strings like
   \"2x2 Float64 Array\".

"),

("Base","print","print(x)

   Write (to the default output stream) a canonical (un-decorated)
   text representation of a value if there is one, otherwise call
   \"show\". The representation used by \"print\" includes minimal
   formatting and tries to avoid Julia-specific details.

"),

("Base","println","println(x)

   Print (using \"print()\") \"x\" followed by a newline.

"),

("Base","print_with_color","print_with_color(color::Symbol[, io], strings...)

   Print strings in a color specified as a symbol, for example
   \":red\" or \":blue\".

"),

("Base","info","info(msg)

   Display an informational message.

"),

("Base","warn","warn(msg)

   Display a warning.

"),

("Base","@printf","@printf([io::IOStream], \"%Fmt\", args...)

   Print arg(s) using C \"printf()\" style format specification
   string. Optionally, an IOStream may be passed as the first argument
   to redirect output.

"),

("Base","@sprintf","@sprintf(\"%Fmt\", args...)

   Return \"@printf\" formatted output as string.

"),

("Base","sprint","sprint(f::Function, args...)

   Call the given function with an I/O stream and the supplied extra
   arguments. Everything written to this I/O stream is returned as a
   string.

"),

("Base","showerror","showerror(io, e)

   Show a descriptive representation of an exception object.

"),

("Base","dump","dump(x)

   Show all user-visible structure of a value.

"),

("Base","xdump","xdump(x)

   Show all structure of a value, including all fields of objects.

"),

("Base","readall","readall(stream::IO)

   Read the entire contents of an I/O stream as a string.

"),

("Base","readall","readall(filename::String)

   Open \"filename\", read the entire contents as a string, then close
   the file. Equivalent to \"open(readall, filename)\".

"),

("Base","readline","readline(stream=STDIN)

   Read a single line of text, including a trailing newline character
   (if one is reached before the end of the input), from the given
   \"stream\" (defaults to \"STDIN\"),

"),

("Base","readuntil","readuntil(stream, delim)

   Read a string, up to and including the given delimiter byte.

"),

("Base","readlines","readlines(stream)

   Read all lines as an array.

"),

("Base","eachline","eachline(stream)

   Create an iterable object that will yield each line from a stream.

"),

("Base","readdlm","readdlm(source, delim::Char, T::Type, eol::Char; header=false, skipstart=0, use_mmap, ignore_invalid_chars=false, quotes=true, dims, comments=true, comment_char='#')

   Read a matrix from the source where each line (separated by
   \"eol\") gives one row, with elements separated by the given
   delimeter. The source can be a text file, stream or byte array.
   Memory mapped files can be used by passing the byte array
   representation of the mapped segment as source.

   If \"T\" is a numeric type, the result is an array of that type,
   with any non-numeric elements as \"NaN\" for floating-point types,
   or zero. Other useful values of \"T\" include \"ASCIIString\",
   \"String\", and \"Any\".

   If \"header\" is \"true\", the first row of data will be read as
   header and the tuple \"(data_cells, header_cells)\" is returned
   instead of only \"data_cells\".

   Specifying \"skipstart\" will ignore the corresponding number of
   initial lines from the input.

   If \"use_mmap\" is \"true\", the file specified by \"source\" is
   memory mapped for potential speedups. Default is \"true\" except on
   Windows. On Windows, you may want to specify \"true\" if the file
   is large, and is only read once and not written to.

   If \"ignore_invalid_chars\" is \"true\", bytes in \"source\" with
   invalid character encoding will be ignored. Otherwise an error is
   thrown indicating the offending character position.

   If \"quotes\" is \"true\", column enclosed within double-quote (``)
   characters are allowed to contain new lines and column delimiters.
   Double-quote characters within a quoted field must be escaped with
   another double-quote.

   Specifying \"dims\" as a tuple of the expected rows and columns
   (including header, if any) may speed up reading of large files.

   If \"comments\" is \"true\", lines beginning with \"comment_char\"
   and text following \"comment_char\" in any line are ignored.

"),

("Base","readdlm","readdlm(source, delim::Char, eol::Char; options...)

   If all data is numeric, the result will be a numeric array. If some
   elements cannot be parsed as numbers, a cell array of numbers and
   strings is returned.

"),

("Base","readdlm","readdlm(source, delim::Char, T::Type; options...)

   The end of line delimiter is taken as \"\\n\".

"),

("Base","readdlm","readdlm(source, delim::Char; options...)

   The end of line delimiter is taken as \"\\n\". If all data is
   numeric, the result will be a numeric array. If some elements
   cannot be parsed as numbers, a cell array of numbers and strings is
   returned.

"),

("Base","readdlm","readdlm(source, T::Type; options...)

   The columns are assumed to be separated by one or more whitespaces.
   The end of line delimiter is taken as \"\\n\".

"),

("Base","readdlm","readdlm(source; options...)

   The columns are assumed to be separated by one or more whitespaces.
   The end of line delimiter is taken as \"\\n\". If all data is
   numeric, the result will be a numeric array. If some elements
   cannot be parsed as numbers, a cell array of numbers and strings is
   returned.

"),

("Base","writedlm","writedlm(f, A, delim='t')

   Write \"A\" (either an array type or an iterable collection of
   iterable rows) as text to \"f\" (either a filename string or an
   \"IO\" stream) using the given delimeter \"delim\" (which defaults
   to tab, but can be any printable Julia object, typically a \"Char\"
   or \"String\").

   For example, two vectors \"x\" and \"y\" of the same length can be
   written as two columns of tab-delimited text to \"f\" by either
   \"writedlm(f, [x y])\" or by \"writedlm(f, zip(x, y))\".

"),

("Base","readcsv","readcsv(source, [T::Type]; options...)

   Equivalent to \"readdlm\" with \"delim\" set to comma.

"),

("Base","writecsv","writecsv(filename, A)

   Equivalent to \"writedlm\" with \"delim\" set to comma.

"),

("Base","Base64Pipe","Base64Pipe(ostream)

   Returns a new write-only I/O stream, which converts any bytes
   written to it into base64-encoded ASCII bytes written to
   \"ostream\".  Calling \"close\" on the \"Base64Pipe\" stream is
   necessary to complete the encoding (but does not close
   \"ostream\").

"),

("Base","base64","base64(writefunc, args...)
base64(args...)

   Given a \"write\"-like function \"writefunc\", which takes an I/O
   stream as its first argument, \"base64(writefunc, args...)\" calls
   \"writefunc\" to write \"args...\" to a base64-encoded string, and
   returns the string.  \"base64(args...)\" is equivalent to
   \"base64(write, args...)\": it converts its arguments into bytes
   using the standard \"write\" functions and returns the
   base64-encoded string.

"),

("Base","display","display(x)
display(d::Display, x)
display(mime, x)
display(d::Display, mime, x)

   Display \"x\" using the topmost applicable display in the display
   stack, typically using the richest supported multimedia output for
   \"x\", with plain-text \"STDOUT\" output as a fallback.  The
   \"display(d, x)\" variant attempts to display \"x\" on the given
   display \"d\" only, throwing a \"MethodError\" if \"d\" cannot
   display objects of this type.

   There are also two variants with a \"mime\" argument (a MIME type
   string, such as \"\"image/png\"\"), which attempt to display \"x\"
   using the requesed MIME type *only*, throwing a \"MethodError\" if
   this type is not supported by either the display(s) or by \"x\".
   With these variants, one can also supply the \"raw\" data in the
   requested MIME type by passing \"x::String\" (for MIME types with
   text-based storage, such as text/html or application/postscript) or
   \"x::Vector{Uint8}\" (for binary MIME types).

"),

("Base","redisplay","redisplay(x)
redisplay(d::Display, x)
redisplay(mime, x)
redisplay(d::Display, mime, x)

   By default, the \"redisplay\" functions simply call \"display\".
   However, some display backends may override \"redisplay\" to modify
   an existing display of \"x\" (if any).   Using \"redisplay\" is
   also a hint to the backend that \"x\" may be redisplayed several
   times, and the backend may choose to defer the display until (for
   example) the next interactive prompt.

"),

("Base","displayable","displayable(mime) -> Bool
displayable(d::Display, mime) -> Bool

   Returns a boolean value indicating whether the given \"mime\" type
   (string) is displayable by any of the displays in the current
   display stack, or specifically by the display \"d\" in the second
   variant.

"),

("Base","writemime","writemime(stream, mime, x)

   The \"display\" functions ultimately call \"writemime\" in order to
   write an object \"x\" as a given \"mime\" type to a given I/O
   \"stream\" (usually a memory buffer), if possible.  In order to
   provide a rich multimedia representation of a user-defined type
   \"T\", it is only necessary to define a new \"writemime\" method
   for \"T\", via: \"writemime(stream, ::MIME\"mime\", x::T) = ...\",
   where \"mime\" is a MIME-type string and the function body calls
   \"write\" (or similar) to write that representation of \"x\" to
   \"stream\". (Note that the \"MIME\"\"\" notation only supports
   literal strings; to construct \"MIME\" types in a more flexible
   manner use \"MIME{symbol(\"\")}\".)

   For example, if you define a \"MyImage\" type and know how to write
   it to a PNG file, you could define a function \"writemime(stream,
   ::MIME\"image/png\", x::MyImage) = ...`\" to allow your images to
   be displayed on any PNG-capable \"Display\" (such as IJulia). As
   usual, be sure to \"import Base.writemime\" in order to add new
   methods to the built-in Julia function \"writemime\".

   Technically, the \"MIME\"mime\"\" macro defines a singleton type
   for the given \"mime\" string, which allows us to exploit Julia's
   dispatch mechanisms in determining how to display objects of any
   given type.

"),

("Base","mimewritable","mimewritable(mime, x)

   Returns a boolean value indicating whether or not the object \"x\"
   can be written as the given \"mime\" type.  (By default, this is
   determined automatically by the existence of the corresponding
   \"writemime\" function for \"typeof(x)\".)

"),

("Base","reprmime","reprmime(mime, x)

   Returns a \"String\" or \"Vector{Uint8}\" containing the
   representation of \"x\" in the requested \"mime\" type, as written
   by \"writemime\" (throwing a \"MethodError\" if no appropriate
   \"writemime\" is available).  A \"String\" is returned for MIME
   types with textual representations (such as \"\"text/html\"\" or
   \"\"application/postscript\"\"), whereas binary data is returned as
   \"Vector{Uint8}\".  (The function \"istext(mime)\" returns whether
   or not Julia treats a given \"mime\" type as text.)

   As a special case, if \"x\" is a \"String\" (for textual MIME
   types) or a \"Vector{Uint8}\" (for binary MIME types), the
   \"reprmime\" function assumes that \"x\" is already in the
   requested \"mime\" format and simply returns \"x\".

"),

("Base","stringmime","stringmime(mime, x)

   Returns a \"String\" containing the representation of \"x\" in the
   requested \"mime\" type.  This is similar to \"reprmime\" except
   that binary data is base64-encoded as an ASCII string.

"),

("Base","pushdisplay","pushdisplay(d::Display)

   Pushes a new display \"d\" on top of the global display-backend
   stack.  Calling \"display(x)\" or \"display(mime, x)\" will display
   \"x\" on the topmost compatible backend in the stack (i.e., the
   topmost backend that does not throw a \"MethodError\").

"),

("Base","popdisplay","popdisplay()
popdisplay(d::Display)

   Pop the topmost backend off of the display-backend stack, or the
   topmost copy of \"d\" in the second variant.

"),

("Base","TextDisplay","TextDisplay(stream)

   Returns a \"TextDisplay <: Display\", which can display any object
   as the text/plain MIME type (only), writing the text representation
   to the given I/O stream.  (The text representation is the same as
   the way an object is printed in the Julia REPL.)

"),

("Base","istext","istext(m::MIME)

   Determine whether a MIME type is text data.

"),

("Base","mmap_array","mmap_array(type, dims, stream[, offset])

   Create an \"Array\" whose values are linked to a file, using
   memory-mapping. This provides a convenient way of working with data
   too large to fit in the computer's memory.

   The type determines how the bytes of the array are interpreted.
   Note that the file must be stored in binary format, and no format
   conversions are possible (this is a limitation of operating
   systems, not Julia).

   dims is a tuple specifying the size of the array.

   The file is passed via the stream argument.  When you initialize
   the stream, use \"\"r\"\" for a \"read-only\" array, and \"\"w+\"\"
   to create a new array used to write values to disk.

   Optionally, you can specify an offset (in bytes) if, for example,
   you want to skip over a header in the file. The default value for
   the offset is the current stream position.

   **Example**:

      # Create a file for mmapping
      # (you could alternatively use mmap_array to do this step, too)
      A = rand(1:20, 5, 30)
      s = open(\"/tmp/mmap.bin\", \"w+\")
      # We'll write the dimensions of the array as the first two Ints in the file
      write(s, size(A,1))
      write(s, size(A,2))
      # Now write the data
      write(s, A)
      close(s)

      # Test by reading it back in
      s = open(\"/tmp/mmap.bin\")   # default is read-only
      m = read(s, Int)
      n = read(s, Int)
      A2 = mmap_array(Int, (m,n), s)

   This would create a m-by-n \"Matrix{Int}\", linked to the file
   associated with stream \"s\".

   A more portable file would need to encode the word size---32 bit or
   64 bit---and endianness information in the header. In practice,
   consider encoding binary data using standard formats like HDF5
   (which can be used with memory-mapping).

"),

("Base","mmap_bitarray","mmap_bitarray([type], dims, stream[, offset])

   Create a \"BitArray\" whose values are linked to a file, using
   memory-mapping; it has the same purpose, works in the same way, and
   has the same arguments, as \"mmap_array()\", but the byte
   representation is different. The \"type\" parameter is optional,
   and must be \"Bool\" if given.

   **Example**:  \"B = mmap_bitarray((25,30000), s)\"

   This would create a 25-by-30000 \"BitArray\", linked to the file
   associated with stream \"s\".

"),

("Base","msync","msync(array)

   Forces synchronization between the in-memory version of a memory-
   mapped \"Array\" or \"BitArray\" and the on-disk version.

"),

("Base","msync","msync(ptr, len[, flags])

   Forces synchronization of the mmap'd memory region from ptr to
   ptr+len. Flags defaults to MS_SYNC, but can be a combination of
   MS_ASYNC, MS_SYNC, or MS_INVALIDATE. See your platform man page for
   specifics. The flags argument is not valid on Windows.

   You may not need to call \"msync\", because synchronization is
   performed at intervals automatically by the operating system.
   However, you can call this directly if, for example, you are
   concerned about losing the result of a long-running calculation.

"),

("Base","MS_ASYNC","MS_ASYNC

   Enum constant for msync. See your platform man page for details.
   (not available on Windows).

"),

("Base","MS_SYNC","MS_SYNC

   Enum constant for msync. See your platform man page for details.
   (not available on Windows).

"),

("Base","MS_INVALIDATE","MS_INVALIDATE

   Enum constant for msync. See your platform man page for details.
   (not available on Windows).

"),

("Base","mmap","mmap(len, prot, flags, fd, offset)

   Low-level interface to the mmap system call. See the man page.

"),

("Base","munmap","munmap(pointer, len)

   Low-level interface for unmapping memory (see the man page). With
   mmap_array you do not need to call this directly; the memory is
   unmapped for you when the array goes out of scope.

"),

("Base","-","-(x)

   Unary minus operator.

"),

("Base","+","+(x, y...)

   Addition operator. \"x+y+z+...\" calls this function with all
   arguments, i.e. \"+(x, y, z, ...)\".

"),

("Base","-","-(x, y)

   Subtraction operator.

"),

("Base","*","*(x, y...)

   Multiplication operator. \"x*y*z*...\" calls this function with all
   arguments, i.e. \"*(x, y, z, ...)\".

"),

("Base","/","/(x, y)

   Right division operator: multiplication of \"x\" by the inverse of
   \"y\" on the right. Gives floating-point results for integer
   arguments.

"),

("Base","\\","\\(x, y)

   Left division operator: multiplication of \"y\" by the inverse of
   \"x\" on the left. Gives floating-point results for integer
   arguments.

"),

("Base","^","^(x, y)

   Exponentiation operator.

"),

("Base",".+",".+(x, y)

   Element-wise addition operator.

"),

("Base",".-",".-(x, y)

   Element-wise subtraction operator.

"),

("Base",".*",".*(x, y)

   Element-wise multiplication operator.

"),

("Base","./","./(x, y)

   Element-wise right division operator.

"),

("Base",".\\",".\\(x, y)

   Element-wise left division operator.

"),

("Base",".^",".^(x, y)

   Element-wise exponentiation operator.

"),

("Base","div","div(a, b)

   Compute a/b, truncating to an integer.

"),

("Base","fld","fld(a, b)

   Largest integer less than or equal to a/b.

"),

("Base","mod","mod(x, m)

   Modulus after division, returning in the range [0,m).

"),

("Base","mod2pi","mod2pi(x)

   Modulus after division by 2pi, returning in the range [0,2pi).

   This function computes a floating point representation of the
   modulus after division by numerically exact 2pi, and is therefore
   not exactly the same as mod(x,2pi), which would compute the modulus
   of x relative to division by the floating-point number 2pi.

"),

("Base","rem","rem(x, m)

   Remainder after division.

"),

("Base","divrem","divrem(x, y)

   Returns \"(x/y, x%y)\".

"),

("Base","%","%(x, m)

   Remainder after division. The operator form of \"rem\".

"),

("Base","mod1","mod1(x, m)

   Modulus after division, returning in the range (0,m]

"),

("Base","rem1","rem1(x, m)

   Remainder after division, returning in the range (0,m]

"),

("Base","//","//(num, den)

   Divide two integers or rational numbers, giving a \"Rational\"
   result.

"),

("Base","rationalize","rationalize([Type=Int], x; tol=eps(x))

   Approximate floating point number \"x\" as a Rational number with
   components of the given integer type. The result will differ from
   \"x\" by no more than \"tol\".

"),

("Base","num","num(x)

   Numerator of the rational representation of \"x\"

"),

("Base","den","den(x)

   Denominator of the rational representation of \"x\"

"),

("Base","<<","<<(x, n)

   Left bit shift operator.

"),

("Base",">>",">>(x, n)

   Right bit shift operator, preserving the sign of \"x\".

"),

("Base",">>>",">>>(x, n)

   Unsigned right bit shift operator.

"),

("Base",":",":(start[, step], stop)

   Range operator. \"a:b\" constructs a range from \"a\" to \"b\" with
   a step size of 1, and \"a:s:b\" is similar but uses a step size of
   \"s\". These syntaxes call the function \"colon\". The colon is
   also used in indexing to select whole dimensions.

"),

("Base","colon","colon(start[, step], stop)

   Called by \":\" syntax for constructing ranges.

"),

("Base","range","range(start[, step], length)

   Construct a range by length, given a starting value and optional
   step (defaults to 1).

"),

("Base","linrange","linrange(start, end, length)

   Construct a range by length, given a starting and ending value.

"),

("Base","==","==(x, y)

   Generic equality operator, giving a single \"Bool\" result. Falls
   back to \"===\". Should be implemented for all types with a notion
   of equality, based on the abstract value that an instance
   represents. For example, all numeric types are compared by numeric
   value, ignoring type. Strings are compared as sequences of
   characters, ignoring encoding.

   Follows IEEE semantics for floating-point numbers.

   Collections should generally implement \"==\" by calling \"==\"
   recursively on all contents.

   New numeric types should implement this function for two arguments
   of the new type, and handle comparison to other types via promotion
   rules where possible.

"),

("Base","!=","!=(x, y)

   Not-equals comparison operator. Always gives the opposite answer as
   \"==\". New types should generally not implement this, and rely on
   the fallback definition \"!=(x,y) = !(x==y)\" instead.

"),

("Base","===","===(x, y)

   See the \"is()\" operator

"),

("Base","!==","!==(x, y)

   Equivalent to \"!is(x, y)\"

"),

("Base","<","<(x, y)

   Less-than comparison operator. New numeric types should implement
   this function for two arguments of the new type. Because of the
   behavior of floating-point NaN values, \"<\" implements a partial
   order. Types with a canonical partial order should implement \"<\",
   and types with a canonical total order should implement \"isless\".

"),

("Base","<=","<=(x, y)

   Less-than-or-equals comparison operator.

"),

("Base",">",">(x, y)

   Greater-than comparison operator. Generally, new types should
   implement \"<\" instead of this function, and rely on the fallback
   definition \">(x,y) = y<x\".

"),

("Base",">=",">=(x, y)

   Greater-than-or-equals comparison operator.

"),

("Base",".==",".==(x, y)

   Element-wise equality comparison operator.

"),

("Base",".!=",".!=(x, y)

   Element-wise not-equals comparison operator.

"),

("Base",".<",".<(x, y)

   Element-wise less-than comparison operator.

"),

("Base",".<=",".<=(x, y)

   Element-wise less-than-or-equals comparison operator.

"),

("Base",".>",".>(x, y)

   Element-wise greater-than comparison operator.

"),

("Base",".>=",".>=(x, y)

   Element-wise greater-than-or-equals comparison operator.

"),

("Base","cmp","cmp(x, y)

   Return -1, 0, or 1 depending on whether \"x\" is less than, equal
   to, or greater than \"y\", respectively. Uses the total order
   implemented by \"isless\". For floating-point numbers, uses \"<\"
   but throws an error for unordered arguments.

"),

("Base","~","~(x)

   Bitwise not

"),

("Base","&","&(x, y)

   Bitwise and

"),

("Base","|","|(x, y)

   Bitwise or

"),

("Base","\$","\$(x, y)

   Bitwise exclusive or

"),

("Base","!","!(x)

   Boolean not

"),

("","x && y","x && y

   Short-circuiting boolean and

"),

("","x || y","x || y

   Short-circuiting boolean or

"),

("Base","A_ldiv_Bc","A_ldiv_Bc(a, b)

   Matrix operator A \\ B^H

"),

("Base","A_ldiv_Bt","A_ldiv_Bt(a, b)

   Matrix operator A \\ B^T

"),

("Base","A_mul_B","A_mul_B(...)

   Matrix operator A B

"),

("Base","A_mul_Bc","A_mul_Bc(...)

   Matrix operator A B^H

"),

("Base","A_mul_Bt","A_mul_Bt(...)

   Matrix operator A B^T

"),

("Base","A_rdiv_Bc","A_rdiv_Bc(...)

   Matrix operator A / B^H

"),

("Base","A_rdiv_Bt","A_rdiv_Bt(a, b)

   Matrix operator A / B^T

"),

("Base","Ac_ldiv_B","Ac_ldiv_B(...)

   Matrix operator A^H \\ B

"),

("Base","Ac_ldiv_Bc","Ac_ldiv_Bc(...)

   Matrix operator A^H \\ B^H

"),

("Base","Ac_mul_B","Ac_mul_B(...)

   Matrix operator A^H B

"),

("Base","Ac_mul_Bc","Ac_mul_Bc(...)

   Matrix operator A^H B^H

"),

("Base","Ac_rdiv_B","Ac_rdiv_B(a, b)

   Matrix operator A^H / B

"),

("Base","Ac_rdiv_Bc","Ac_rdiv_Bc(a, b)

   Matrix operator A^H / B^H

"),

("Base","At_ldiv_B","At_ldiv_B(...)

   Matrix operator A^T \\ B

"),

("Base","At_ldiv_Bt","At_ldiv_Bt(...)

   Matrix operator A^T \\ B^T

"),

("Base","At_mul_B","At_mul_B(...)

   Matrix operator A^T B

"),

("Base","At_mul_Bt","At_mul_Bt(...)

   Matrix operator A^T B^T

"),

("Base","At_rdiv_B","At_rdiv_B(a, b)

   Matrix operator A^T / B

"),

("Base","At_rdiv_Bt","At_rdiv_Bt(a, b)

   Matrix operator A^T / B^T

"),

("Base","isapprox","isapprox(x::Number, y::Number; rtol::Real=cbrt(maxeps), atol::Real=sqrt(maxeps))

   Inexact equality comparison - behaves slightly different depending
   on types of input args:

   * For \"FloatingPoint\" numbers, \"isapprox\" returns \"true\" if
     \"abs(x-y) <= atol + rtol*max(abs(x), abs(y))\".

   * For \"Integer\" and \"Rational\" numbers, \"isapprox\" returns
     \"true\" if \"abs(x-y) <= atol\". The *rtol* argument is ignored.
     If one of \"x\" and \"y\" is \"FloatingPoint\", the other is
     promoted, and the method above is called instead.

   * For \"Complex\" numbers, the distance in the complex plane is
     compared, using the same criterion as above.

   For default tolerance arguments, \"maxeps = max(eps(abs(x)),
   eps(abs(y)))\".

"),

("Base","sin","sin(x)

   Compute sine of \"x\", where \"x\" is in radians

"),

("Base","cos","cos(x)

   Compute cosine of \"x\", where \"x\" is in radians

"),

("Base","tan","tan(x)

   Compute tangent of \"x\", where \"x\" is in radians

"),

("Base","sind","sind(x)

   Compute sine of \"x\", where \"x\" is in degrees

"),

("Base","cosd","cosd(x)

   Compute cosine of \"x\", where \"x\" is in degrees

"),

("Base","tand","tand(x)

   Compute tangent of \"x\", where \"x\" is in degrees

"),

("Base","sinpi","sinpi(x)

   Compute \\sin(\\pi x) more accurately than \"sin(pi*x)\",
   especially for large \"x\".

"),

("Base","cospi","cospi(x)

   Compute \\cos(\\pi x) more accurately than \"cos(pi*x)\",
   especially for large \"x\".

"),

("Base","sinh","sinh(x)

   Compute hyperbolic sine of \"x\"

"),

("Base","cosh","cosh(x)

   Compute hyperbolic cosine of \"x\"

"),

("Base","tanh","tanh(x)

   Compute hyperbolic tangent of \"x\"

"),

("Base","asin","asin(x)

   Compute the inverse sine of \"x\", where the output is in radians

"),

("Base","acos","acos(x)

   Compute the inverse cosine of \"x\", where the output is in radians

"),

("Base","atan","atan(x)

   Compute the inverse tangent of \"x\", where the output is in
   radians

"),

("Base","atan2","atan2(y, x)

   Compute the inverse tangent of \"y/x\", using the signs of both
   \"x\" and \"y\" to determine the quadrant of the return value.

"),

("Base","asind","asind(x)

   Compute the inverse sine of \"x\", where the output is in degrees

"),

("Base","acosd","acosd(x)

   Compute the inverse cosine of \"x\", where the output is in degrees

"),

("Base","atand","atand(x)

   Compute the inverse tangent of \"x\", where the output is in
   degrees

"),

("Base","sec","sec(x)

   Compute the secant of \"x\", where \"x\" is in radians

"),

("Base","csc","csc(x)

   Compute the cosecant of \"x\", where \"x\" is in radians

"),

("Base","cot","cot(x)

   Compute the cotangent of \"x\", where \"x\" is in radians

"),

("Base","secd","secd(x)

   Compute the secant of \"x\", where \"x\" is in degrees

"),

("Base","cscd","cscd(x)

   Compute the cosecant of \"x\", where \"x\" is in degrees

"),

("Base","cotd","cotd(x)

   Compute the cotangent of \"x\", where \"x\" is in degrees

"),

("Base","asec","asec(x)

   Compute the inverse secant of \"x\", where the output is in radians

"),

("Base","acsc","acsc(x)

   Compute the inverse cosecant of \"x\", where the output is in
   radians

"),

("Base","acot","acot(x)

   Compute the inverse cotangent of \"x\", where the output is in
   radians

"),

("Base","asecd","asecd(x)

   Compute the inverse secant of \"x\", where the output is in degrees

"),

("Base","acscd","acscd(x)

   Compute the inverse cosecant of \"x\", where the output is in
   degrees

"),

("Base","acotd","acotd(x)

   Compute the inverse cotangent of \"x\", where the output is in
   degrees

"),

("Base","sech","sech(x)

   Compute the hyperbolic secant of \"x\"

"),

("Base","csch","csch(x)

   Compute the hyperbolic cosecant of \"x\"

"),

("Base","coth","coth(x)

   Compute the hyperbolic cotangent of \"x\"

"),

("Base","asinh","asinh(x)

   Compute the inverse hyperbolic sine of \"x\"

"),

("Base","acosh","acosh(x)

   Compute the inverse hyperbolic cosine of \"x\"

"),

("Base","atanh","atanh(x)

   Compute the inverse hyperbolic tangent of \"x\"

"),

("Base","asech","asech(x)

   Compute the inverse hyperbolic secant of \"x\"

"),

("Base","acsch","acsch(x)

   Compute the inverse hyperbolic cosecant of \"x\"

"),

("Base","acoth","acoth(x)

   Compute the inverse hyperbolic cotangent of \"x\"

"),

("Base","sinc","sinc(x)

   Compute \\sin(\\pi x) / (\\pi x) if x \\neq 0, and 1 if x = 0.

"),

("Base","cosc","cosc(x)

   Compute \\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2) if x \\neq
   0, and 0 if x = 0. This is the derivative of \"sinc(x)\".

"),

("Base","deg2rad","deg2rad(x)

   Convert \"x\" from degrees to radians

"),

("Base","rad2deg","rad2deg(x)

   Convert \"x\" from radians to degrees

"),

("Base","hypot","hypot(x, y)

   Compute the \\sqrt{x^2+y^2} avoiding overflow and underflow

"),

("Base","log","log(x)

   Compute the natural logarithm of \"x\". Throws \"DomainError\" for
   negative \"Real\" arguments. Use complex negative arguments
   instead.

"),

("Base","log","log(b, x)

   Compute the base \"b\" logarithm of \"x\". Throws \"DomainError\"
   for negative \"Real\" arguments.

"),

("Base","log2","log2(x)

   Compute the logarithm of \"x\" to base 2. Throws \"DomainError\"
   for negative \"Real\" arguments.

"),

("Base","log10","log10(x)

   Compute the logarithm of \"x\" to base 10. Throws \"DomainError\"
   for negative \"Real\" arguments.

"),

("Base","log1p","log1p(x)

   Accurate natural logarithm of \"1+x\".  Throws \"DomainError\" for
   \"Real\" arguments less than -1.

"),

("Base","frexp","frexp(val)

   Return \"(x,exp)\" such that \"x\" has a magnitude in the interval
   \"[1/2, 1)\" or 0, and val = x \\times 2^{exp}.

"),

("Base","exp","exp(x)

   Compute e^x

"),

("Base","exp2","exp2(x)

   Compute 2^x

"),

("Base","exp10","exp10(x)

   Compute 10^x

"),

("Base","ldexp","ldexp(x, n)

   Compute x \\times 2^n

"),

("Base","modf","modf(x)

   Return a tuple (fpart,ipart) of the fractional and integral parts
   of a number. Both parts have the same sign as the argument.

"),

("Base","expm1","expm1(x)

   Accurately compute e^x-1

"),

("Base","round","round(x[, digits[, base]])

   \"round(x)\" returns the nearest integral value of the same type as
   \"x\" to \"x\". \"round(x, digits)\" rounds to the specified number
   of digits after the decimal place, or before if negative, e.g.,
   \"round(pi,2)\" is \"3.14\". \"round(x, digits, base)\" rounds
   using a different base, defaulting to 10, e.g., \"round(pi, 1, 8)\"
   is \"3.125\".

"),

("Base","ceil","ceil(x[, digits[, base]])

   Returns the nearest integral value of the same type as \"x\" not
   less than \"x\". \"digits\" and \"base\" work as above.

"),

("Base","floor","floor(x[, digits[, base]])

   Returns the nearest integral value of the same type as \"x\" not
   greater than \"x\". \"digits\" and \"base\" work as above.

"),

("Base","trunc","trunc(x[, digits[, base]])

   Returns the nearest integral value of the same type as \"x\" not
   greater in magnitude than \"x\". \"digits\" and \"base\" work as
   above.

"),

("Base","iround","iround(x) -> Integer

   Returns the nearest integer to \"x\".

"),

("Base","iceil","iceil(x) -> Integer

   Returns the nearest integer not less than \"x\".

"),

("Base","ifloor","ifloor(x) -> Integer

   Returns the nearest integer not greater than \"x\".

"),

("Base","itrunc","itrunc(x) -> Integer

   Returns the nearest integer not greater in magnitude than \"x\".

"),

("Base","signif","signif(x, digits[, base])

   Rounds (in the sense of \"round\") \"x\" so that there are
   \"digits\" significant digits, under a base \"base\"
   representation, default 10. E.g., \"signif(123.456, 2)\" is
   \"120.0\", and \"signif(357.913, 4, 2)\" is \"352.0\".

"),

("Base","min","min(x, y, ...)

   Return the minimum of the arguments. Operates elementwise over
   arrays.

"),

("Base","max","max(x, y, ...)

   Return the maximum of the arguments. Operates elementwise over
   arrays.

"),

("Base","minmax","minmax(x, y)

   Return \"(min(x,y), max(x,y))\". See also: \"extrema()\" that
   returns \"(minimum(x), maximum(x))\"

"),

("Base","clamp","clamp(x, lo, hi)

   Return x if \"lo <= x <= hi\". If \"x < lo\", return \"lo\". If \"x
   > hi\", return \"hi\". Arguments are promoted to a common type.
   Operates elementwise over \"x\" if it is an array.

"),

("Base","abs","abs(x)

   Absolute value of \"x\"

"),

("Base","abs2","abs2(x)

   Squared absolute value of \"x\"

"),

("Base","copysign","copysign(x, y)

   Return \"x\" such that it has the same sign as \"y\"

"),

("Base","sign","sign(x)

   Return \"+1\" if \"x\" is positive, \"0\" if \"x == 0\", and \"-1\"
   if \"x\" is negative.

"),

("Base","signbit","signbit(x)

   Returns \"true\" if the value of the sign of \"x\" is negative,
   otherwise \"false\".

"),

("Base","flipsign","flipsign(x, y)

   Return \"x\" with its sign flipped if \"y\" is negative. For
   example \"abs(x) = flipsign(x,x)\".

"),

("Base","sqrt","sqrt(x)

   Return \\sqrt{x}. Throws \"DomainError\" for negative \"Real\"
   arguments. Use complex negative arguments instead. The prefix
   operator \"√\" is equivalent to \"sqrt\".

"),

("Base","isqrt","isqrt(n)

   Integer square root: the largest integer \"m\" such that \"m*m <=
   n\".

"),

("Base","cbrt","cbrt(x)

   Return x^{1/3}.   The prefix operator \"∛\" is equivalent to
   \"cbrt\".

"),

("Base","erf","erf(x)

   Compute the error function of \"x\", defined by
   \\frac{2}{\\sqrt{\\pi}} \\int_0^x e^{-t^2} dt for arbitrary complex
   \"x\".

"),

("Base","erfc","erfc(x)

   Compute the complementary error function of \"x\", defined by 1 -
   \\operatorname{erf}(x).

"),

("Base","erfcx","erfcx(x)

   Compute the scaled complementary error function of \"x\", defined
   by e^{x^2} \\operatorname{erfc}(x).  Note also that
   \\operatorname{erfcx}(-ix) computes the Faddeeva function w(x).

"),

("Base","erfi","erfi(x)

   Compute the imaginary error function of \"x\", defined by -i
   \\operatorname{erf}(ix).

"),

("Base","dawson","dawson(x)

   Compute the Dawson function (scaled imaginary error function) of
   \"x\", defined by \\frac{\\sqrt{\\pi}}{2} e^{-x^2}
   \\operatorname{erfi}(x).

"),

("Base","erfinv","erfinv(x)

   Compute the inverse error function of a real \"x\", defined by
   \\operatorname{erf}(\\operatorname{erfinv}(x)) = x.

"),

("Base","erfcinv","erfcinv(x)

   Compute the inverse error complementary function of a real \"x\",
   defined by \\operatorname{erfc}(\\operatorname{erfcinv}(x)) = x.

"),

("Base","real","real(z)

   Return the real part of the complex number \"z\"

"),

("Base","imag","imag(z)

   Return the imaginary part of the complex number \"z\"

"),

("Base","reim","reim(z)

   Return both the real and imaginary parts of the complex number
   \"z\"

"),

("Base","conj","conj(z)

   Compute the complex conjugate of a complex number \"z\"

"),

("Base","angle","angle(z)

   Compute the phase angle of a complex number \"z\"

"),

("Base","cis","cis(z)

   Return \\exp(iz).

"),

("Base","binomial","binomial(n, k)

   Number of ways to choose \"k\" out of \"n\" items

"),

("Base","factorial","factorial(n)

   Factorial of n

"),

("Base","factorial","factorial(n, k)

   Compute \"factorial(n)/factorial(k)\"

"),

("Base","factor","factor(n) -> Dict

   Compute the prime factorization of an integer \"n\". Returns a
   dictionary. The keys of the dictionary correspond to the factors,
   and hence are of the same type as \"n\". The value associated with
   each key indicates the number of times the factor appears in the
   factorization.

   **Example**: 100=2*2*5*5; then:

      julia> factor(100)
      [5=>2,2=>2]

"),

("Base","gcd","gcd(x, y)

   Greatest common (positive) divisor (or zero if x and y are both
   zero).

"),

("Base","lcm","lcm(x, y)

   Least common (non-negative) multiple.

"),

("Base","gcdx","gcdx(x, y)

   Greatest common (positive) divisor, also returning integer
   coefficients \"u\" and \"v\" that solve \"ux+vy == gcd(x,y)\"

"),

("Base","ispow2","ispow2(n) -> Bool

   Test whether \"n\" is a power of two

"),

("Base","nextpow2","nextpow2(n)

   The smallest power of two not less than \"n\". Returns 0 for
   \"n==0\", and returns \"-nextpow2(-n)\" for negative arguments.

"),

("Base","prevpow2","prevpow2(n)

   The largest power of two not greater than \"n\". Returns 0 for
   \"n==0\", and returns \"-prevpow2(-n)\" for negative arguments.

"),

("Base","nextpow","nextpow(a, x)

   The smallest \"a^n\" not less than \"x\", where \"n\" is a non-
   negative integer. \"a\" must be greater than 1, and \"x\" must be
   greater than 0.

"),

("Base","prevpow","prevpow(a, x)

   The largest \"a^n\" not greater than \"x\", where \"n\" is a non-
   negative integer. \"a\" must be greater than 1, and \"x\" must not
   be less than 1.

"),

("Base","nextprod","nextprod([k_1, k_2, ...], n)

   Next integer not less than \"n\" that can be written as \\prod
   k_i^{p_i} for integers p_1, p_2, etc.

"),

("Base","prevprod","prevprod([k_1, k_2, ...], n)

   Previous integer not greater than \"n\" that can be written as
   \\prod k_i^{p_i} for integers p_1, p_2, etc.

"),

("Base","invmod","invmod(x, m)

   Take the inverse of \"x\" modulo \"m\": \"y\" such that xy = 1
   \\pmod m

"),

("Base","powermod","powermod(x, p, m)

   Compute x^p \\pmod m

"),

("Base","gamma","gamma(x)

   Compute the gamma function of \"x\"

"),

("Base","lgamma","lgamma(x)

   Compute the logarithm of absolute value of \"gamma(x)\"

"),

("Base","lfact","lfact(x)

   Compute the logarithmic factorial of \"x\"

"),

("Base","digamma","digamma(x)

   Compute the digamma function of \"x\" (the logarithmic derivative
   of \"gamma(x)\")

"),

("Base","invdigamma","invdigamma(x)

   Compute the inverse digamma function of \"x\".

"),

("Base","trigamma","trigamma(x)

   Compute the trigamma function of \"x\" (the logarithmic second
   derivative of \"gamma(x)\")

"),

("Base","polygamma","polygamma(m, x)

   Compute the polygamma function of order \"m\" of argument \"x\"
   (the \"(m+1)th\" derivative of the logarithm of \"gamma(x)\")

"),

("Base","airy","airy(k, x)

   kth derivative of the Airy function \\operatorname{Ai}(x).

"),

("Base","airyai","airyai(x)

   Airy function \\operatorname{Ai}(x).

"),

("Base","airyprime","airyprime(x)

   Airy function derivative \\operatorname{Ai}'(x).

"),

("Base","airyaiprime","airyaiprime(x)

   Airy function derivative \\operatorname{Ai}'(x).

"),

("Base","airybi","airybi(x)

   Airy function \\operatorname{Bi}(x).

"),

("Base","airybiprime","airybiprime(x)

   Airy function derivative \\operatorname{Bi}'(x).

"),

("Base","airyx","airyx(k, x)

   scaled kth derivative of the Airy function, return
   \\operatorname{Ai}(x) e^{\\frac{2}{3} x \\sqrt{x}} for \"k == 0 ||
   k == 1\", and \\operatorname{Ai}(x) e^{- \\left| \\operatorname{Re}
   \\left( \\frac{2}{3} x \\sqrt{x} \\right) \\right|} for \"k == 2 ||
   k == 3\".

"),

("Base","besselj0","besselj0(x)

   Bessel function of the first kind of order 0, J_0(x).

"),

("Base","besselj1","besselj1(x)

   Bessel function of the first kind of order 1, J_1(x).

"),

("Base","besselj","besselj(nu, x)

   Bessel function of the first kind of order \"nu\", J_\\nu(x).

"),

("Base","besseljx","besseljx(nu, x)

   Scaled Bessel function of the first kind of order \"nu\", J_\\nu(x)
   e^{- | \\operatorname{Im}(x) |}.

"),

("Base","bessely0","bessely0(x)

   Bessel function of the second kind of order 0, Y_0(x).

"),

("Base","bessely1","bessely1(x)

   Bessel function of the second kind of order 1, Y_1(x).

"),

("Base","bessely","bessely(nu, x)

   Bessel function of the second kind of order \"nu\", Y_\\nu(x).

"),

("Base","besselyx","besselyx(nu, x)

   Scaled Bessel function of the second kind of order \"nu\",
   Y_\\nu(x) e^{- | \\operatorname{Im}(x) |}.

"),

("Base","hankelh1","hankelh1(nu, x)

   Bessel function of the third kind of order \"nu\", H^{(1)}_\\nu(x).

"),

("Base","hankelh1x","hankelh1x(nu, x)

   Scaled Bessel function of the third kind of order \"nu\",
   H^{(1)}_\\nu(x) e^{-x i}.

"),

("Base","hankelh2","hankelh2(nu, x)

   Bessel function of the third kind of order \"nu\", H^{(2)}_\\nu(x).

"),

("Base","hankelh2x","hankelh2x(nu, x)

   Scaled Bessel function of the third kind of order \"nu\",
   H^{(2)}_\\nu(x) e^{x i}.

"),

("Base","besselh","besselh(nu, k, x)

   Bessel function of the third kind of order \"nu\" (Hankel
   function). \"k\" is either 1 or 2, selecting \"hankelh1\" or
   \"hankelh2\", respectively.

"),

("Base","besseli","besseli(nu, x)

   Modified Bessel function of the first kind of order \"nu\",
   I_\\nu(x).

"),

("Base","besselix","besselix(nu, x)

   Scaled modified Bessel function of the first kind of order \"nu\",
   I_\\nu(x) e^{- | \\operatorname{Re}(x) |}.

"),

("Base","besselk","besselk(nu, x)

   Modified Bessel function of the second kind of order \"nu\",
   K_\\nu(x).

"),

("Base","besselkx","besselkx(nu, x)

   Scaled modified Bessel function of the second kind of order \"nu\",
   K_\\nu(x) e^x.

"),

("Base","beta","beta(x, y)

   Euler integral of the first kind \\operatorname{B}(x,y) =
   \\Gamma(x)\\Gamma(y)/\\Gamma(x+y).

"),

("Base","lbeta","lbeta(x, y)

   Natural logarithm of the absolute value of the beta function
   \\log(|\\operatorname{B}(x,y)|).

"),

("Base","eta","eta(x)

   Dirichlet eta function \\eta(s) =
   \\sum^\\infty_{n=1}(-)^{n-1}/n^{s}.

"),

("Base","zeta","zeta(s)

   Riemann zeta function \\zeta(s).

"),

("Base","zeta","zeta(s, z)

   Hurwitz zeta function \\zeta(s, z).  (This is equivalent to the
   Riemann zeta function \\zeta(s) for the case of \"z=1\".)

"),

("Base","ndigits","ndigits(n, b)

   Compute the number of digits in number \"n\" written in base \"b\".

"),

("Base","widemul","widemul(x, y)

   Multiply \"x\" and \"y\", giving the result as a larger type.

"),

("Base","@evalpoly","@evalpoly(z, c...)

   Evaluate the polynomial \\sum_k c[k] z^{k-1} for the coefficients
   \"c[1]\", \"c[2]\", ...; that is, the coefficients are given in
   ascending order by power of \"z\".  This macro expands to efficient
   inline code that uses either Horner's method or, for complex \"z\",
   a more efficient Goertzel-like algorithm.

"),

("Base","bin","bin(n[, pad])

   Convert an integer to a binary string, optionally specifying a
   number of digits to pad to.

"),

("Base","hex","hex(n[, pad])

   Convert an integer to a hexadecimal string, optionally specifying a
   number of digits to pad to.

"),

("Base","dec","dec(n[, pad])

   Convert an integer to a decimal string, optionally specifying a
   number of digits to pad to.

"),

("Base","oct","oct(n[, pad])

   Convert an integer to an octal string, optionally specifying a
   number of digits to pad to.

"),

("Base","base","base(base, n[, pad])

   Convert an integer to a string in the given base, optionally
   specifying a number of digits to pad to. The base can be specified
   as either an integer, or as a \"Uint8\" array of character values
   to use as digit symbols.

"),

("Base","digits","digits(n[, base][, pad])

   Returns an array of the digits of \"n\" in the given base,
   optionally padded with zeros to a specified size. More significant
   digits are at higher indexes, such that \"n ==
   sum([digits[k]*base^(k-1) for k=1:length(digits)])\".

"),

("Base","bits","bits(n)

   A string giving the literal bit representation of a number.

"),

("Base","parseint","parseint([type], str[, base])

   Parse a string as an integer in the given base (default 10),
   yielding a number of the specified type (default \"Int\").

"),

("Base","parsefloat","parsefloat([type], str)

   Parse a string as a decimal floating point number, yielding a
   number of the specified type.

"),

("Base","big","big(x)

   Convert a number to a maximum precision representation (typically
   \"BigInt\" or \"BigFloat\"). See \"BigFloat\" for information about
   some pitfalls with floating-point numbers.

"),

("Base","bool","bool(x)

   Convert a number or numeric array to boolean

"),

("Base","int","int(x)

   Convert a number or array to the default integer type on your
   platform. Alternatively, \"x\" can be a string, which is parsed as
   an integer.

"),

("Base","uint","uint(x)

   Convert a number or array to the default unsigned integer type on
   your platform. Alternatively, \"x\" can be a string, which is
   parsed as an unsigned integer.

"),

("Base","integer","integer(x)

   Convert a number or array to integer type. If \"x\" is already of
   integer type it is unchanged, otherwise it converts it to the
   default integer type on your platform.

"),

("Base","signed","signed(x)

   Convert a number to a signed integer

"),

("Base","unsigned","unsigned(x) -> Unsigned

   Convert a number to an unsigned integer

"),

("Base","int8","int8(x)

   Convert a number or array to \"Int8\" data type

"),

("Base","int16","int16(x)

   Convert a number or array to \"Int16\" data type

"),

("Base","int32","int32(x)

   Convert a number or array to \"Int32\" data type

"),

("Base","int64","int64(x)

   Convert a number or array to \"Int64\" data type

"),

("Base","int128","int128(x)

   Convert a number or array to \"Int128\" data type

"),

("Base","uint8","uint8(x)

   Convert a number or array to \"Uint8\" data type

"),

("Base","uint16","uint16(x)

   Convert a number or array to \"Uint16\" data type

"),

("Base","uint32","uint32(x)

   Convert a number or array to \"Uint32\" data type

"),

("Base","uint64","uint64(x)

   Convert a number or array to \"Uint64\" data type

"),

("Base","uint128","uint128(x)

   Convert a number or array to \"Uint128\" data type

"),

("Base","float16","float16(x)

   Convert a number or array to \"Float16\" data type

"),

("Base","float32","float32(x)

   Convert a number or array to \"Float32\" data type

"),

("Base","float64","float64(x)

   Convert a number or array to \"Float64\" data type

"),

("Base","float32_isvalid","float32_isvalid(x, out::Vector{Float32}) -> Bool

   Convert a number or array to \"Float32\" data type, returning true
   if successful. The result of the conversion is stored in
   \"out[1]\".

"),

("Base","float64_isvalid","float64_isvalid(x, out::Vector{Float64}) -> Bool

   Convert a number or array to \"Float64\" data type, returning true
   if successful. The result of the conversion is stored in
   \"out[1]\".

"),

("Base","float","float(x)

   Convert a number, array, or string to a \"FloatingPoint\" data
   type. For numeric data, the smallest suitable \"FloatingPoint\"
   type is used. Converts strings to \"Float64\".

   This function is not recommended for arrays. It is better to use a
   more specific function such as \"float32\" or \"float64\".

"),

("Base","significand","significand(x)

   Extract the significand(s) (a.k.a. mantissa), in binary
   representation, of a floating-point number or array.

   For example, \"significand(15.2)/15.2 == 0.125\", and
   \"significand(15.2)*8 == 15.2\"

"),

("Base","exponent","exponent(x) -> Int

   Get the exponent of a normalized floating-point number.

"),

("Base","complex64","complex64(r[, i])

   Convert to \"r + i*im\" represented as a \"Complex64\" data type.
   \"i\" defaults to zero.

"),

("Base","complex128","complex128(r[, i])

   Convert to \"r + i*im\" represented as a \"Complex128\" data type.
   \"i\" defaults to zero.

"),

("Base","complex","complex(r[, i])

   Convert real numbers or arrays to complex. \"i\" defaults to zero.

"),

("Base","char","char(x)

   Convert a number or array to \"Char\" data type

"),

("Base","bswap","bswap(n)

   Byte-swap an integer

"),

("Base","num2hex","num2hex(f)

   Get a hexadecimal string of the binary representation of a floating
   point number

"),

("Base","hex2num","hex2num(str)

   Convert a hexadecimal string to the floating point number it
   represents

"),

("Base","hex2bytes","hex2bytes(s::ASCIIString)

   Convert an arbitrarily long hexadecimal string to its binary
   representation. Returns an Array{Uint8, 1}, i.e. an array of bytes.

"),

("Base","bytes2hex","bytes2hex(bin_arr::Array{Uint8, 1})

   Convert an array of bytes to its hexadecimal representation. All
   characters are in lower-case. Returns an ASCIIString.

"),

("Base","one","one(x)

   Get the multiplicative identity element for the type of x (x can
   also specify the type itself). For matrices, returns an identity
   matrix of the appropriate size and type.

"),

("Base","zero","zero(x)

   Get the additive identity element for the type of x (x can also
   specify the type itself).

"),

("Base","pi","pi

   The constant pi

"),

("Base","im","im

   The imaginary unit

"),

("Base","e","e

   The constant e

"),

("Base","catalan","catalan

   Catalan's constant

"),

("Base","Inf","Inf

   Positive infinity of type Float64

"),

("Base","Inf32","Inf32

   Positive infinity of type Float32

"),

("Base","Inf16","Inf16

   Positive infinity of type Float16

"),

("Base","NaN","NaN

   A not-a-number value of type Float64

"),

("Base","NaN32","NaN32

   A not-a-number value of type Float32

"),

("Base","NaN16","NaN16

   A not-a-number value of type Float16

"),

("Base","issubnormal","issubnormal(f) -> Bool

   Test whether a floating point number is subnormal

"),

("Base","isfinite","isfinite(f) -> Bool

   Test whether a number is finite

"),

("Base","isinf","isinf(f) -> Bool

   Test whether a number is infinite

"),

("Base","isnan","isnan(f) -> Bool

   Test whether a floating point number is not a number (NaN)

"),

("Base","inf","inf(f)

   Returns positive infinity of the floating point type \"f\" or of
   the same floating point type as \"f\"

"),

("Base","nan","nan(f)

   Returns NaN (not-a-number) of the floating point type \"f\" or of
   the same floating point type as \"f\"

"),

("Base","nextfloat","nextfloat(f)

   Get the next floating point number in lexicographic order

"),

("Base","prevfloat","prevfloat(f) -> FloatingPoint

   Get the previous floating point number in lexicographic order

"),

("Base","isinteger","isinteger(x) -> Bool

   Test whether \"x\" or all its elements are numerically equal to
   some integer

"),

("Base","isreal","isreal(x) -> Bool

   Test whether \"x\" or all its elements are numerically equal to
   some real number

"),

("Base","BigInt","BigInt(x)

   Create an arbitrary precision integer. \"x\" may be an \"Int\" (or
   anything that can be converted to an \"Int\") or a \"String\". The
   usual mathematical operators are defined for this type, and results
   are promoted to a \"BigInt\".

"),

("Base","BigFloat","BigFloat(x)

   Create an arbitrary precision floating point number. \"x\" may be
   an \"Integer\", a \"Float64\", a \"String\" or a \"BigInt\". The
   usual mathematical operators are defined for this type, and results
   are promoted to a \"BigFloat\". Note that because floating-point
   numbers are not exactly-representable in decimal notation,
   \"BigFloat(2.1)\" may not yield what you expect. You may prefer to
   initialize constants using strings, e.g., \"BigFloat(\"2.1\")\".

"),

("Base","get_rounding","get_rounding(T)

   Get the current floating point rounding mode for type \"T\". Valid
   modes are \"RoundNearest\", \"RoundToZero\", \"RoundUp\",
   \"RoundDown\", and \"RoundFromZero\" (\"BigFloat\" only).

"),

("Base","set_rounding","set_rounding(T, mode)

   Set the rounding mode of floating point type \"T\". Note that this
   may affect other types, for instance changing the rounding mode of
   \"Float64\" will change the rounding mode of \"Float32\". See
   \"get_rounding\" for available modes

"),

("Base","with_rounding","with_rounding(f::Function, T, mode)

   Change the rounding mode of floating point type \"T\" for the
   duration of \"f\". It is logically equivalent to:

      old = get_rounding(T)
      set_rounding(T, mode)
      f()
      set_rounding(T, old)

   See \"get_rounding\" for available rounding modes.

"),

("Base","count_ones","count_ones(x::Integer) -> Integer

   Number of ones in the binary representation of \"x\".

   **Example**: \"count_ones(7) -> 3\"

"),

("Base","count_zeros","count_zeros(x::Integer) -> Integer

   Number of zeros in the binary representation of \"x\".

   **Example**: \"count_zeros(int32(2 ^ 16 - 1)) -> 16\"

"),

("Base","leading_zeros","leading_zeros(x::Integer) -> Integer

   Number of zeros leading the binary representation of \"x\".

   **Example**: \"leading_zeros(int32(1)) -> 31\"

"),

("Base","leading_ones","leading_ones(x::Integer) -> Integer

   Number of ones leading the binary representation of \"x\".

   **Example**: \"leading_ones(int32(2 ^ 32 - 2)) -> 31\"

"),

("Base","trailing_zeros","trailing_zeros(x::Integer) -> Integer

   Number of zeros trailing the binary representation of \"x\".

   **Example**: \"trailing_zeros(2) -> 1\"

"),

("Base","trailing_ones","trailing_ones(x::Integer) -> Integer

   Number of ones trailing the binary representation of \"x\".

   **Example**: \"trailing_ones(3) -> 2\"

"),

("Base","isprime","isprime(x::Integer) -> Bool

   Returns \"true\" if \"x\" is prime, and \"false\" otherwise.

   **Example**:

      julia> isprime(3)
      true

"),

("Base","primes","primes(n)

   Returns a collection of the prime numbers <= \"n\".

"),

("Base","isodd","isodd(x::Integer) -> Bool

   Returns \"true\" if \"x\" is odd (that is, not divisible by 2), and
   \"false\" otherwise.

   **Examples**:

      julia> isodd(9)
      true

      julia> isodd(10)
      false

"),

("Base","iseven","iseven(x::Integer) -> Bool

   Returns \"true\" is \"x\" is even (that is, divisible by 2), and
   \"false\" otherwise.

   **Examples**:

      julia> iseven(10)
      true

      julia> iseven(9)
      false

"),

("Base","precision","precision(num::FloatingPoint)

   Get the precision of a floating point number, as defined by the
   effective number of bits in the mantissa.

"),

("Base","get_bigfloat_precision","get_bigfloat_precision()

   Get the precision (in bits) currently used for BigFloat arithmetic.

"),

("Base","set_bigfloat_precision","set_bigfloat_precision(x::Int64)

   Set the precision (in bits) to be used to BigFloat arithmetic.

"),

("Base","with_bigfloat_precision","with_bigfloat_precision(f::Function, precision::Integer)

   Change the BigFloat arithmetic precision (in bits) for the duration
   of \"f\". It is logically equivalent to:

      old = get_bigfloat_precision()
      set_bigfloat_precision(precision)
      f()
      set_bigfloat_precision(old)

"),

("Base","srand","srand([rng], seed)

   Seed the RNG with a \"seed\", which may be an unsigned integer or a
   vector of unsigned integers. \"seed\" can even be a filename, in
   which case the seed is read from a file. If the argument \"rng\" is
   not provided, the default global RNG is seeded.

"),

("Base","MersenneTwister","MersenneTwister([seed])

   Create a \"MersenneTwister\" RNG object. Different RNG objects can
   have their own seeds, which may be useful for generating different
   streams of random numbers.

"),

("Base","rand","rand() -> Float64

   Generate a \"Float64\" random number uniformly in [0,1)

"),

("Base","rand!","rand!([rng], A)

   Populate the array A with random number generated from the
   specified RNG.

"),

("Base","rand","rand(rng::AbstractRNG[, dims...])

   Generate a random \"Float64\" number or array of the size specified
   by dims, using the specified RNG object. Currently,
   \"MersenneTwister\" is the only available Random Number Generator
   (RNG), which may be seeded using srand.

"),

("Base","rand","rand(dims or [dims...])

   Generate a random \"Float64\" array of the size specified by dims

"),

("Base","rand","rand(Int32|Uint32|Int64|Uint64|Int128|Uint128[, dims...])

   Generate a random integer of the given type. Optionally, generate
   an array of random integers of the given type by specifying dims.

"),

("Base","rand","rand(r[, dims...])

   Generate a random integer in the range \"r\" (for example, \"1:n\"
   or \"0:2:10\"). Optionally, generate a random integer array.

"),

("Base","randbool","randbool([dims...])

   Generate a random boolean value. Optionally, generate an array of
   random boolean values.

"),

("Base","randbool!","randbool!(A)

   Fill an array with random boolean values. A may be an \"Array\" or
   a \"BitArray\".

"),

("Base","randn","randn([rng], dims or [dims...])

   Generate a normally-distributed random number with mean 0 and
   standard deviation 1. Optionally generate an array of normally-
   distributed random numbers.

"),

("Base","randn!","randn!([rng], A::Array{Float64, N})

   Fill the array A with normally-distributed (mean 0, standard
   deviation 1) random numbers. Also see the rand function.

"),

("Base","ndims","ndims(A) -> Integer

   Returns the number of dimensions of A

"),

("Base","size","size(A)

   Returns a tuple containing the dimensions of A

"),

("Base","iseltype","iseltype(A, T)

   Tests whether A or its elements are of type T

"),

("Base","length","length(A) -> Integer

   Returns the number of elements in A

"),

("Base","countnz","countnz(A)

   Counts the number of nonzero values in array A (dense or sparse).
   Note that this is not a constant-time operation. For sparse
   matrices, one should usually use \"nnz\", which returns the number
   of stored values.

"),

("Base","conj!","conj!(A)

   Convert an array to its complex conjugate in-place

"),

("Base","stride","stride(A, k)

   Returns the distance in memory (in number of elements) between
   adjacent elements in dimension k

"),

("Base","strides","strides(A)

   Returns a tuple of the memory strides in each dimension

"),

("Base","ind2sub","ind2sub(dims, index) -> subscripts

   Returns a tuple of subscripts into an array with dimensions
   \"dims\", corresponding to the linear index \"index\"

   **Example** \"i, j, ... = ind2sub(size(A), indmax(A))\" provides
   the indices of the maximum element

"),

("Base","sub2ind","sub2ind(dims, i, j, k...) -> index

   The inverse of \"ind2sub\", returns the linear index corresponding
   to the provided subscripts

"),

("Base","Array","Array(type, dims)

   Construct an uninitialized dense array. \"dims\" may be a tuple or
   a series of integer arguments.

"),

("Base","getindex","getindex(type[, elements...])

   Construct a 1-d array of the specified type. This is usually called
   with the syntax \"Type[]\". Element values can be specified using
   \"Type[a,b,c,...]\".

"),

("Base","cell","cell(dims)

   Construct an uninitialized cell array (heterogeneous array).
   \"dims\" can be either a tuple or a series of integer arguments.

"),

("Base","zeros","zeros(type, dims)

   Create an array of all zeros of specified type. The type defaults
   to Float64 if not specified.

"),

("Base","zeros","zeros(A)

   Create an array of all zeros with the same element type and shape
   as A.

"),

("Base","ones","ones(type, dims)

   Create an array of all ones of specified type. The type defaults to
   Float64 if not specified.

"),

("Base","ones","ones(A)

   Create an array of all ones with the same element type and shape as
   A.

"),

("Base","trues","trues(dims)

   Create a \"BitArray\" with all values set to true

"),

("Base","falses","falses(dims)

   Create a \"BitArray\" with all values set to false

"),

("Base","fill","fill(x, dims)

   Create an array filled with the value \"x\"

"),

("Base","fill!","fill!(A, x)

   Fill the array \"A\" with the value \"x\"

"),

("Base","reshape","reshape(A, dims)

   Create an array with the same data as the given array, but with
   different dimensions. An implementation for a particular type of
   array may choose whether the data is copied or shared.

"),

("Base","similar","similar(array, element_type, dims)

   Create an uninitialized array of the same type as the given array,
   but with the specified element type and dimensions. The second and
   third arguments are both optional. The \"dims\" argument may be a
   tuple or a series of integer arguments.

"),

("Base","reinterpret","reinterpret(type, A)

   Change the type-interpretation of a block of memory. For example,
   \"reinterpret(Float32, uint32(7))\" interprets the 4 bytes
   corresponding to \"uint32(7)\" as a \"Float32\". For arrays, this
   constructs an array with the same binary data as the given array,
   but with the specified element type.

"),

("Base","eye","eye(n)

   n-by-n identity matrix

"),

("Base","eye","eye(m, n)

   m-by-n identity matrix

"),

("Base","eye","eye(A)

   Constructs an identity matrix of the same dimensions and type as
   \"A\".

"),

("Base","linspace","linspace(start, stop, n)

   Construct a vector of \"n\" linearly-spaced elements from \"start\"
   to \"stop\". See also: \"linrange()\" that constructs a range
   object.

"),

("Base","logspace","logspace(start, stop, n)

   Construct a vector of \"n\" logarithmically-spaced numbers from
   \"10^start\" to \"10^stop\".

"),

("Base","broadcast","broadcast(f, As...)

   Broadcasts the arrays \"As\" to a common size by expanding
   singleton dimensions, and returns an array of the results
   \"f(as...)\" for each position.

"),

("Base","broadcast!","broadcast!(f, dest, As...)

   Like \"broadcast\", but store the result of \"broadcast(f, As...)\"
   in the \"dest\" array. Note that \"dest\" is only used to store the
   result, and does not supply arguments to \"f\" unless it is also
   listed in the \"As\", as in \"broadcast!(f, A, A, B)\" to perform
   \"A[:] = broadcast(f, A, B)\".

"),

("Base","bitbroadcast","bitbroadcast(f, As...)

   Like \"broadcast\", but allocates a \"BitArray\" to store the
   result, rather then an \"Array\".

"),

("Base","broadcast_function","broadcast_function(f)

   Returns a function \"broadcast_f\" such that
   \"broadcast_function(f)(As...) === broadcast(f, As...)\". Most
   useful in the form \"const broadcast_f = broadcast_function(f)\".

"),

("Base","broadcast!_function","broadcast!_function(f)

   Like \"broadcast_function\", but for \"broadcast!\".

"),

("Base","getindex","getindex(A, inds...)

   Returns a subset of array \"A\" as specified by \"inds\", where
   each \"ind\" may be an \"Int\", a \"Range\", or a \"Vector\".

"),

("Base","sub","sub(A, inds...)

   Returns a SubArray, which stores the input \"A\" and \"inds\"
   rather than computing the result immediately. Calling \"getindex\"
   on a SubArray computes the indices on the fly.

"),

("Base","parent","parent(A)

   Returns the \"parent array\" of an array view type (e.g.,
   SubArray), or the array itself if it is not a view

"),

("Base","parentindexes","parentindexes(A)

   From an array view \"A\", returns the corresponding indexes in the
   parent

"),

("Base","slicedim","slicedim(A, d, i)

   Return all the data of \"A\" where the index for dimension \"d\"
   equals \"i\". Equivalent to \"A[:,:,...,i,:,:,...]\" where \"i\" is
   in position \"d\".

"),

("Base","slice","slice(A, inds...)

   Create a view of the given indexes of array \"A\", dropping
   dimensions indexed with scalars.

"),

("Base","setindex!","setindex!(A, X, inds...)

   Store values from array \"X\" within some subset of \"A\" as
   specified by \"inds\".

"),

("Base","broadcast_getindex","broadcast_getindex(A, inds...)

   Broadcasts the \"inds\" arrays to a common size like \"broadcast\",
   and returns an array of the results \"A[ks...]\", where \"ks\" goes
   over the positions in the broadcast.

"),

("Base","broadcast_setindex!","broadcast_setindex!(A, X, inds...)

   Broadcasts the \"X\" and \"inds\" arrays to a common size and
   stores the value from each position in \"X\" at the indices given
   by the same positions in \"inds\".

"),

("Base","cat","cat(dim, A...)

   Concatenate the input arrays along the specified dimension

"),

("Base","vcat","vcat(A...)

   Concatenate along dimension 1

"),

("Base","hcat","hcat(A...)

   Concatenate along dimension 2

"),

("Base","hvcat","hvcat(rows::(Int...), values...)

   Horizontal and vertical concatenation in one call. This function is
   called for block matrix syntax. The first argument specifies the
   number of arguments to concatenate in each block row. For example,
   \"[a b;c d e]\" calls \"hvcat((2,3),a,b,c,d,e)\".

   If the first argument is a single integer \"n\", then all block
   rows are assumed to have \"n\" block columns.

"),

("Base","flipdim","flipdim(A, d)

   Reverse \"A\" in dimension \"d\".

"),

("Base","flipud","flipud(A)

   Equivalent to \"flipdim(A,1)\".

"),

("Base","fliplr","fliplr(A)

   Equivalent to \"flipdim(A,2)\".

"),

("Base","circshift","circshift(A, shifts)

   Circularly shift the data in an array. The second argument is a
   vector giving the amount to shift in each dimension.

"),

("Base","find","find(A)

   Return a vector of the linear indexes of the non-zeros in \"A\"
   (determined by \"A[i]!=0\").  A common use of this is to convert a
   boolean array to an array of indexes of the \"true\" elements.

"),

("Base","find","find(f, A)

   Return a vector of the linear indexes of  \"A\" where \"f\" returns
   true.

"),

("Base","findn","findn(A)

   Return a vector of indexes for each dimension giving the locations
   of the non-zeros in \"A\" (determined by \"A[i]!=0\").

"),

("Base","findnz","findnz(A)

   Return a tuple \"(I, J, V)\" where \"I\" and \"J\" are the row and
   column indexes of the non-zero values in matrix \"A\", and \"V\" is
   a vector of the non-zero values.

"),

("Base","findfirst","findfirst(A)

   Return the index of the first non-zero value in \"A\" (determined
   by \"A[i]!=0\").

"),

("Base","findfirst","findfirst(A, v)

   Return the index of the first element equal to \"v\" in \"A\".

"),

("Base","findfirst","findfirst(predicate, A)

   Return the index of the first element of \"A\" for which
   \"predicate\" returns true.

"),

("Base","findnext","findnext(A, i)

   Find the next index >= \"i\" of a non-zero element of \"A\", or
   \"0\" if not found.

"),

("Base","findnext","findnext(predicate, A, i)

   Find the next index >= \"i\" of an element of \"A\" for which
   \"predicate\" returns true, or \"0\" if not found.

"),

("Base","findnext","findnext(A, v, i)

   Find the next index >= \"i\" of an element of \"A\" equal to \"v\"
   (using \"==\"), or \"0\" if not found.

"),

("Base","permutedims","permutedims(A, perm)

   Permute the dimensions of array \"A\". \"perm\" is a vector
   specifying a permutation of length \"ndims(A)\". This is a
   generalization of transpose for multi-dimensional arrays. Transpose
   is equivalent to \"permutedims(A,[2,1])\".

"),

("Base","ipermutedims","ipermutedims(A, perm)

   Like \"permutedims()\", except the inverse of the given permutation
   is applied.

"),

("Base","squeeze","squeeze(A, dims)

   Remove the dimensions specified by \"dims\" from array \"A\"

"),

("Base","vec","vec(Array) -> Vector

   Vectorize an array using column-major convention.

"),

("Base","promote_shape","promote_shape(s1, s2)

   Check two array shapes for compatibility, allowing trailing
   singleton dimensions, and return whichever shape has more
   dimensions.

"),

("Base","checkbounds","checkbounds(array, indexes...)

   Throw an error if the specified indexes are not in bounds for the
   given array.

"),

("Base","randsubseq","randsubseq(A, p) -> Vector

   Return a vector consisting of a random subsequence of the given
   array \"A\", where each element of \"A\" is included (in order)
   with independent probability \"p\".   (Complexity is linear in
   \"p*length(A)\", so this function is efficient even if \"p\" is
   small and \"A\" is large.)  Technically, this process is known as
   \"Bernoulli sampling\" of \"A\".

"),

("Base","randsubseq!","randsubseq!(S, A, p)

   Like \"randsubseq\", but the results are stored in \"S\" (which is
   resized as needed).

"),

("Base","cumprod","cumprod(A[, dim])

   Cumulative product along a dimension.

"),

("Base","cumprod!","cumprod!(B, A[, dim])

   Cumulative product of \"A\" along a dimension, storing the result
   in \"B\".

"),

("Base","cumsum","cumsum(A[, dim])

   Cumulative sum along a dimension.

"),

("Base","cumsum!","cumsum!(B, A[, dim])

   Cumulative sum of \"A\" along a dimension, storing the result in
   \"B\".

"),

("Base","cumsum_kbn","cumsum_kbn(A[, dim])

   Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier
   compensated summation algorithm for additional accuracy.

"),

("Base","cummin","cummin(A[, dim])

   Cumulative minimum along a dimension.

"),

("Base","cummax","cummax(A[, dim])

   Cumulative maximum along a dimension.

"),

("Base","diff","diff(A[, dim])

   Finite difference operator of matrix or vector.

"),

("Base","gradient","gradient(F[, h])

   Compute differences along vector \"F\", using \"h\" as the spacing
   between points. The default spacing is one.

"),

("Base","rot180","rot180(A)

   Rotate matrix \"A\" 180 degrees.

"),

("Base","rotl90","rotl90(A)

   Rotate matrix \"A\" left 90 degrees.

"),

("Base","rotr90","rotr90(A)

   Rotate matrix \"A\" right 90 degrees.

"),

("Base","reducedim","reducedim(f, A, dims, initial)

   Reduce 2-argument function \"f\" along dimensions of \"A\".
   \"dims\" is a vector specifying the dimensions to reduce, and
   \"initial\" is the initial value to use in the reductions.

   The associativity of the reduction is implementation-dependent; if
   you need a particular associativity, e.g. left-to-right, you should
   write your own loop. See documentation for \"reduce\".

"),

("Base","mapslices","mapslices(f, A, dims)

   Transform the given dimensions of array \"A\" using function \"f\".
   \"f\" is called on each slice of \"A\" of the form
   \"A[...,:,...,:,...]\". \"dims\" is an integer vector specifying
   where the colons go in this expression. The results are
   concatenated along the remaining dimensions. For example, if
   \"dims\" is \"[1,2]\" and A is 4-dimensional, \"f\" is called on
   \"A[:,:,i,j]\" for all \"i\" and \"j\".

"),

("Base","sum_kbn","sum_kbn(A)

   Returns the sum of all array elements, using the Kahan-Babuska-
   Neumaier compensated summation algorithm for additional accuracy.

"),

("Base","cartesianmap","cartesianmap(f, dims)

   Given a \"dims\" tuple of integers \"(m, n, ...)\", call \"f\" on
   all combinations of integers in the ranges \"1:m\", \"1:n\", etc.

   **Example**:

      julia> cartesianmap(println, (2,2))
      11
      21
      12
      22

"),

("Base","bitpack","bitpack(A::AbstractArray{T, N}) -> BitArray

   Converts a numeric array to a packed boolean array

"),

("Base","bitunpack","bitunpack(B::BitArray{N}) -> Array{Bool,N}

   Converts a packed boolean array to an array of booleans

"),

("Base","flipbits!","flipbits!(B::BitArray{N}) -> BitArray{N}

   Performs a bitwise not operation on B. See *~ operator*.

"),

("Base","rol","rol(B::BitArray{1}, i::Integer) -> BitArray{1}

   Left rotation operator.

"),

("Base","ror","ror(B::BitArray{1}, i::Integer) -> BitArray{1}

   Right rotation operator.

"),

("Base","nthperm","nthperm(v, k)

   Compute the kth lexicographic permutation of a vector.

"),

("Base","nthperm","nthperm(p)

   Return the \"k\" that generated permutation \"p\". Note that
   \"nthperm(nthperm([1:n], k)) == k\" for \"1 <= k <= factorial(n)\".

"),

("Base","nthperm!","nthperm!(v, k)

   In-place version of \"nthperm()\".

"),

("Base","randperm","randperm(n)

   Construct a random permutation of the given length.

"),

("Base","invperm","invperm(v)

   Return the inverse permutation of v.

"),

("Base","isperm","isperm(v) -> Bool

   Returns true if v is a valid permutation.

"),

("Base","permute!","permute!(v, p)

   Permute vector \"v\" in-place, according to permutation \"p\".  No
   checking is done to verify that \"p\" is a permutation.

   To return a new permutation, use \"v[p]\".  Note that this is
   generally faster than \"permute!(v,p)\" for large vectors.

"),

("Base","ipermute!","ipermute!(v, p)

   Like permute!, but the inverse of the given permutation is applied.

"),

("Base","randcycle","randcycle(n)

   Construct a random cyclic permutation of the given length.

"),

("Base","shuffle","shuffle(v)

   Return a randomly permuted copy of \"v\".

"),

("Base","shuffle!","shuffle!(v)

   In-place version of \"shuffle()\".

"),

("Base","reverse","reverse(v[, start=1[, stop=length(v)]])

   Return a copy of \"v\" reversed from start to stop.

"),

("Base","reverse!","reverse!(v[, start=1[, stop=length(v)]]) -> v

   In-place version of \"reverse()\".

"),

("Base","combinations","combinations(arr, n)

   Generate all combinations of \"n\" elements from an indexable
   object.  Because the number of combinations can be very large, this
   function returns an iterator object. Use
   \"collect(combinations(a,n))\" to get an array of all combinations.

"),

("Base","permutations","permutations(arr)

   Generate all permutations of an indexable object.  Because the
   number of permutations can be very large, this function returns an
   iterator object. Use \"collect(permutations(a,n))\" to get an array
   of all permutations.

"),

("Base","partitions","partitions(n)

   Generate all integer arrays that sum to \"n\". Because the number
   of partitions can be very large, this function returns an iterator
   object. Use \"collect(partitions(n))\" to get an array of all
   partitions. The number of partitions to generete can be efficiently
   computed using \"length(partitions(n))\".

"),

("Base","partitions","partitions(n, m)

   Generate all arrays of \"m\" integers that sum to \"n\". Because
   the number of partitions can be very large, this function returns
   an iterator object. Use \"collect(partitions(n,m))\" to get an
   array of all partitions. The number of partitions to generete can
   be efficiently computed using \"length(partitions(n,m))\".

"),

("Base","partitions","partitions(array)

   Generate all set partitions of the elements of an array,
   represented as arrays of arrays. Because the number of partitions
   can be very large, this function returns an iterator object. Use
   \"collect(partitions(array))\" to get an array of all partitions.
   The number of partitions to generete can be efficiently computed
   using \"length(partitions(array))\".

"),

("Base","partitions","partitions(array, m)

   Generate all set partitions of the elements of an array into
   exactly m subsets, represented as arrays of arrays. Because the
   number of partitions can be very large, this function returns an
   iterator object. Use \"collect(partitions(array,m))\" to get an
   array of all partitions. The number of partitions into m subsets is
   equal to the Stirling number of the second kind and can be
   efficiently computed using \"length(partitions(array,m))\".

"),

("Base","mean","mean(v[, region])

   Compute the mean of whole array \"v\", or optionally along the
   dimensions in \"region\". Note: Julia does not ignore \"NaN\"
   values in the computation. For applications requiring the handling
   of missing data, the \"DataArray\" package is recommended.

"),

("Base","mean!","mean!(r, v)

   Compute the mean of \"v\" over the singleton dimensions of \"r\",
   and write results to \"r\".

"),

("Base","std","std(v[, region])

   Compute the sample standard deviation of a vector or array \"v\",
   optionally along dimensions in \"region\". The algorithm returns an
   estimator of the generative distribution's standard deviation under
   the assumption that each entry of \"v\" is an IID drawn from that
   generative distribution. This computation is equivalent to
   calculating \"sqrt(sum((v - mean(v)).^2) / (length(v) - 1))\".
   Note: Julia does not ignore \"NaN\" values in the computation. For
   applications requiring the handling of missing data, the
   \"DataArray\" package is recommended.

"),

("Base","stdm","stdm(v, m)

   Compute the sample standard deviation of a vector \"v\" with known
   mean \"m\". Note: Julia does not ignore \"NaN\" values in the
   computation.

"),

("Base","var","var(v[, region])

   Compute the sample variance of a vector or array \"v\", optionally
   along dimensions in \"region\". The algorithm will return an
   estimator of the generative distribution's variance under the
   assumption that each entry of \"v\" is an IID drawn from that
   generative distribution. This computation is equivalent to
   calculating \"sum((v - mean(v)).^2) / (length(v) - 1)\". Note:
   Julia does not ignore \"NaN\" values in the computation. For
   applications requiring the handling of missing data, the
   \"DataArray\" package is recommended.

"),

("Base","varm","varm(v, m)

   Compute the sample variance of a vector \"v\" with known mean
   \"m\". Note: Julia does not ignore \"NaN\" values in the
   computation.

"),

("Base","median","median(v; checknan::Bool=true)

   Compute the median of a vector \"v\". If keyword argument
   \"checknan\" is true (the default), an error is raised for data
   containing NaN values. Note: Julia does not ignore \"NaN\" values
   in the computation. For applications requiring the handling of
   missing data, the \"DataArray\" package is recommended.

"),

("Base","median!","median!(v; checknan::Bool=true)

   Like \"median\", but may overwrite the input vector.

"),

("Base","hist","hist(v[, n]) -> e, counts

   Compute the histogram of \"v\", optionally using approximately
   \"n\" bins. The return values are a range \"e\", which correspond
   to the edges of the bins, and \"counts\" containing the number of
   elements of \"v\" in each bin. Note: Julia does not ignore \"NaN\"
   values in the computation.

"),

("Base","hist","hist(v, e) -> e, counts

   Compute the histogram of \"v\" using a vector/range \"e\" as the
   edges for the bins. The result will be a vector of length
   \"length(e) - 1\", such that the element at location \"i\"
   satisfies \"sum(e[i] .< v .<= e[i+1])\". Note: Julia does not
   ignore \"NaN\" values in the computation.

"),

("Base","hist!","hist!(counts, v, e) -> e, counts

   Compute the histogram of \"v\", using a vector/range \"e\" as the
   edges for the bins. This function writes the resultant counts to a
   pre-allocated array \"counts\".

"),

("Base","hist2d","hist2d(M, e1, e2) -> (edge1, edge2, counts)

   Compute a \"2d histogram\" of a set of N points specified by N-by-2
   matrix \"M\". Arguments \"e1\" and \"e2\" are bins for each
   dimension, specified either as integer bin counts or vectors of bin
   edges. The result is a tuple of \"edge1\" (the bin edges used in
   the first dimension), \"edge2\" (the bin edges used in the second
   dimension), and \"counts\", a histogram matrix of size
   \"(length(edge1)-1, length(edge2)-1)\". Note: Julia does not ignore
   \"NaN\" values in the computation.

"),

("Base","hist2d!","hist2d!(counts, M, e1, e2) -> (e1, e2, counts)

   Compute a \"2d histogram\" with respect to the bins delimited by
   the edges given in \"e1\" and \"e2\". This function writes the
   results to a pre-allocated array \"counts\".

"),

("Base","histrange","histrange(v, n)

   Compute *nice* bin ranges for the edges of a histogram of \"v\",
   using approximately \"n\" bins. The resulting step sizes will be 1,
   2 or 5 multiplied by a power of 10. Note: Julia does not ignore
   \"NaN\" values in the computation.

"),

("Base","midpoints","midpoints(e)

   Compute the midpoints of the bins with edges \"e\". The result is a
   vector/range of length \"length(e) - 1\". Note: Julia does not
   ignore \"NaN\" values in the computation.

"),

("Base","quantile","quantile(v, p)

   Compute the quantiles of a vector \"v\" at a specified set of
   probability values \"p\". Note: Julia does not ignore \"NaN\"
   values in the computation.

"),

("Base","quantile","quantile(v, p)

   Compute the quantile of a vector \"v\" at the probability \"p\".
   Note: Julia does not ignore \"NaN\" values in the computation.

"),

("Base","quantile!","quantile!(v, p)

   Like \"quantile\", but overwrites the input vector.

"),

("Base","cov","cov(v1[, v2][, vardim=1, corrected=true, mean=nothing])

   Compute the Pearson covariance between the vector(s) in \"v1\" and
   \"v2\". Here, \"v1\" and \"v2\" can be either vectors or matrices.

   This function accepts three keyword arguments:

   * \"vardim\": the dimension of variables. When \"vardim = 1\",
     variables are considered in columns while observations in rows;
     when \"vardim = 2\", variables are in rows while observations in
     columns. By default, it is set to \"1\".

   * \"corrected\": whether to apply Bessel's correction (divide by
     \"n-1\" instead of \"n\"). By default, it is set to \"true\".

   * \"mean\": allow users to supply mean values that are known. By
     default, it is set to \"nothing\", which indicates that the
     mean(s) are unknown, and the function will compute the mean.
     Users can use \"mean=0\" to indicate that the input data are
     centered, and hence there's no need to subtract the mean.

   The size of the result depends on the size of \"v1\" and \"v2\".
   When both \"v1\" and \"v2\" are vectors, it returns the covariance
   between them as a scalar. When either one is a matrix, it returns a
   covariance matrix of size \"(n1, n2)\", where \"n1\" and \"n2\" are
   the numbers of slices in \"v1\" and \"v2\", which depend on the
   setting of \"vardim\".

   Note: \"v2\" can be omitted, which indicates \"v2 = v1\".

"),

("Base","cor","cor(v1[, v2][, vardim=1, mean=nothing])

   Compute the Pearson correlation between the vector(s) in \"v1\" and
   \"v2\".

   Users can use the keyword argument \"vardim\" to specify the
   variable dimension, and \"mean\" to supply pre-computed mean
   values.

"),

("Base","fft","fft(A[, dims])

   Performs a multidimensional FFT of the array \"A\".  The optional
   \"dims\" argument specifies an iterable subset of dimensions (e.g.
   an integer, range, tuple, or array) to transform along.  Most
   efficient if the size of \"A\" along the transformed dimensions is
   a product of small primes; see \"nextprod()\".  See also
   \"plan_fft()\" for even greater efficiency.

   A one-dimensional FFT computes the one-dimensional discrete Fourier
   transform (DFT) as defined by

      \\operatorname{DFT}(A)[k] =
      \\sum_{n=1}^{\\operatorname{length}(A)}
      \\exp\\left(-i\\frac{2\\pi
      (n-1)(k-1)}{\\operatorname{length}(A)} \\right) A[n].

   A multidimensional FFT simply performs this operation along each
   transformed dimension of \"A\".

"),

("Base","fft!","fft!(A[, dims])

   Same as \"fft()\", but operates in-place on \"A\", which must be an
   array of complex floating-point numbers.

"),

("Base","ifft","ifft(A[, dims])

   Multidimensional inverse FFT.

   A one-dimensional inverse FFT computes

      \\operatorname{IDFT}(A)[k] =
      \\frac{1}{\\operatorname{length}(A)}
      \\sum_{n=1}^{\\operatorname{length}(A)}
      \\exp\\left(+i\\frac{2\\pi (n-1)(k-1)}
      {\\operatorname{length}(A)} \\right) A[n].

   A multidimensional inverse FFT simply performs this operation along
   each transformed dimension of \"A\".

"),

("Base","ifft!","ifft!(A[, dims])

   Same as \"ifft()\", but operates in-place on \"A\".

"),

("Base","bfft","bfft(A[, dims])

   Similar to \"ifft()\", but computes an unnormalized inverse
   (backward) transform, which must be divided by the product of the
   sizes of the transformed dimensions in order to obtain the inverse.
   (This is slightly more efficient than \"ifft()\" because it omits a
   scaling step, which in some applications can be combined with other
   computational steps elsewhere.)

      \\operatorname{BDFT}(A)[k] = \\operatorname{length}(A)
      \\operatorname{IDFT}(A)[k]

"),

("Base","bfft!","bfft!(A[, dims])

   Same as \"bfft()\", but operates in-place on \"A\".

"),

("Base","plan_fft","plan_fft(A[, dims[, flags[, timelimit]]])

   Pre-plan an optimized FFT along given dimensions (\"dims\") of
   arrays matching the shape and type of \"A\".  (The first two
   arguments have the same meaning as for \"fft()\".)  Returns a
   function \"plan(A)\" that computes \"fft(A, dims)\" quickly.

   The \"flags\" argument is a bitwise-or of FFTW planner flags,
   defaulting to \"FFTW.ESTIMATE\".  e.g. passing \"FFTW.MEASURE\" or
   \"FFTW.PATIENT\" will instead spend several seconds (or more)
   benchmarking different possible FFT algorithms and picking the
   fastest one; see the FFTW manual for more information on planner
   flags.  The optional \"timelimit\" argument specifies a rough upper
   bound on the allowed planning time, in seconds. Passing
   \"FFTW.MEASURE\" or \"FFTW.PATIENT\" may cause the input array
   \"A\" to be overwritten with zeros during plan creation.

   \"plan_fft!()\" is the same as \"plan_fft()\" but creates a plan
   that operates in-place on its argument (which must be an array of
   complex floating-point numbers).  \"plan_ifft()\" and so on are
   similar but produce plans that perform the equivalent of the
   inverse transforms \"ifft()\" and so on.

"),

("Base","plan_ifft","plan_ifft(A[, dims[, flags[, timelimit]]])

   Same as \"plan_fft()\", but produces a plan that performs inverse
   transforms \"ifft()\".

"),

("Base","plan_bfft","plan_bfft(A[, dims[, flags[, timelimit]]])

   Same as \"plan_fft()\", but produces a plan that performs an
   unnormalized backwards transform \"bfft()\".

"),

("Base","plan_fft!","plan_fft!(A[, dims[, flags[, timelimit]]])

   Same as \"plan_fft()\", but operates in-place on \"A\".

"),

("Base","plan_ifft!","plan_ifft!(A[, dims[, flags[, timelimit]]])

   Same as \"plan_ifft()\", but operates in-place on \"A\".

"),

("Base","plan_bfft!","plan_bfft!(A[, dims[, flags[, timelimit]]])

   Same as \"plan_bfft()\", but operates in-place on \"A\".

"),

("Base","rfft","rfft(A[, dims])

   Multidimensional FFT of a real array A, exploiting the fact that
   the transform has conjugate symmetry in order to save roughly half
   the computational time and storage costs compared with \"fft()\".
   If \"A\" has size \"(n_1, ..., n_d)\", the result has size
   \"(floor(n_1/2)+1, ..., n_d)\".

   The optional \"dims\" argument specifies an iterable subset of one
   or more dimensions of \"A\" to transform, similar to \"fft()\".
   Instead of (roughly) halving the first dimension of \"A\" in the
   result, the \"dims[1]\" dimension is (roughly) halved in the same
   way.

"),

("Base","irfft","irfft(A, d[, dims])

   Inverse of \"rfft()\": for a complex array \"A\", gives the
   corresponding real array whose FFT yields \"A\" in the first half.
   As for \"rfft()\", \"dims\" is an optional subset of dimensions to
   transform, defaulting to \"1:ndims(A)\".

   \"d\" is the length of the transformed real array along the
   \"dims[1]\" dimension, which must satisfy \"d ==
   floor(size(A,dims[1])/2)+1\". (This parameter cannot be inferred
   from \"size(A)\" due to the possibility of rounding by the
   \"floor\" function here.)

"),

("Base","brfft","brfft(A, d[, dims])

   Similar to \"irfft()\" but computes an unnormalized inverse
   transform (similar to \"bfft()\"), which must be divided by the
   product of the sizes of the transformed dimensions (of the real
   output array) in order to obtain the inverse transform.

"),

("Base","plan_rfft","plan_rfft(A[, dims[, flags[, timelimit]]])

   Pre-plan an optimized real-input FFT, similar to \"plan_fft()\"
   except for \"rfft()\" instead of \"fft()\".  The first two
   arguments, and the size of the transformed result, are the same as
   for \"rfft()\".

"),

("Base","plan_brfft","plan_brfft(A, d[, dims[, flags[, timelimit]]])

   Pre-plan an optimized real-input unnormalized transform, similar to
   \"plan_rfft()\" except for \"brfft()\" instead of \"rfft()\". The
   first two arguments and the size of the transformed result, are the
   same as for \"brfft()\".

"),

("Base","plan_irfft","plan_irfft(A, d[, dims[, flags[, timelimit]]])

   Pre-plan an optimized inverse real-input FFT, similar to
   \"plan_rfft()\" except for \"irfft()\" and \"brfft()\",
   respectively.  The first three arguments have the same meaning as
   for \"irfft()\".

"),

("Base","dct","dct(A[, dims])

   Performs a multidimensional type-II discrete cosine transform (DCT)
   of the array \"A\", using the unitary normalization of the DCT. The
   optional \"dims\" argument specifies an iterable subset of
   dimensions (e.g. an integer, range, tuple, or array) to transform
   along.  Most efficient if the size of \"A\" along the transformed
   dimensions is a product of small primes; see \"nextprod()\".  See
   also \"plan_dct()\" for even greater efficiency.

"),

("Base","dct!","dct!(A[, dims])

   Same as \"dct!()\", except that it operates in-place on \"A\",
   which must be an array of real or complex floating-point values.

"),

("Base","idct","idct(A[, dims])

   Computes the multidimensional inverse discrete cosine transform
   (DCT) of the array \"A\" (technically, a type-III DCT with the
   unitary normalization). The optional \"dims\" argument specifies an
   iterable subset of dimensions (e.g. an integer, range, tuple, or
   array) to transform along.  Most efficient if the size of \"A\"
   along the transformed dimensions is a product of small primes; see
   \"nextprod()\".  See also \"plan_idct()\" for even greater
   efficiency.

"),

("Base","idct!","idct!(A[, dims])

   Same as \"idct!()\", but operates in-place on \"A\".

"),

("Base","plan_dct","plan_dct(A[, dims[, flags[, timelimit]]])

   Pre-plan an optimized discrete cosine transform (DCT), similar to
   \"plan_fft()\" except producing a function that computes \"dct()\".
   The first two arguments have the same meaning as for \"dct()\".

"),

("Base","plan_dct!","plan_dct!(A[, dims[, flags[, timelimit]]])

   Same as \"plan_dct()\", but operates in-place on \"A\".

"),

("Base","plan_idct","plan_idct(A[, dims[, flags[, timelimit]]])

   Pre-plan an optimized inverse discrete cosine transform (DCT),
   similar to \"plan_fft()\" except producing a function that computes
   \"idct()\". The first two arguments have the same meaning as for
   \"idct()\".

"),

("Base","plan_idct!","plan_idct!(A[, dims[, flags[, timelimit]]])

   Same as \"plan_idct()\", but operates in-place on \"A\".

"),

("Base","fftshift","fftshift(x)

   Swap the first and second halves of each dimension of \"x\".

"),

("Base","fftshift","fftshift(x, dim)

   Swap the first and second halves of the given dimension of array
   \"x\".

"),

("Base","ifftshift","ifftshift(x[, dim])

   Undoes the effect of \"fftshift\".

"),

("Base","filt","filt(b, a, x[, si])

   Apply filter described by vectors \"a\" and \"b\" to vector \"x\",
   with an optional initial filter state vector \"si\" (defaults to
   zeros).

"),

("Base","filt!","filt!(out, b, a, x[, si])

   Same as \"filt()\" but writes the result into the \"out\" argument,
   which may alias the input \"x\" to modify it in-place.

"),

("Base","deconv","deconv(b, a)

   Construct vector \"c\" such that \"b = conv(a,c) + r\". Equivalent
   to polynomial division.

"),

("Base","conv","conv(u, v)

   Convolution of two vectors. Uses FFT algorithm.

"),

("Base","conv2","conv2(u, v, A)

   2-D convolution of the matrix \"A\" with the 2-D separable kernel
   generated by the vectors \"u\" and \"v\".  Uses 2-D FFT algorithm

"),

("Base","conv2","conv2(B, A)

   2-D convolution of the matrix \"B\" with the matrix \"A\".  Uses
   2-D FFT algorithm

"),

("Base","xcorr","xcorr(u, v)

   Compute the cross-correlation of two vectors.

"),

("Base.FFTW","r2r","r2r(A, kind[, dims])

   Performs a multidimensional real-input/real-output (r2r) transform
   of type \"kind\" of the array \"A\", as defined in the FFTW manual.
   \"kind\" specifies either a discrete cosine transform of various
   types (\"FFTW.REDFT00\", \"FFTW.REDFT01\", \"FFTW.REDFT10\", or
   \"FFTW.REDFT11\"), a discrete sine transform of various types
   (\"FFTW.RODFT00\", \"FFTW.RODFT01\", \"FFTW.RODFT10\", or
   \"FFTW.RODFT11\"), a real-input DFT with halfcomplex-format output
   (\"FFTW.R2HC\" and its inverse \"FFTW.HC2R\"), or a discrete
   Hartley transform (\"FFTW.DHT\").  The \"kind\" argument may be an
   array or tuple in order to specify different transform types along
   the different dimensions of \"A\"; \"kind[end]\" is used for any
   unspecified dimensions.  See the FFTW manual for precise
   definitions of these transform types, at http://www.fftw.org/doc.

   The optional \"dims\" argument specifies an iterable subset of
   dimensions (e.g. an integer, range, tuple, or array) to transform
   along. \"kind[i]\" is then the transform type for \"dims[i]\", with
   \"kind[end]\" being used for \"i > length(kind)\".

   See also \"plan_r2r()\" to pre-plan optimized r2r transforms.

"),

("Base.FFTW","r2r!","r2r!(A, kind[, dims])

   Same as \"r2r()\", but operates in-place on \"A\", which must be an
   array of real or complex floating-point numbers.

"),

("Base.FFTW","plan_r2r","plan_r2r(A, kind[, dims[, flags[, timelimit]]])

   Pre-plan an optimized r2r transform, similar to \"Base.plan_fft()\"
   except that the transforms (and the first three arguments)
   correspond to \"r2r()\" and \"r2r!()\", respectively.

"),

("Base.FFTW","plan_r2r!","plan_r2r!(A, kind[, dims[, flags[, timelimit]]])

   Similar to \"Base.plan_fft()\", but corresponds to \"r2r!()\".

"),

("Base","quadgk","quadgk(f, a, b, c...; reltol=sqrt(eps), abstol=0, maxevals=10^7, order=7, norm=vecnorm)

   Numerically integrate the function \"f(x)\" from \"a\" to \"b\",
   and optionally over additional intervals \"b\" to \"c\" and so on.
   Keyword options include a relative error tolerance \"reltol\"
   (defaults to \"sqrt(eps)\" in the precision of the endpoints), an
   absolute error tolerance \"abstol\" (defaults to 0), a maximum
   number of function evaluations \"maxevals\" (defaults to \"10^7\"),
   and the \"order\" of the integration rule (defaults to 7).

   Returns a pair \"(I,E)\" of the estimated integral \"I\" and an
   estimated upper bound on the absolute error \"E\".  If \"maxevals\"
   is not exceeded then \"E <= max(abstol, reltol*norm(I))\" will
   hold. (Note that it is useful to specify a positive \"abstol\" in
   cases where \"norm(I)\" may be zero.)

   The endpoints \"a\" etcetera can also be complex (in which case the
   integral is performed over straight-line segments in the complex
   plane).  If the endpoints are \"BigFloat\", then the integration
   will be performed in \"BigFloat\" precision as well (note: it is
   advisable to increase the integration \"order\" in rough proportion
   to the precision, for smooth integrands).  More generally, the
   precision is set by the precision of the integration endpoints
   (promoted to floating-point types).

   The integrand \"f(x)\" can return any numeric scalar, vector, or
   matrix type, or in fact any type supporting \"+\", \"-\",
   multiplication by real values, and a \"norm\" (i.e., any normed
   vector space). Alternatively, a different norm can be specified by
   passing a *norm*-like function as the *norm* keyword argument
   (which defaults to *vecnorm*).

   The algorithm is an adaptive Gauss-Kronrod integration technique:
   the integral in each interval is estimated using a Kronrod rule
   (\"2*order+1\" points) and the error is estimated using an embedded
   Gauss rule (\"order\" points).   The interval with the largest
   error is then subdivided into two intervals and the process is
   repeated until the desired error tolerance is achieved.

   These quadrature rules work best for smooth functions within each
   interval, so if your function has a known discontinuity or other
   singularity, it is best to subdivide your interval to put the
   singularity at an endpoint.  For example, if \"f\" has a
   discontinuity at \"x=0.7\" and you want to integrate from 0 to 1,
   you should use \"quadgk(f, 0,0.7,1)\" to subdivide the interval at
   the point of discontinuity.  The integrand is never evaluated
   exactly at the endpoints of the intervals, so it is possible to
   integrate functions that diverge at the endpoints as long as the
   singularity is integrable (for example, a \"log(x)\" or
   \"1/sqrt(x)\" singularity).

   For real-valued endpoints, the starting and/or ending points may be
   infinite.  (A coordinate transformation is performed internally to
   map the infinite interval to a finite one.)

"),

("Base","addprocs","addprocs(n; cman::ClusterManager=LocalManager()) -> List of process identifiers

   \"addprocs(4)\" will add 4 processes on the local machine. This can
   be used to take advantage of multiple cores.

   Keyword argument \"cman\" can be used to provide a custom cluster
   manager to start workers. For example Beowulf clusters are
   supported via a custom cluster manager implemented in  package
   \"ClusterManagers\".

   See the documentation for package \"ClusterManagers\" for more
   information on how to write a custom cluster manager.

"),

("Base","addprocs","addprocs(machines; tunnel=false, dir=JULIA_HOME, sshflags::Cmd=``) -> List of process identifiers

   Add processes on remote machines via SSH. Requires julia to be
   installed in the same location on each node, or to be available via
   a shared file system.

   \"machines\" is a vector of host definitions of the form
   \"[user@]host[:port] [bind_addr]\". \"user\" defaults to current
   user, \"port\" to the standard ssh port. Optionally, in case of
   multi-homed hosts, \"bind_addr\" may be used to explicitly specify
   an interface.

   Keyword arguments:

   \"tunnel\" : if \"true\" then SSH tunneling will be used to connect
   to the worker.

   \"dir\" :  specifies the location of the julia binaries on the
   worker nodes.

   \"sshflags\" : specifies additional ssh options, e.g.
   \"sshflags=`-i /home/foo/bar.pem`\" .

"),

("Base","nprocs","nprocs()

   Get the number of available processes.

"),

("Base","nworkers","nworkers()

   Get the number of available worker processes. This is one less than
   nprocs(). Equal to nprocs() if nprocs() == 1.

"),

("Base","procs","procs()

   Returns a list of all process identifiers.

"),

("Base","workers","workers()

   Returns a list of all worker process identifiers.

"),

("Base","rmprocs","rmprocs(pids...)

   Removes the specified workers.

"),

("Base","interrupt","interrupt([pids...])

   Interrupt the current executing task on the specified workers. This
   is equivalent to pressing Ctrl-C on the local machine. If no
   arguments are given, all workers are interrupted.

"),

("Base","myid","myid()

   Get the id of the current process.

"),

("Base","pmap","pmap(f, lsts...; err_retry=true, err_stop=false)

   Transform collections \"lsts\" by applying \"f\" to each element in
   parallel. If \"nprocs() > 1\", the calling process will be
   dedicated to assigning tasks. All other available processes will be
   used as parallel workers.

   If \"err_retry\" is true, it retries a failed application of \"f\"
   on a different worker. If \"err_stop\" is true, it takes precedence
   over the value of \"err_retry\" and \"pmap\" stops execution on the
   first error.

"),

("Base","remotecall","remotecall(id, func, args...)

   Call a function asynchronously on the given arguments on the
   specified process. Returns a \"RemoteRef\".

"),

("Base","wait","wait([x])

   Block the current task until some event occurs, depending on the
   type of the argument:

   * \"RemoteRef\": Wait for a value to become available for the
     specified remote reference.

   * \"Condition\": Wait for \"notify\" on a condition.

   * \"Process\": Wait for a process or process chain to exit. The
     \"exitcode\" field of a process can be used to determine success
     or failure.

   * \"Task\": Wait for a \"Task\" to finish, returning its result
     value.

   * \"RawFD\": Wait for changes on a file descriptor (see *poll_fd*
     for keyword arguments and return code)

   If no argument is passed, the task blocks for an undefined period.
   If the task's state is set to \":waiting\", it can only be
   restarted by an explicit call to \"schedule\" or \"yieldto\". If
   the task's state is \":runnable\", it might be restarted
   unpredictably.

   Often \"wait\" is called within a \"while\" loop to ensure a
   waited-for condition is met before proceeding.

"),

("Base","fetch","fetch(RemoteRef)

   Wait for and get the value of a remote reference.

"),

("Base","remotecall_wait","remotecall_wait(id, func, args...)

   Perform \"wait(remotecall(...))\" in one message.

"),

("Base","remotecall_fetch","remotecall_fetch(id, func, args...)

   Perform \"fetch(remotecall(...))\" in one message.

"),

("Base","put!","put!(RemoteRef, value)

   Store a value to a remote reference. Implements \"shared queue of
   length 1\" semantics: if a value is already present, blocks until
   the value is removed with \"take!\". Returns its first argument.

"),

("Base","take!","take!(RemoteRef)

   Fetch the value of a remote reference, removing it so that the
   reference is empty again.

"),

("Base","isready","isready(r::RemoteRef)

   Determine whether a \"RemoteRef\" has a value stored to it. Note
   that this function can cause race conditions, since by the time you
   receive its result it may no longer be true. It is recommended that
   this function only be used on a \"RemoteRef\" that is assigned
   once.

   If the argument \"RemoteRef\" is owned by a different node, this
   call will block to wait for the answer. It is recommended to wait
   for \"r\" in a separate task instead, or to use a local
   \"RemoteRef\" as a proxy:

      rr = RemoteRef()
      @async put!(rr, remotecall_fetch(p, long_computation))
      isready(rr)  # will not block

"),

("Base","RemoteRef","RemoteRef()

   Make an uninitialized remote reference on the local machine.

"),

("Base","RemoteRef","RemoteRef(n)

   Make an uninitialized remote reference on process \"n\".

"),

("Base","timedwait","timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)

   Waits till \"testcb\" returns \"true\" or for \"secs`\" seconds,
   whichever is earlier. \"testcb\" is polled every \"pollint\"
   seconds.

"),

("Base","@spawn","@spawn()

   Execute an expression on an automatically-chosen process, returning
   a \"RemoteRef\" to the result.

"),

("Base","@spawnat","@spawnat()

   Accepts two arguments, \"p\" and an expression, and runs the
   expression asynchronously on process \"p\", returning a
   \"RemoteRef\" to the result.

"),

("Base","@fetch","@fetch()

   Equivalent to \"fetch(@spawn expr)\".

"),

("Base","@fetchfrom","@fetchfrom()

   Equivalent to \"fetch(@spawnat p expr)\".

"),

("Base","@async","@async()

   Schedule an expression to run on the local machine, also adding it
   to the set of items that the nearest enclosing \"@sync\" waits for.

"),

("Base","@sync","@sync()

   Wait until all dynamically-enclosed uses of \"@async\", \"@spawn\",
   \"@spawnat\" and \"@parallel\" are complete.

"),

("Base","@parallel","@parallel()

   A parallel for loop of the form

      @parallel [reducer] for var = range
          body
      end

   The specified range is partitioned and locally executed across all
   workers. In case an optional reducer function is specified,
   @parallel performs local reductions on each worker with a final
   reduction on the calling process.

   Note that without a reducer function, @parallel executes
   asynchronously, i.e. it spawns independent tasks on all available
   workers and returns immediately without waiting for completion. To
   wait for completion, prefix the call with \"@sync\", like

      @sync @parallel for var = range
          body
      end

"),

("Base","DArray","DArray(init, dims[, procs, dist])

   Construct a distributed array. The parameter \"init\" is a function
   that accepts a tuple of index ranges. This function should allocate
   a local chunk of the distributed array and initialize it for the
   specified indices. \"dims\" is the overall size of the distributed
   array. \"procs\" optionally specifies a vector of process IDs to
   use. If unspecified, the array is distributed over all worker
   processes only. Typically, when runnning in distributed mode, i.e.,
   \"nprocs() > 1\", this would mean that no chunk of the distributed
   array exists on the process hosting the interactive julia prompt.
   \"dist\" is an integer vector specifying how many chunks the
   distributed array should be divided into in each dimension.

   For example, the \"dfill\" function that creates a distributed
   array and fills it with a value \"v\" is implemented as:

   \"dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)\"

"),

("Base","dzeros","dzeros(dims, ...)

   Construct a distributed array of zeros. Trailing arguments are the
   same as those accepted by \"DArray()\".

"),

("Base","dones","dones(dims, ...)

   Construct a distributed array of ones. Trailing arguments are the
   same as those accepted by \"DArray()\".

"),

("Base","dfill","dfill(x, dims, ...)

   Construct a distributed array filled with value \"x\". Trailing
   arguments are the same as those accepted by \"DArray()\".

"),

("Base","drand","drand(dims, ...)

   Construct a distributed uniform random array. Trailing arguments
   are the same as those accepted by \"DArray()\".

"),

("Base","drandn","drandn(dims, ...)

   Construct a distributed normal random array. Trailing arguments are
   the same as those accepted by \"DArray()\".

"),

("Base","distribute","distribute(a)

   Convert a local array to distributed.

"),

("Base","localpart","localpart(d)

   Get the local piece of a distributed array. Returns an empty array
   if no local part exists on the calling process.

"),

("Base","localindexes","localindexes(d)

   A tuple describing the indexes owned by the local process. Returns
   a tuple with empty ranges if no local part exists on the calling
   process.

"),

("Base","procs","procs(d)

   Get the vector of processes storing pieces of \"d\".

"),

("Base","SharedArray","SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])

   Construct a SharedArray of a bitstype \"T\"  and size \"dims\"
   across the processes specified by \"pids\" - all of which have to
   be on the same host.

   If \"pids\" is left unspecified, the shared array will be mapped
   across all workers on the current host.

   If an \"init\" function of the type \"initfn(S::SharedArray)\" is
   specified, it is called on all the participating workers.

"),

("Base","procs","procs(S::SharedArray)

   Get the vector of processes that have mapped the shared array

"),

("Base","sdata","sdata(S::SharedArray)

   Returns the actual \"Array\" object backing \"S\"

"),

("Base","indexpids","indexpids(S::SharedArray)

   Returns the index of the current worker into the \"pids\" vector,
   i.e., the list of workers mapping the SharedArray

"),

("Base","run","run(command)

   Run a command object, constructed with backticks. Throws an error
   if anything goes wrong, including the process exiting with a non-
   zero status.

"),

("Base","spawn","spawn(command)

   Run a command object asynchronously, returning the resulting
   \"Process\" object.

"),

("Base","DevNull","DevNull

   Used in a stream redirect to discard all data written to it.
   Essentially equivalent to /dev/null on Unix or NUL on Windows.
   Usage: \"run(`cat test.txt` |> DevNull)\"

"),

("Base","success","success(command)

   Run a command object, constructed with backticks, and tell whether
   it was successful (exited with a code of 0). An exception is raised
   if the process cannot be started.

"),

("Base","process_running","process_running(p::Process)

   Determine whether a process is currently running.

"),

("Base","process_exited","process_exited(p::Process)

   Determine whether a process has exited.

"),

("Base","kill","kill(p::Process, signum=SIGTERM)

   Send a signal to a process. The default is to terminate the
   process.

"),

("Base","open","open(command, mode::String=\"r\", stdio=DevNull)

   Start running \"command\" asynchronously, and return a tuple
   \"(stream,process)\".  If \"mode\" is \"\"r\"\", then \"stream\"
   reads from the process's standard output and \"stdio\" optionally
   specifies the process's standard input stream.  If \"mode\" is
   \"\"w\"\", then \"stream\" writes to the process's standard input
   and \"stdio\" optionally specifies the process's standard output
   stream.

"),

("Base","open","open(f::Function, command, mode::String=\"r\", stdio=DevNull)

   Similar to \"open(command, mode, stdio)\", but calls \"f(stream)\"
   on the resulting read or write stream, then closes the stream and
   waits for the process to complete.  Returns the value returned by
   \"f\".

"),

("Base","readandwrite","readandwrite(command)

   Starts running a command asynchronously, and returns a tuple
   (stdout,stdin,process) of the output stream and input stream of the
   process, and the process object itself.

"),

("Base","ignorestatus","ignorestatus(command)

   Mark a command object so that running it will not throw an error if
   the result code is non-zero.

"),

("Base","detach","detach(command)

   Mark a command object so that it will be run in a new process
   group, allowing it to outlive the julia process, and not have
   Ctrl-C interrupts passed to it.

"),

("Base","setenv","setenv(command, env; dir=working_dir)

   Set environment variables to use when running the given command.
   \"env\" is either a dictionary mapping strings to strings, or an
   array of strings of the form \"\"var=val\"\".

   The \"dir\" keyword argument can be used to specify a working
   directory for the command.

"),

("Base","|>","|>(command, command)
|>(command, filename)
|>(filename, command)

   Redirect operator. Used for piping the output of a process into
   another (first form) or to redirect the standard output/input of a
   command to/from a file (second and third forms).

   **Examples**:
      * \"run(`ls` |> `grep xyz`)\"

      * \"run(`ls` |> \"out.txt\")\"

      * \"run(\"out.txt\" |> `grep xyz`)\"

"),

("Base",">>",">>(command, filename)

   Redirect standard output of a process, appending to the destination
   file.

"),

("Base",".>",".>(command, filename)

   Redirect the standard error stream of a process.

"),

("Base","gethostname","gethostname() -> String

   Get the local machine's host name.

"),

("Base","getipaddr","getipaddr() -> String

   Get the IP address of the local machine, as a string of the form
   \"x.x.x.x\".

"),

("Base","pwd","pwd() -> String

   Get the current working directory.

"),

("Base","cd","cd(dir::String)

   Set the current working directory.

"),

("Base","cd","cd(f[, dir])

   Temporarily changes the current working directory (HOME if not
   specified) and applies function f before returning.

"),

("Base","mkdir","mkdir(path[, mode])

   Make a new directory with name \"path\" and permissions \"mode\".
   \"mode\" defaults to 0o777, modified by the current file creation
   mask.

"),

("Base","mkpath","mkpath(path[, mode])

   Create all directories in the given \"path\", with permissions
   \"mode\". \"mode\" defaults to 0o777, modified by the current file
   creation mask.

"),

("Base","symlink","symlink(target, link)

   Creates a symbolic link to \"target\" with the name \"link\".

   Note: This function raises an error under operating systems that do not
     support soft symbolic links, such as Windows XP.

"),

("Base","getpid","getpid() -> Int32

   Get julia's process ID.

"),

("Base","time","time([t::TmStruct])

   Get the system time in seconds since the epoch, with fairly high
   (typically, microsecond) resolution. When passed a \"TmStruct\",
   converts it to a number of seconds since the epoch.

"),

("Base","time_ns","time_ns()

   Get the time in nanoseconds. The time corresponding to 0 is
   undefined, and wraps every 5.8 years.

"),

("Base","strftime","strftime([format], time)

   Convert time, given as a number of seconds since the epoch or a
   \"TmStruct\", to a formatted string using the given format.
   Supported formats are the same as those in the standard C library.

"),

("Base","strptime","strptime([format], timestr)

   Parse a formatted time string into a \"TmStruct\" giving the
   seconds, minute, hour, date, etc. Supported formats are the same as
   those in the standard C library. On some platforms, timezones will
   not be parsed correctly. If the result of this function will be
   passed to \"time\" to convert it to seconds since the epoch, the
   \"isdst\" field should be filled in manually. Setting it to \"-1\"
   will tell the C library to use the current system settings to
   determine the timezone.

"),

("Base","TmStruct","TmStruct([seconds])

   Convert a number of seconds since the epoch to broken-down format,
   with fields \"sec\", \"min\", \"hour\", \"mday\", \"month\",
   \"year\", \"wday\", \"yday\", and \"isdst\".

"),

("Base","tic","tic()

   Set a timer to be read by the next call to \"toc()\" or \"toq()\".
   The macro call \"@time expr\" can also be used to time evaluation.

"),

("Base","toc","toc()

   Print and return the time elapsed since the last \"tic()\".

"),

("Base","toq","toq()

   Return, but do not print, the time elapsed since the last
   \"tic()\".

"),

("Base","@time","@time()

   A macro to execute an expression, printing the time it took to
   execute and the total number of bytes its execution caused to be
   allocated, before returning the value of the expression.

"),

("Base","@elapsed","@elapsed()

   A macro to evaluate an expression, discarding the resulting value,
   instead returning the number of seconds it took to execute as a
   floating-point number.

"),

("Base","@allocated","@allocated()

   A macro to evaluate an expression, discarding the resulting value,
   instead returning the total number of bytes allocated during
   evaluation of the expression.

"),

("Base","EnvHash","EnvHash() -> EnvHash

   A singleton of this type provides a hash table interface to
   environment variables.

"),

("Base","ENV","ENV

   Reference to the singleton \"EnvHash\", providing a dictionary
   interface to system environment variables.

"),

("Base","@unix","@unix()

   Given \"@unix? a : b\", do \"a\" on Unix systems (including Linux
   and OS X) and \"b\" elsewhere. See documentation for Handling
   Platform Variations in the Calling C and Fortran Code section of
   the manual.

"),

("Base","@osx","@osx()

   Given \"@osx? a : b\", do \"a\" on OS X and \"b\" elsewhere. See
   documentation for Handling Platform Variations in the Calling C and
   Fortran Code section of the manual.

"),

("Base","@linux","@linux()

   Given \"@linux? a : b\", do \"a\" on Linux and \"b\" elsewhere. See
   documentation for Handling Platform Variations in the Calling C and
   Fortran Code section of the manual.

"),

("Base","@windows","@windows()

   Given \"@windows? a : b\", do \"a\" on Windows and \"b\" elsewhere.
   See documentation for Handling Platform Variations in the Calling C
   and Fortran Code section of the manual.

"),

("Base","ccall","ccall((symbol, library) or fptr, RetType, (ArgType1, ...), ArgVar1, ...)

   Call function in C-exported shared library, specified by
   \"(function name, library)\" tuple, where each component is a
   String or :Symbol. Alternatively, ccall may be used to call a
   function pointer returned by dlsym, but note that this usage is
   generally discouraged to facilitate future static compilation. Note
   that the argument type tuple must be a literal tuple, and not a
   tuple-valued variable or expression.

"),

("Base","cglobal","cglobal((symbol, library) or ptr[, Type=Void])

   Obtain a pointer to a global variable in a C-exported shared
   library, specified exactly as in \"ccall\".  Returns a
   \"Ptr{Type}\", defaulting to \"Ptr{Void}\" if no Type argument is
   supplied.  The values can be read or written by \"unsafe_load\" or
   \"unsafe_store!\", respectively.

"),

("Base","cfunction","cfunction(fun::Function, RetType::Type, (ArgTypes...))

   Generate C-callable function pointer from Julia function. Type
   annotation of the return value in the callback function is a must
   for situations where Julia cannot infer the return type
   automatically.

   For example:

      function foo()
          # body

          retval::Float64
      end

      bar = cfunction(foo, Float64, ())

"),

("Base","dlopen","dlopen(libfile::String[, flags::Integer])

   Load a shared library, returning an opaque handle.

   The optional flags argument is a bitwise-or of zero or more of
   RTLD_LOCAL, RTLD_GLOBAL, RTLD_LAZY, RTLD_NOW, RTLD_NODELETE,
   RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST.  These are converted to
   the corresponding flags of the POSIX (and/or GNU libc and/or MacOS)
   dlopen command, if possible, or are ignored if the specified
   functionality is not available on the current platform.  The
   default is RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL.  An important usage
   of these flags, on POSIX platforms, is to specify
   RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL in order for the library's
   symbols to be available for usage in other shared libraries, in
   situations where there are dependencies between shared libraries.

"),

("Base","dlopen_e","dlopen_e(libfile::String[, flags::Integer])

   Similar to \"dlopen\", except returns a NULL pointer instead of
   raising errors.

"),

("Base","RTLD_DEEPBIND","RTLD_DEEPBIND

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","RTLD_FIRST","RTLD_FIRST

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","RTLD_GLOBAL","RTLD_GLOBAL

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","RTLD_LAZY","RTLD_LAZY

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","RTLD_LOCAL","RTLD_LOCAL

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","RTLD_NODELETE","RTLD_NODELETE

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","RTLD_NOLOAD","RTLD_NOLOAD

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","RTLD_NOW","RTLD_NOW

   Enum constant for dlopen. See your platform man page for details,
   if applicable.

"),

("Base","dlsym","dlsym(handle, sym)

   Look up a symbol from a shared library handle, return callable
   function pointer on success.

"),

("Base","dlsym_e","dlsym_e(handle, sym)

   Look up a symbol from a shared library handle, silently return NULL
   pointer on lookup failure.

"),

("Base","dlclose","dlclose(handle)

   Close shared library referenced by handle.

"),

("Base","find_library","find_library(names, locations)

   Searches for the first library in \"names\" in the paths in the
   \"locations\" list, \"DL_LOAD_PATH\", or system library paths (in
   that order) which can successfully be dlopen'd. On success, the
   return value will be one of the names (potentially prefixed by one
   of the paths in locations). This string can be assigned to a
   \"global const\" and used as the library name in future
   \"ccall\"'s. On failure, it returns the empty string.

"),

("Base","DL_LOAD_PATH","DL_LOAD_PATH

   When calling \"dlopen\", the paths in this list will be searched
   first, in order, before searching the system locations for a valid
   library handle.

"),

("Base","c_malloc","c_malloc(size::Integer) -> Ptr{Void}

   Call \"malloc\" from the C standard library.

"),

("Base","c_calloc","c_calloc(num::Integer, size::Integer) -> Ptr{Void}

   Call \"calloc\" from the C standard library.

"),

("Base","c_realloc","c_realloc(addr::Ptr, size::Integer) -> Ptr{Void}

   Call \"realloc\" from the C standard library.

"),

("Base","c_free","c_free(addr::Ptr)

   Call \"free\" from the C standard library.

"),

("Base","unsafe_load","unsafe_load(p::Ptr{T}, i::Integer)

   Load a value of type \"T\" from the address of the ith element
   (1-indexed) starting at \"p\". This is equivalent to the C
   expression \"p[i-1]\".

"),

("Base","unsafe_store!","unsafe_store!(p::Ptr{T}, x, i::Integer)

   Store a value of type \"T\" to the address of the ith element
   (1-indexed) starting at \"p\". This is equivalent to the C
   expression \"p[i-1] = x\".

"),

("Base","unsafe_copy!","unsafe_copy!(dest::Ptr{T}, src::Ptr{T}, N)

   Copy \"N\" elements from a source pointer to a destination, with no
   checking. The size of an element is determined by the type of the
   pointers.

"),

("Base","unsafe_copy!","unsafe_copy!(dest::Array, do, src::Array, so, N)

   Copy \"N\" elements from a source array to a destination, starting
   at offset \"so\" in the source and \"do\" in the destination
   (1-indexed).

"),

("Base","copy!","copy!(dest, src)

   Copy all elements from collection \"src\" to array \"dest\".
   Returns \"dest\".

"),

("Base","copy!","copy!(dest, do, src, so, N)

   Copy \"N\" elements from collection \"src\" starting at offset
   \"so\", to array \"dest\" starting at offset \"do\". Returns
   \"dest\".

"),

("Base","pointer","pointer(a[, index])

   Get the native address of an array or string element. Be careful to
   ensure that a julia reference to \"a\" exists as long as this
   pointer will be used.

"),

("Base","pointer","pointer(type, int)

   Convert an integer to a pointer of the specified element type.

"),

("Base","pointer_to_array","pointer_to_array(p, dims[, own])

   Wrap a native pointer as a Julia Array object. The pointer element
   type determines the array element type. \"own\" optionally
   specifies whether Julia should take ownership of the memory,
   calling \"free\" on the pointer when the array is no longer
   referenced.

"),

("Base","pointer_from_objref","pointer_from_objref(obj)

   Get the memory address of a Julia object as a \"Ptr\". The
   existence of the resulting \"Ptr\" will not protect the object from
   garbage collection, so you must ensure that the object remains
   referenced for the whole time that the \"Ptr\" will be used.

"),

("Base","unsafe_pointer_to_objref","unsafe_pointer_to_objref(p::Ptr)

   Convert a \"Ptr\" to an object reference. Assumes the pointer
   refers to a valid heap-allocated Julia object. If this is not the
   case, undefined behavior results, hence this function is considered
   \"unsafe\" and should be used with care.

"),

("Base","disable_sigint","disable_sigint(f::Function)

   Disable Ctrl-C handler during execution of a function, for calling
   external code that is not interrupt safe. Intended to be called
   using \"do\" block syntax as follows:

      disable_sigint() do
          # interrupt-unsafe code
          ...
      end

"),

("Base","reenable_sigint","reenable_sigint(f::Function)

   Re-enable Ctrl-C handler during execution of a function.
   Temporarily reverses the effect of \"disable_sigint\".

"),

("Base","errno","errno([code])

   Get the value of the C library's \"errno\". If an argument is
   specified, it is used to set the value of \"errno\".

   The value of \"errno\" is only valid immediately after a \"ccall\"
   to a C library routine that sets it. Specifically, you cannot call
   \"errno\" at the next prompt in a REPL, because lots of code is
   executed between prompts.

"),

("Base","systemerror","systemerror(sysfunc, iftrue)

   Raises a \"SystemError\" for \"errno\" with the descriptive string
   \"sysfunc\" if \"bool\" is true

"),

("Base","strerror","strerror(n)

   Convert a system call error code to a descriptive string

"),

("Base","Cchar","Cchar

   Equivalent to the native \"char\" c-type

"),

("Base","Cuchar","Cuchar

   Equivalent to the native \"unsigned char\" c-type (Uint8)

"),

("Base","Cshort","Cshort

   Equivalent to the native \"signed short\" c-type (Int16)

"),

("Base","Cushort","Cushort

   Equivalent to the native \"unsigned short\" c-type (Uint16)

"),

("Base","Cint","Cint

   Equivalent to the native \"signed int\" c-type (Int32)

"),

("Base","Cuint","Cuint

   Equivalent to the native \"unsigned int\" c-type (Uint32)

"),

("Base","Clong","Clong

   Equivalent to the native \"signed long\" c-type

"),

("Base","Culong","Culong

   Equivalent to the native \"unsigned long\" c-type

"),

("Base","Clonglong","Clonglong

   Equivalent to the native \"signed long long\" c-type (Int64)

"),

("Base","Culonglong","Culonglong

   Equivalent to the native \"unsigned long long\" c-type (Uint64)

"),

("Base","Csize_t","Csize_t

   Equivalent to the native \"size_t\" c-type (Uint)

"),

("Base","Cssize_t","Cssize_t

   Equivalent to the native \"ssize_t\" c-type

"),

("Base","Cptrdiff_t","Cptrdiff_t

   Equivalent to the native \"ptrdiff_t\" c-type (Int)

"),

("Base","Coff_t","Coff_t

   Equivalent to the native \"off_t\" c-type

"),

("Base","Cwchar_t","Cwchar_t

   Equivalent to the native \"wchar_t\" c-type (Int32)

"),

("Base","Cfloat","Cfloat

   Equivalent to the native \"float\" c-type (Float32)

"),

("Base","Cdouble","Cdouble

   Equivalent to the native \"double\" c-type (Float64)

"),

("Base","error","error(message::String)

   Raise an error with the given message

"),

("Base","throw","throw(e)

   Throw an object as an exception

"),

("Base","rethrow","rethrow([e])

   Throw an object without changing the current exception backtrace.
   The default argument is the current exception (if called within a
   \"catch\" block).

"),

("Base","backtrace","backtrace()

   Get a backtrace object for the current program point.

"),

("Base","catch_backtrace","catch_backtrace()

   Get the backtrace of the current exception, for use within
   \"catch\" blocks.

"),

("Base","assert","assert(cond[, text])

   Raise an error if \"cond\" is false. Also available as the macro
   \"@assert expr\".

"),

("Base","@assert","@assert()

   Raise an error if \"cond\" is false. Preferred syntax for writings
   assertions.

"),

("Base","ArgumentError","ArgumentError

   The parameters given to a function call are not valid.

"),

("Base","BoundsError","BoundsError

   An indexing operation into an array tried to access an out-of-
   bounds element.

"),

("Base","EOFError","EOFError

   No more data was available to read from a file or stream.

"),

("Base","ErrorException","ErrorException

   Generic error type. The error message, in the *.msg* field, may
   provide more specific details.

"),

("Base","KeyError","KeyError

   An indexing operation into an \"Associative\" (\"Dict\") or \"Set\"
   like object tried to access or delete a non-existent element.

"),

("Base","LoadError","LoadError

   An error occurred while *including*, *requiring*, or *using* a
   file. The error specifics should be available in the *.error*
   field.

"),

("Base","MethodError","MethodError

   A method with the required type signature does not exist in the
   given generic function.

"),

("Base","ParseError","ParseError

   The expression passed to the *parse* function could not be
   interpreted as a valid Julia expression.

"),

("Base","ProcessExitedException","ProcessExitedException

   After a client Julia process has exited, further attempts to
   reference the dead child will throw this exception.

"),

("Base","SystemError","SystemError

   A system call failed with an error code (in the \"errno\" global
   variable).

"),

("Base","TypeError","TypeError

   A type assertion failure, or calling an intrinsic function with an
   incorrect argument type.

"),

("Base","Task","Task(func)

   Create a \"Task\" (i.e. thread, or coroutine) to execute the given
   function (which must be callable with no arguments). The task exits
   when this function returns.

"),

("Base","yieldto","yieldto(task, args...)

   Switch to the given task. The first time a task is switched to, the
   task's function is called with no arguments. On subsequent
   switches, \"args\" are returned from the task's last call to
   \"yieldto\". This is a low-level call that only switches tasks, not
   considering states or scheduling in any way.

"),

("Base","current_task","current_task()

   Get the currently running Task.

"),

("Base","istaskdone","istaskdone(task) -> Bool

   Tell whether a task has exited.

"),

("Base","consume","consume(task, values...)

   Receive the next value passed to \"produce\" by the specified task.
   Additional arguments may be passed, to be returned from the last
   \"produce\" call in the producer.

"),

("Base","produce","produce(value)

   Send the given value to the last \"consume\" call, switching to the
   consumer task. If the next \"consume\" call passes any values, they
   are returned by \"produce\".

"),

("Base","yield","yield()

   Switch to the scheduler to allow another scheduled task to run. A
   task that calls this function is still runnable, and will be
   restarted immediately if there are no other runnable tasks.

"),

("Base","task_local_storage","task_local_storage(symbol)

   Look up the value of a symbol in the current task's task-local
   storage.

"),

("Base","task_local_storage","task_local_storage(symbol, value)

   Assign a value to a symbol in the current task's task-local
   storage.

"),

("Base","task_local_storage","task_local_storage(body, symbol, value)

   Call the function \"body\" with a modified task-local storage, in
   which \"value\" is assigned to \"symbol\"; the previous value of
   \"symbol\", or lack thereof, is restored afterwards. Useful for
   emulating dynamic scoping.

"),

("Base","Condition","Condition()

   Create an edge-triggered event source that tasks can wait for.
   Tasks that call \"wait\" on a \"Condition\" are suspended and
   queued. Tasks are woken up when \"notify\" is later called on the
   \"Condition\". Edge triggering means that only tasks waiting at the
   time \"notify\" is called can be woken up. For level-triggered
   notifications, you must keep extra state to keep track of whether a
   notification has happened. The \"RemoteRef\" type does this, and so
   can be used for level-triggered events.

"),

("Base","notify","notify(condition, val=nothing; all=true, error=false)

   Wake up tasks waiting for a condition, passing them \"val\". If
   \"all\" is true (the default), all waiting tasks are woken,
   otherwise only one is. If \"error\" is true, the passed value is
   raised as an exception in the woken tasks.

"),

("Base","schedule","schedule(t::Task, [val]; error=false)

   Add a task to the scheduler's queue. This causes the task to run
   constantly when the system is otherwise idle, unless the task
   performs a blocking operation such as \"wait\".

   If a second argument is provided, it will be passed to the task
   (via the return value of \"yieldto\") when it runs again. If
   \"error\" is true, the value is raised as an exception in the woken
   task.

"),

("Base","@schedule","@schedule()

   Wrap an expression in a Task and add it to the scheduler's queue.

"),

("Base","@task","@task()

   Wrap an expression in a Task executing it, and return the Task.
   This only creates a task, and does not run it.

"),

("Base","sleep","sleep(seconds)

   Block the current task for a specified number of seconds. The
   minimum sleep time is 1 millisecond or input of \"0.001\".

"),

("Base","Timer","Timer(f::Function)

   Create a timer to call the given callback function. The callback is
   passed one argument, the timer object itself. The timer can be
   started and stopped with \"start_timer\" and \"stop_timer\".

"),

("Base","start_timer","start_timer(t::Timer, delay, repeat)

   Start invoking the callback for a \"Timer\" after the specified
   initial delay, and then repeating with the given interval. Times
   are in seconds. If \"repeat\" is \"0\", the timer is only triggered
   once.

"),

("Base","stop_timer","stop_timer(t::Timer)

   Stop invoking the callback for a timer.

"),

("Base","module_name","module_name(m::Module) -> Symbol

   Get the name of a module as a symbol.

"),

("Base","module_parent","module_parent(m::Module) -> Module

   Get a module's enclosing module. \"Main\" is its own parent.

"),

("Base","current_module","current_module() -> Module

   Get the *dynamically* current module, which is the module code is
   currently being read from. In general, this is not the same as the
   module containing the call to this function.

"),

("Base","fullname","fullname(m::Module)

   Get the fully-qualified name of a module as a tuple of symbols. For
   example, \"fullname(Base.Pkg)\" gives \"(:Base,:Pkg)\", and
   \"fullname(Main)\" gives \"()\".

"),

("Base","names","names(x::Module[, all=false[, imported=false]])

   Get an array of the names exported by a module, with optionally
   more module globals according to the additional parameters.

"),

("Base","names","names(x::DataType)

   Get an array of the fields of a data type.

"),

("Base","isconst","isconst([m::Module], s::Symbol) -> Bool

   Determine whether a global is declared \"const\" in a given module.
   The default module argument is \"current_module()\".

"),

("Base","isgeneric","isgeneric(f::Function) -> Bool

   Determine whether a function is generic.

"),

("Base","function_name","function_name(f::Function) -> Symbol

   Get the name of a generic function as a symbol, or \":anonymous\".

"),

("Base","function_module","function_module(f::Function, types) -> Module

   Determine the module containing a given definition of a generic
   function.

"),

("Base","functionloc","functionloc(f::Function, types)

   Returns a tuple \"(filename,line)\" giving the location of a method
   definition.

"),

("Base","functionlocs","functionlocs(f::Function, types)

   Returns an array of the results of \"functionloc\" for all matching
   definitions.

"),

("Base","gc","gc()

   Perform garbage collection. This should not generally be used.

"),

("Base","gc_disable","gc_disable()

   Disable garbage collection. This should be used only with extreme
   caution, as it can cause memory use to grow without bound.

"),

("Base","gc_enable","gc_enable()

   Re-enable garbage collection after calling \"gc_disable\".

"),

("Base","macroexpand","macroexpand(x)

   Takes the expression x and returns an equivalent expression with
   all macros removed (expanded).

"),

("Base","expand","expand(x)

   Takes the expression x and returns an equivalent expression in
   lowered form

"),

("Base","code_lowered","code_lowered(f, types)

   Returns an array of lowered ASTs for the methods matching the given
   generic function and type signature.

"),

("Base","@code_lowered","@code_lowered()

   Evaluates the arguments to the function call, determines their
   types, and calls the \"code_lowered\" function on the resulting
   expression

"),

("Base","code_typed","code_typed(f, types)

   Returns an array of lowered and type-inferred ASTs for the methods
   matching the given generic function and type signature.

"),

("Base","@code_typed","@code_typed()

   Evaluates the arguments to the function call, determines their
   types, and calls the \"code_typed\" function on the resulting
   expression

"),

("Base","code_llvm","code_llvm(f, types)

   Prints the LLVM bitcodes generated for running the method matching
   the given generic function and type signature to STDOUT.

"),

("Base","@code_llvm","@code_llvm()

   Evaluates the arguments to the function call, determines their
   types, and calls the \"code_llvm\" function on the resulting
   expression

"),

("Base","code_native","code_native(f, types)

   Prints the native assembly instructions generated for running the
   method matching the given generic function and type signature to
   STDOUT.

"),

("Base","@code_native","@code_native()

   Evaluates the arguments to the function call, determines their
   types, and calls the \"code_native\" function on the resulting
   expression

"),

("Base","precompile","precompile(f, args::(Any..., ))

   Compile the given function *f* for the argument tuple (of types)
   *args*, but do not execute it.

"),

("Base.Collections","PriorityQueue{K,V}","PriorityQueue{K,V}([ord])

   Construct a new PriorityQueue, with keys of type K and
   values/priorites of type V. If an order is not given, the priority
   queue is min-ordered using the default comparison for V.

"),

("Base.Collections","enqueue!","enqueue!(pq, k, v)

   Insert the a key \"k\" into a priority queue \"pq\" with priority
   \"v\".

"),

("Base.Collections","dequeue!","dequeue!(pq)

   Remove and return the lowest priority key from a priority queue.

"),

("Base.Collections","peek","peek(pq)

   Return the lowest priority key from a priority queue without
   removing that key from the queue.

"),

("Base.Collections","heapify","heapify(v[, ord])

   Return a new vector in binary heap order, optionally using the
   given ordering.

"),

("Base.Collections","heapify!","heapify!(v[, ord])

   In-place heapify.

"),

("Base.Collections","isheap","isheap(v[, ord])

   Return true iff an array is heap-ordered according to the given
   order.

"),

("Base.Collections","heappush!","heappush!(v, x[, ord])

   Given a binary heap-ordered array, push a new element \"x\",
   preserving the heap property. For efficiency, this function does
   not check that the array is indeed heap-ordered.

"),

("Base.Collections","heappop!","heappop!(v[, ord])

   Given a binary heap-ordered array, remove and return the lowest
   ordered element. For efficiency, this function does not check that
   the array is indeed heap-ordered.

"),

("Base","OS_NAME","OS_NAME

   A symbol representing the name of the operating system. Possible
   values are \":Linux\", \":Darwin\" (OS X), or \":Windows\".

"),

("Base","ARGS","ARGS

   An array of the command line arguments passed to Julia, as strings.

"),

("Base","C_NULL","C_NULL

   The C null pointer constant, sometimes used when calling external
   code.

"),

("Base","CPU_CORES","CPU_CORES

   The number of CPU cores in the system.

"),

("Base","WORD_SIZE","WORD_SIZE

   Standard word size on the current machine, in bits.

"),

("Base","VERSION","VERSION

   An object describing which version of Julia is in use.

"),

("Base","LOAD_PATH","LOAD_PATH

   An array of paths (as strings) where the \"require\" function looks
   for code.

"),

("Base","isblockdev","isblockdev(path) -> Bool

   Returns \"true\" if \"path\" is a block device, \"false\"
   otherwise.

"),

("Base","ischardev","ischardev(path) -> Bool

   Returns \"true\" if \"path\" is a character device, \"false\"
   otherwise.

"),

("Base","isdir","isdir(path) -> Bool

   Returns \"true\" if \"path\" is a directory, \"false\" otherwise.

"),

("Base","isexecutable","isexecutable(path) -> Bool

   Returns \"true\" if the current user has permission to execute
   \"path\", \"false\" otherwise.

"),

("Base","isfifo","isfifo(path) -> Bool

   Returns \"true\" if \"path\" is a FIFO, \"false\" otherwise.

"),

("Base","isfile","isfile(path) -> Bool

   Returns \"true\" if \"path\" is a regular file, \"false\"
   otherwise.

"),

("Base","islink","islink(path) -> Bool

   Returns \"true\" if \"path\" is a symbolic link, \"false\"
   otherwise.

"),

("Base","ispath","ispath(path) -> Bool

   Returns \"true\" if \"path\" is a valid filesystem path, \"false\"
   otherwise.

"),

("Base","isreadable","isreadable(path) -> Bool

   Returns \"true\" if the current user has permission to read
   \"path\", \"false\" otherwise.

"),

("Base","issetgid","issetgid(path) -> Bool

   Returns \"true\" if \"path\" has the setgid flag set, \"false\"
   otherwise.

"),

("Base","issetuid","issetuid(path) -> Bool

   Returns \"true\" if \"path\" has the setuid flag set, \"false\"
   otherwise.

"),

("Base","issocket","issocket(path) -> Bool

   Returns \"true\" if \"path\" is a socket, \"false\" otherwise.

"),

("Base","issticky","issticky(path) -> Bool

   Returns \"true\" if \"path\" has the sticky bit set, \"false\"
   otherwise.

"),

("Base","iswritable","iswritable(path) -> Bool

   Returns \"true\" if the current user has permission to write to
   \"path\", \"false\" otherwise.

"),

("Base","homedir","homedir() -> String

   Return the current user's home directory.

"),

("Base","dirname","dirname(path::String) -> String

   Get the directory part of a path.

"),

("Base","basename","basename(path::String) -> String

   Get the file name part of a path.

"),

("Base","@__FILE__","@__FILE__() -> String

   \"@__FILE__\" expands to a string with the absolute path and file
   name of the script being run. Returns \"nothing\" if run from a
   REPL or an empty string if evaluated by \"julia -e <expr>\".

"),

("Base","isabspath","isabspath(path::String) -> Bool

   Determines whether a path is absolute (begins at the root
   directory).

"),

("Base","isdirpath","isdirpath(path::String) -> Bool

   Determines whether a path refers to a directory (for example, ends
   with a path separator).

"),

("Base","joinpath","joinpath(parts...) -> String

   Join path components into a full path. If some argument is an
   absolute path, then prior components are dropped.

"),

("Base","abspath","abspath(path::String) -> String

   Convert a path to an absolute path by adding the current directory
   if necessary.

"),

("Base","normpath","normpath(path::String) -> String

   Normalize a path, removing \".\" and \"..\" entries.

"),

("Base","realpath","realpath(path::String) -> String

   Canonicalize a path by expanding symbolic links and removing \".\"
   and \"..\" entries.

"),

("Base","expanduser","expanduser(path::String) -> String

   On Unix systems, replace a tilde character at the start of a path
   with the current user's home directory.

"),

("Base","splitdir","splitdir(path::String) -> (String, String)

   Split a path into a tuple of the directory name and file name.

"),

("Base","splitdrive","splitdrive(path::String) -> (String, String)

   On Windows, split a path into the drive letter part and the path
   part. On Unix systems, the first component is always the empty
   string.

"),

("Base","splitext","splitext(path::String) -> (String, String)

   If the last component of a path contains a dot, split the path into
   everything before the dot and everything including and after the
   dot. Otherwise, return a tuple of the argument unmodified and the
   empty string.

"),

("Base","tempname","tempname()

   Generate a unique temporary filename.

"),

("Base","tempdir","tempdir()

   Obtain the path of a temporary directory.

"),

("Base","mktemp","mktemp()

   Returns \"(path, io)\", where \"path\" is the path of a new
   temporary file and \"io\" is an open file object for this path.

"),

("Base","mktempdir","mktempdir()

   Create a temporary directory and return its path.

"),

("Base.Graphics","Vec2","Vec2(x, y)

   Creates a point in two dimensions

"),

("Base.Graphics","BoundingBox","BoundingBox(xmin, xmax, ymin, ymax)

   Creates a box in two dimensions with the given edges

"),

("Base.Graphics","BoundingBox","BoundingBox(objs...)

   Creates a box in two dimensions that encloses all objects

"),

("Base.Graphics","width","width(obj)

   Computes the width of an object

"),

("Base.Graphics","height","height(obj)

   Computes the height of an object

"),

("Base.Graphics","xmin","xmin(obj)

   Computes the minimum x-coordinate contained in an object

"),

("Base.Graphics","xmax","xmax(obj)

   Computes the maximum x-coordinate contained in an object

"),

("Base.Graphics","ymin","ymin(obj)

   Computes the minimum y-coordinate contained in an object

"),

("Base.Graphics","ymax","ymax(obj)

   Computes the maximum y-coordinate contained in an object

"),

("Base.Graphics","diagonal","diagonal(obj)

   Return the length of the diagonal of an object

"),

("Base.Graphics","aspect_ratio","aspect_ratio(obj)

   Compute the height/width of an object

"),

("Base.Graphics","center","center(obj)

   Return the point in the center of an object

"),

("Base.Graphics","xrange","xrange(obj)

   Returns a tuple \"(xmin(obj), xmax(obj))\"

"),

("Base.Graphics","yrange","yrange(obj)

   Returns a tuple \"(ymin(obj), ymax(obj))\"

"),

("Base.Graphics","rotate","rotate(obj, angle, origin) -> newobj

   Rotates an object around origin by the specified angle (radians),
   returning a new object of the same type.  Because of type-
   constancy, this new object may not always be a strict geometric
   rotation of the input; for example, if \"obj\" is a \"BoundingBox\"
   the return is the smallest \"BoundingBox\" that encloses the
   rotated input.

"),

("Base.Graphics","shift","shift(obj, dx, dy)

   Returns an object shifted horizontally and vertically by the
   indicated amounts

"),

("Base.Graphics","*","*(obj, s::Real)

   Scale the width and height of a graphics object, keeping the center
   fixed

"),

("Base.Graphics","+","+(bb1::BoundingBox, bb2::BoundingBox) -> BoundingBox

   Returns the smallest box containing both boxes

"),

("Base.Graphics","&","&(bb1::BoundingBox, bb2::BoundingBox) -> BoundingBox

   Returns the intersection, the largest box contained in both boxes

"),

("Base.Graphics","deform","deform(bb::BoundingBox, dxmin, dxmax, dymin, dymax)

   Returns a bounding box with all edges shifted by the indicated
   amounts

"),

("Base.Graphics","isinside","isinside(bb::BoundingBox, x, y)

   True if the given point is inside the box

"),

("Base.Graphics","isinside","isinside(bb::BoundingBox, point)

   True if the given point is inside the box

"),


("Base","*","*(A, B)

   Matrix multiplication

"),

("Base","\\","\\(A, B)

   Matrix division using a polyalgorithm. For input matrices \"A\" and
   \"B\", the result \"X\" is such that \"A*X == B\" when \"A\" is
   square.  The solver that is used depends upon the structure of
   \"A\".  A direct solver is used for upper- or lower triangular
   \"A\".  For Hermitian \"A\" (equivalent to symmetric \"A\" for non-
   complex \"A\") the \"BunchKaufman\" factorization is used.
   Otherwise an LU factorization is used. For rectangular \"A\" the
   result is the minimum-norm least squares solution computed by
   reducing \"A\" to bidiagonal form and solving the bidiagonal least
   squares problem.  For sparse, square \"A\" the LU factorization
   (from UMFPACK) is used.

"),

("Base","dot","dot(x, y)

   Compute the dot product. For complex vectors, the first vector is
   conjugated.

"),

("Base","cross","cross(x, y)

   Compute the cross product of two 3-vectors.

"),

("Base","rref","rref(A)

   Compute the reduced row echelon form of the matrix A.

"),

("Base","factorize","factorize(A)

   Compute a convenient factorization (including LU, Cholesky, Bunch-
   Kaufman, Triangular) of A, based upon the type of the input matrix.
   The return value can then be reused for efficient solving of
   multiple systems. For example: \"A=factorize(A); x=A\\\\b;
   y=A\\\\C\".

"),

("Base","factorize!","factorize!(A)

   \"factorize!\" is the same as \"factorize()\", but saves space by
   overwriting the input \"A\", instead of creating a copy.

"),

("Base","lu","lu(A) -> L, U, p

   Compute the LU factorization of \"A\", such that \"A[p,:] = L*U\".

"),

("Base","lufact","lufact(A[, pivot=true]) -> F

   Compute the LU factorization of \"A\". The return type of \"F\"
   depends on the type of \"A\". In most cases, if \"A\" is a subtype
   \"S\" of AbstractMatrix with an element type \"T`\" supporting
   \"+\", \"-\", \"*\" and \"/\" the return type is \"LU{T,S{T}}\". If
   pivoting is chosen (default) the element type should also support
   \"abs\" and \"<\". When \"A\" is sparse and have element of type
   \"Float32\", \"Float64\", \"Complex{Float32}\", or
   \"Complex{Float64}\" the return type is \"UmfpackLU\". Some
   examples are shown in the table below.

      +-------------------------+---------------------------+------------------------------------------+
      | Type of input \\\"A\\\"     | Type of output \\\"F\\\"      | Relationship between \\\"F\\\" and \\\"A\\\"     |
      +-------------------------+---------------------------+------------------------------------------+
      | \\\"Matrix()\\\"            | \\\"LU\\\"                    | \\\"F[:L]*F[:U] == A[F[:p], :]\\\"           |
      +-------------------------+---------------------------+------------------------------------------+
      | \\\"Tridiagonal()\\\"       | \\\"LU{T,Tridiagonal{T}}\\\"  | N/A                                      |
      +-------------------------+---------------------------+------------------------------------------+
      | \\\"SparseMatrixCSC()\\\"   | \\\"UmfpackLU\\\"             | \\\"F[:L]*F[:U] == Rs .* A[F[:p], F[:q]]\\\" |
      +-------------------------+---------------------------+------------------------------------------+

   The individual components of the factorization \"F\" can be
   accessed by indexing:

      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      | Component   | Description                             | \\\"LU\\\" | \\\"LU{T,Tridiagonal{T}}\\\" | \\\"UmfpackLU\\\" |
      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      +-------------+-----------------------------------------+--------+--------------------------+---------------+
      +-------------+-----------------------------------------+--------+--------------------------+---------------+

      +--------------------+--------+--------------------------+---------------+
      | Supported function | \\\"LU\\\" | \\\"LU{T,Tridiagonal{T}}\\\" | \\\"UmfpackLU\\\" |
      +--------------------+--------+--------------------------+---------------+
      +--------------------+--------+--------------------------+---------------+
      | \\\"\\\\\\\"             | ✓      | ✓                        | ✓             |
      +--------------------+--------+--------------------------+---------------+
      +--------------------+--------+--------------------------+---------------+
      | \\\"det\\\"            | ✓      | ✓                        | ✓             |
      +--------------------+--------+--------------------------+---------------+
      +--------------------+--------+--------------------------+---------------+

"),

("Base","lufact!","lufact!(A) -> LU

   \"lufact!\" is the same as \"lufact()\", but saves space by
   overwriting the input A, instead of creating a copy.  For sparse
   \"A\" the \"nzval\" field is not overwritten but the index fields,
   \"colptr\" and \"rowval\" are decremented in place, converting from
   1-based indices to 0-based indices.

"),

("Base","chol","chol(A[, LU]) -> F

   Compute the Cholesky factorization of a symmetric positive definite
   matrix \"A\" and return the matrix \"F\". If \"LU\" is \":L\"
   (Lower), \"A = L*L'\". If \"LU\" is \":U\" (Upper), \"A = R'*R\".

"),

("Base","cholfact","cholfact(A, [LU,][pivot=false,][tol=-1.0]) -> Cholesky

   Compute the Cholesky factorization of a dense symmetric positive
   (semi)definite matrix \"A\" and return either a \"Cholesky\" if
   \"pivot=false\" or \"CholeskyPivoted\" if \"pivot=true\". \"LU\"
   may be \":L\" for using the lower part or \":U\" for the upper
   part. The default is to use \":U\". The triangular matrix can be
   obtained from the factorization \"F\" with: \"F[:L]\" and
   \"F[:U]\". The following functions are available for \"Cholesky\"
   objects: \"size\", \"\\\", \"inv\", \"det\". For
   \"CholeskyPivoted\" there is also defined a \"rank\". If
   \"pivot=false\" a \"PosDefException\" exception is thrown in case
   the matrix is not positive definite. The argument \"tol\"
   determines the tolerance for determining the rank. For negative
   values, the tolerance is the machine precision.

"),

("Base","cholfact","cholfact(A[, ll]) -> CholmodFactor

   Compute the sparse Cholesky factorization of a sparse matrix \"A\".
   If \"A\" is Hermitian its Cholesky factor is determined.  If \"A\"
   is not Hermitian the Cholesky factor of \"A*A'\" is determined. A
   fill-reducing permutation is used.  Methods for \"size\",
   \"solve\", \"\\\", \"findn_nzs\", \"diag\", \"det\" and \"logdet\".
   One of the solve methods includes an integer argument that can be
   used to solve systems involving parts of the factorization only.
   The optional boolean argument, \"ll\" determines whether the
   factorization returned is of the \"A[p,p] = L*L'\" form, where
   \"L\" is lower triangular or \"A[p,p] = L*Diagonal(D)*L'\" form
   where \"L\" is unit lower triangular and \"D\" is a non-negative
   vector.  The default is LDL.

"),

("Base","cholfact!","cholfact!(A, [LU,][pivot=false,][tol=-1.0]) -> Cholesky

   \"cholfact!\" is the same as \"cholfact()\", but saves space by
   overwriting the input \"A\", instead of creating a copy.

"),

("Base","ldltfact","ldltfact(A) -> LDLtFactorization

   Compute a factorization of a positive definite matrix \"A\" such
   that \"A=L*Diagonal(d)*L'\" where \"L\" is a unit lower triangular
   matrix and \"d\" is a vector with non-negative elements.

"),

("Base","qr","qr(A, [pivot=false,][thin=true]) -> Q, R, [p]

   Compute the (pivoted) QR factorization of \"A\" such that either
   \"A = Q*R\" or \"A[:,p] = Q*R\". Also see \"qrfact\". The default
   is to compute a thin factorization. Note that \"R\" is not extended
   with zeros when the full \"Q\" is requested.

"),

("Base","qrfact","qrfact(A[, pivot=false]) -> F

   Computes the QR factorization of \"A\". The return type of \"F\"
   depends on the element type of \"A\" and whether pivoting is
   specified (with \"pivot=true\").

      +------------------+-------------------+-----------+---------------------------------------+
      | Return type      | \\\"eltype(A)\\\"     | \\\"pivot\\\" | Relationship between \\\"F\\\" and \\\"A\\\"  |
      +------------------+-------------------+-----------+---------------------------------------+
      | \\\"QR\\\"           | not \\\"BlasFloat\\\" | either    | \\\"A==F[:Q]*F[:R]\\\"                    |
      +------------------+-------------------+-----------+---------------------------------------+
      | \\\"QRCompactWY\\\"  | \\\"BlasFloat\\\"     | \\\"false\\\" | \\\"A==F[:Q]*F[:R]\\\"                    |
      +------------------+-------------------+-----------+---------------------------------------+
      | \\\"QRPivoted\\\"    | \\\"BlasFloat\\\"     | \\\"true\\\"  | \\\"A[:,F[:p]]==F[:Q]*F[:R]\\\"           |
      +------------------+-------------------+-----------+---------------------------------------+

   \"BlasFloat\" refers to any of: \"Float32\", \"Float64\",
   \"Complex64\" or \"Complex128\".

   The individual components of the factorization \"F\" can be
   accessed by indexing:

      +-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
      | Component   | Description                                   | \\\"QR\\\"             | \\\"QRCompactWY\\\"       | \\\"QRPivoted\\\"      |
      +-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
      | \\\"F[:Q]\\\"   | \\\"Q\\\" (orthogonal/unitary) part of \\\"QR\\\"     | ✓ (\\\"QRPackedQ\\\")  | ✓ (\\\"QRCompactWYQ\\\")  | ✓ (\\\"QRPackedQ\\\")  |
      +-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
      | \\\"F[:R]\\\"   | \\\"R\\\" (upper right triangular) part of \\\"QR\\\" | ✓                  | ✓                     | ✓                  |
      +-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
      +-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+
      +-------------+-----------------------------------------------+--------------------+-----------------------+--------------------+

   The following functions are available for the \"QR\" objects:
   \"size\", \"\\\". When \"A\" is rectangular, \"\\\" will return a
   least squares solution and if the solution is not unique, the one
   with smallest norm is returned.

   Multiplication with respect to either thin or full \"Q\" is
   allowed, i.e. both \"F[:Q]*F[:R]\" and \"F[:Q]*A\" are supported. A
   \"Q\" matrix can be converted into a regular matrix with \"full()\"
   which has a named argument \"thin\".

   Note: \"qrfact\" returns multiple types because LAPACK uses several
     representations that minimize the memory storage requirements of
     products of Householder elementary reflectors, so that the \"Q\"
     and \"R\" matrices can be stored compactly rather as two separate
     dense matrices.The data contained in \"QR\" or \"QRPivoted\" can
     be used to construct the \"QRPackedQ\" type, which is a compact
     representation of the rotation matrix:

           Q = \\prod_{i=1}^{\\min(m,n)} (I - \\tau_i v_i v_i^T)

     where \\tau_i is the scale factor and v_i is the projection
     vector associated with the i^{th} Householder elementary
     reflector.The data contained in \"QRCompactWY\" can be used to
     construct the \"QRCompactWYQ\" type, which is a compact
     representation of the rotation matrix

           Q = I + Y T Y^T

     where \"Y\" is m \\times r lower trapezoidal and \"T\" is r
     \\times r upper triangular. The *compact WY* representation
     [Schreiber1989] is not to be confused with the older, *WY*
     representation [Bischof1987]. (The LAPACK documentation uses
     \"V\" in lieu of \"Y\".)

   [Bischof1987] C Bischof and C Van Loan, The WY representation for
                 products of Householder matrices, SIAM J Sci Stat
                 Comput 8 (1987), s2-s13. doi:10.1137/0908009

   [Schreiber1989] R Schreiber and C Van Loan, A storage-efficient WY
                   representation for products of Householder
                   transformations, SIAM J Sci Stat Comput 10 (1989),
                   53-57. doi:10.1137/0910005

"),

("Base","qrfact!","qrfact!(A[, pivot=false])

   \"qrfact!\" is the same as \"qrfact()\", but saves space by
   overwriting the input \"A\", instead of creating a copy.

"),

("Base","bkfact","bkfact(A) -> BunchKaufman

   Compute the Bunch-Kaufman [Bunch1977] factorization of a real
   symmetric or complex Hermitian matrix \"A\" and return a
   \"BunchKaufman\" object. The following functions are available for
   \"BunchKaufman\" objects: \"size\", \"\\\", \"inv\", \"issym\",
   \"ishermitian\".

"),

("Base","bkfact!","bkfact!(A) -> BunchKaufman

   \"bkfact!\" is the same as \"bkfact()\", but saves space by
   overwriting the input \"A\", instead of creating a copy.

"),

("Base","sqrtm","sqrtm(A)

   Compute the matrix square root of \"A\". If \"B = sqrtm(A)\", then
   \"B*B == A\" within roundoff error.

   \"sqrtm\" uses a polyalgorithm, computing the matrix square root
   using Schur factorizations (\"schurfact()\") unless it detects the
   matrix to be Hermitian or real symmetric, in which case it computes
   the matrix square root from an eigendecomposition (\"eigfact()\").
   In the latter situation for positive definite matrices, the matrix
   square root has \"Real\" elements, otherwise it has \"Complex\"
   elements.

"),

("Base","eig","eig(A,[irange,][vl,][vu,][permute=true,][scale=true]) -> D, V

   Computes eigenvalues and eigenvectors of \"A\". See \"eigfact()\"
   for details on the \"balance\" keyword argument.

   **Example**:

      julia> eig(a = [1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
      ([1.0,3.0,18.0],
      3x3 Array{Float64,2}:
       1.0  0.0  0.0
       0.0  1.0  0.0
       0.0  0.0  1.0)

   \"eig\" is a wrapper around \"eigfact()\", extracting all parts of
   the factorization to a tuple; where possible, using \"eigfact()\"
   is recommended.

"),

("Base","eig","eig(A, B) -> D, V

   Computes generalized eigenvalues and vectors of \"A\" with respect
   to \"B\".

   \"eig\" is a wrapper around \"eigfact()\", extracting all parts of
   the factorization to a tuple; where possible, using \"eigfact()\"
   is recommended.

"),

("Base","eigvals","eigvals(A,[irange,][vl,][vu])

   Returns the eigenvalues of \"A\". If \"A\" is \"Symmetric()\",
   \"Hermitian()\" or \"SymTridiagonal()\", it is possible to
   calculate only a subset of the eigenvalues by specifying either a
   \"UnitRange()\" \"irange\" covering indices of the sorted
   eigenvalues, or a pair \"vl\" and \"vu\" for the lower and upper
   boundaries of the eigenvalues.

   For general non-symmetric matrices it is possible to specify how
   the matrix is balanced before the eigenvector calculation. The
   option \"permute=true\" permutes the matrix to become closer to
   upper triangular, and \"scale=true\" scales the matrix by its
   diagonal elements to make rows and columns more equal in norm. The
   default is \"true\" for both options.

"),

("Base","eigmax","eigmax(A)

   Returns the largest eigenvalue of \"A\".

"),

("Base","eigmin","eigmin(A)

   Returns the smallest eigenvalue of \"A\".

"),

("Base","eigvecs","eigvecs(A, [eigvals,][permute=true,][scale=true]) -> Matrix

   Returns a matrix \"M\" whose columns are the eigenvectors of \"A\".
   (The \"k``th eigenvector can be obtained from the slice ``M[:,
   k]\".) The \"permute\" and \"scale\" keywords are the same as for
   \"eigfact()\".

   For \"SymTridiagonal()\" matrices, if the optional vector of
   eigenvalues \"eigvals\" is specified, returns the specific
   corresponding eigenvectors.

"),

("Base","eigfact","eigfact(A,[irange,][vl,][vu,][permute=true,][scale=true]) -> Eigen

   Computes the eigenvalue decomposition of \"A\", returning an
   \"Eigen\" factorization object \"F\" which contains the eigenvalues
   in \"F[:values]\" and the eigenvectors in the columns of the matrix
   \"F[:vectors]\". (The \"k``th eigenvector can be obtained from the
   slice ``F[:vectors][:, k]\".)

   The following functions are available for \"Eigen\" objects:
   \"inv\", \"det\".

   If \"A\" is \"Symmetric()\", \"Hermitian()\" or
   \"SymTridiagonal()\", it is possible to calculate only a subset of
   the eigenvalues by specifying either a \"UnitRange()\" \"irange\"
   covering indices of the sorted eigenvalues or a pair \"vl\" and
   \"vu\" for the lower and upper boundaries of the eigenvalues.

   For general nonsymmetric matrices it is possible to specify how the
   matrix is balanced before the eigenvector calculation. The option
   \"permute=true\" permutes the matrix to become closer to upper
   triangular, and \"scale=true\" scales the matrix by its diagonal
   elements to make rows and columns more equal in norm. The default
   is \"true\" for both options.

"),

("Base","eigfact","eigfact(A, B) -> GeneralizedEigen

   Computes the generalized eigenvalue decomposition of \"A\" and
   \"B\", returning a \"GeneralizedEigen\" factorization object \"F\"
   which contains the generalized eigenvalues in \"F[:values]\" and
   the generalized eigenvectors in the columns of the matrix
   \"F[:vectors]\". (The \"k``th generalized eigenvector can be
   obtained from the slice ``F[:vectors][:, k]\".)

"),

("Base","eigfact!","eigfact!(A[, B])

   Same as \"eigfact()\", but saves space by overwriting the input
   \"A\" (and \"B\"), instead of creating a copy.

"),

("Base","hessfact","hessfact(A)

   Compute the Hessenberg decomposition of \"A\" and return a
   \"Hessenberg\" object. If \"F\" is the factorization object, the
   unitary matrix can be accessed with \"F[:Q]\" and the Hessenberg
   matrix with \"F[:H]\". When \"Q\" is extracted, the resulting type
   is the \"HessenbergQ\" object, and may be converted to a regular
   matrix with \"full()\".

"),

("Base","hessfact!","hessfact!(A)

   \"hessfact!\" is the same as \"hessfact()\", but saves space by
   overwriting the input A, instead of creating a copy.

"),

("Base","schurfact","schurfact(A) -> Schur

   Computes the Schur factorization of the matrix \"A\". The (quasi)
   triangular Schur factor can be obtained from the \"Schur\" object
   \"F\" with either \"F[:Schur]\" or \"F[:T]\" and the
   unitary/orthogonal Schur vectors can be obtained with
   \"F[:vectors]\" or \"F[:Z]\" such that
   \"A=F[:vectors]*F[:Schur]*F[:vectors]'\". The eigenvalues of \"A\"
   can be obtained with \"F[:values]\".

"),

("Base","schurfact!","schurfact!(A)

   Computer the Schur factorization of \"A\", overwriting \"A\" in the
   process. See \"schurfact()\"

"),

("Base","schur","schur(A) -> Schur[:T], Schur[:Z], Schur[:values]

   See \"schurfact()\"

"),

("Base","schurfact","schurfact(A, B) -> GeneralizedSchur

   Computes the Generalized Schur (or QZ) factorization of the
   matrices \"A\" and \"B\". The (quasi) triangular Schur factors can
   be obtained from the \"Schur\" object \"F\" with \"F[:S]\" and
   \"F[:T]\", the left unitary/orthogonal Schur vectors can be
   obtained with \"F[:left]\" or \"F[:Q]\" and the right
   unitary/orthogonal Schur vectors can be obtained with \"F[:right]\"
   or \"F[:Z]\" such that \"A=F[:left]*F[:S]*F[:right]'\" and
   \"B=F[:left]*F[:T]*F[:right]'\". The generalized eigenvalues of
   \"A\" and \"B\" can be obtained with \"F[:alpha]./F[:beta]\".

"),

("Base","schur","schur(A, B) -> GeneralizedSchur[:S], GeneralizedSchur[:T], GeneralizedSchur[:Q], GeneralizedSchur[:Z]

   See \"schurfact()\"

"),

("Base","svdfact","svdfact(A[, thin=true]) -> SVD

   Compute the Singular Value Decomposition (SVD) of \"A\" and return
   an \"SVD\" object. \"U\", \"S\", \"V\" and \"Vt\" can be obtained
   from the factorization \"F\" with \"F[:U]\", \"F[:S]\", \"F[:V]\"
   and \"F[:Vt]\", such that \"A = U*diagm(S)*Vt\". If \"thin\" is
   \"true\", an economy mode decomposition is returned. The algorithm
   produces \"Vt\" and hence \"Vt\" is more efficient to extract than
   \"V\". The default is to produce a thin decomposition.

"),

("Base","svdfact!","svdfact!(A[, thin=true]) -> SVD

   \"svdfact!\" is the same as \"svdfact()\", but saves space by
   overwriting the input A, instead of creating a copy. If \"thin\" is
   \"true\", an economy mode decomposition is returned. The default is
   to produce a thin decomposition.

"),

("Base","svd","svd(A[, thin=true]) -> U, S, V

   Wrapper around \"svdfact\" extracting all parts the factorization
   to a tuple. Direct use of \"svdfact\" is therefore generally more
   efficient. Computes the SVD of A, returning \"U\", vector \"S\",
   and \"V\" such that \"A == U*diagm(S)*V'\". If \"thin\" is
   \"true\", an economy mode decomposition is returned. The default is
   to produce a thin decomposition.

"),

("Base","svdvals","svdvals(A)

   Returns the singular values of \"A\".

"),

("Base","svdvals!","svdvals!(A)

   Returns the singular values of \"A\", while saving space by
   overwriting the input.

"),

("Base","svdfact","svdfact(A, B) -> GeneralizedSVD

   Compute the generalized SVD of \"A\" and \"B\", returning a
   \"GeneralizedSVD\" Factorization object \"F\", such that \"A =
   F[:U]*F[:D1]*F[:R0]*F[:Q]'\" and \"B =
   F[:V]*F[:D2]*F[:R0]*F[:Q]'\".

"),

("Base","svd","svd(A, B) -> U, V, Q, D1, D2, R0

   Wrapper around \"svdfact\" extracting all parts the factorization
   to a tuple. Direct use of \"svdfact\" is therefore generally more
   efficient. The function returns the generalized SVD of \"A\" and
   \"B\", returning \"U\", \"V\", \"Q\", \"D1\", \"D2\", and \"R0\"
   such that \"A = U*D1*R0*Q'\" and \"B = V*D2*R0*Q'\".

"),

("Base","svdvals","svdvals(A, B)

   Return only the singular values from the generalized singular value
   decomposition of \"A\" and \"B\".

"),

("Base","triu","triu(M)

   Upper triangle of a matrix.

"),

("Base","triu!","triu!(M)

   Upper triangle of a matrix, overwriting \"M\" in the process.

"),

("Base","tril","tril(M)

   Lower triangle of a matrix.

"),

("Base","tril!","tril!(M)

   Lower triangle of a matrix, overwriting \"M\" in the process.

"),

("Base","diagind","diagind(M[, k])

   A \"Range\" giving the indices of the \"k\"-th diagonal of the
   matrix \"M\".

"),

("Base","diag","diag(M[, k])

   The \"k\"-th diagonal of a matrix, as a vector. Use \"diagm\" to
   construct a diagonal matrix.

"),

("Base","diagm","diagm(v[, k])

   Construct a diagonal matrix and place \"v\" on the \"k\"-th
   diagonal.

"),

("Base","scale","scale(A, b)

"),

("Base","scale","scale(b, A)

   Scale an array \"A\" by a scalar \"b\", returning a new array.

   If \"A\" is a matrix and \"b\" is a vector, then \"scale(A,b)\"
   scales each column \"i\" of \"A\" by \"b[i]\" (similar to
   \"A*diagm(b)\"), while \"scale(b,A)\" scales each row \"i\" of
   \"A\" by \"b[i]\" (similar to \"diagm(b)*A\"), returning a new
   array.

   Note: for large \"A\", \"scale\" can be much faster than \"A .* b\"
   or \"b .* A\", due to the use of BLAS.

"),

("Base","scale!","scale!(A, b)

"),

("Base","scale!","scale!(b, A)

   Scale an array \"A\" by a scalar \"b\", similar to \"scale()\" but
   overwriting \"A\" in-place.

   If \"A\" is a matrix and \"b\" is a vector, then \"scale!(A,b)\"
   scales each column \"i\" of \"A\" by \"b[i]\" (similar to
   \"A*diagm(b)\"), while \"scale!(b,A)\" scales each row \"i\" of
   \"A\" by \"b[i]\" (similar to \"diagm(b)*A\"), again operating in-
   place on \"A\".

"),

("Base","Tridiagonal","Tridiagonal(dl, d, du)

   Construct a tridiagonal matrix from the lower diagonal, diagonal,
   and upper diagonal, respectively.  The result is of type
   \"Tridiagonal\" and provides efficient specialized linear solvers,
   but may be converted into a regular matrix with \"full()\".

"),

("Base","Bidiagonal","Bidiagonal(dv, ev, isupper)

   Constructs an upper (\"isupper=true\") or lower (\"isupper=false\")
   bidiagonal matrix using the given diagonal (\"dv\") and off-
   diagonal (\"ev\") vectors.  The result is of type \"Bidiagonal\"
   and provides efficient specialized linear solvers, but may be
   converted into a regular matrix with \"full()\".

"),

("Base","SymTridiagonal","SymTridiagonal(d, du)

   Construct a real symmetric tridiagonal matrix from the diagonal and
   upper diagonal, respectively. The result is of type
   \"SymTridiagonal\" and provides efficient specialized eigensolvers,
   but may be converted into a regular matrix with \"full()\".

"),

("Base","Woodbury","Woodbury(A, U, C, V)

   Construct a matrix in a form suitable for applying the Woodbury
   matrix identity.

"),

("Base","rank","rank(M)

   Compute the rank of a matrix.

"),

("Base","norm","norm(A[, p])

   Compute the \"p\"-norm of a vector or the operator norm of a matrix
   \"A\", defaulting to the \"p=2\"-norm.

   For vectors, \"p\" can assume any numeric value (even though not
   all values produce a mathematically valid vector norm). In
   particular, \"norm(A, Inf)\" returns the largest value in
   \"abs(A)\", whereas \"norm(A, -Inf)\" returns the smallest.

   For matrices, valid values of \"p\" are \"1\", \"2\", or \"Inf\".
   (Note that for sparse matrices, \"p=2\" is currently not
   implemented.) Use \"vecnorm()\" to compute the Frobenius norm.

"),

("Base","vecnorm","vecnorm(A[, p])

   For any iterable container \"A\" (including arrays of any
   dimension) of numbers, compute the \"p\"-norm (defaulting to
   \"p=2\") as if \"A\" were a vector of the corresponding length.

   For example, if \"A\" is a matrix and \"p=2\", then this is
   equivalent to the Frobenius norm.

"),

("Base","cond","cond(M[, p])

   Condition number of the matrix \"M\", computed using the operator
   \"p\"-norm. Valid values for \"p\" are \"1\", \"2\" (default), or
   \"Inf\".

"),

("Base","condskeel","condskeel(M[, x, p])

      \\kappa_S(M, p) & = \\left\\Vert \\left\\vert M \\right\\vert
      \\left\\vert M^{-1} \\right\\vert  \\right\\Vert_p \\\\
      \\kappa_S(M, x, p) & = \\left\\Vert \\left\\vert M \\right\\vert
      \\left\\vert M^{-1} \\right\\vert \\left\\vert x \\right\\vert
      \\right\\Vert_p

   Skeel condition number \\kappa_S of the matrix \"M\", optionally
   with respect to the vector \"x\", as computed using the operator
   \"p\"-norm. \"p\" is \"Inf\" by default, if not provided. Valid
   values for \"p\" are \"1\", \"2\", or \"Inf\".

   This quantity is also known in the literature as the Bauer
   condition number, relative condition number, or componentwise
   relative condition number.

"),

("Base","trace","trace(M)

   Matrix trace

"),

("Base","det","det(M)

   Matrix determinant

"),

("Base","logdet","logdet(M)

   Log of matrix determinant. Equivalent to \"log(det(M))\", but may
   provide increased accuracy and/or speed.

"),

("Base","inv","inv(M)

   Matrix inverse

"),

("Base","pinv","pinv(M)

   Moore-Penrose pseudoinverse

"),

("Base","null","null(M)

   Basis for nullspace of \"M\".

"),

("Base","repmat","repmat(A, n, m)

   Construct a matrix by repeating the given matrix \"n\" times in
   dimension 1 and \"m\" times in dimension 2.

"),

("Base","repeat","repeat(A, inner = Int[], outer = Int[])

   Construct an array by repeating the entries of \"A\". The i-th
   element of \"inner\" specifies the number of times that the
   individual entries of the i-th dimension of \"A\" should be
   repeated. The i-th element of \"outer\" specifies the number of
   times that a slice along the i-th dimension of \"A\" should be
   repeated.

"),

("Base","kron","kron(A, B)

   Kronecker tensor product of two vectors or two matrices.

"),

("Base","blkdiag","blkdiag(A...)

   Concatenate matrices block-diagonally. Currently only implemented
   for sparse matrices.

"),

("Base","linreg","linreg(x, y) -> [a; b]

   Linear Regression. Returns \"a\" and \"b\" such that \"a+b*x\" is
   the closest line to the given points \"(x,y)\". In other words,
   this function determines parameters \"[a, b]\" that minimize the
   squared error between \"y\" and \"a+b*x\".

   **Example**:

      using PyPlot;
      x = float([1:12])
      y = [5.5; 6.3; 7.6; 8.8; 10.9; 11.79; 13.48; 15.02; 17.77; 20.81; 22.0; 22.99]
      a, b = linreg(x,y) # Linear regression
      plot(x, y, \"o\") # Plot (x,y) points
      plot(x, [a+b*i for i in x]) # Plot the line determined by the linear regression

"),

("Base","linreg","linreg(x, y, w)

   Weighted least-squares linear regression.

"),

("Base","expm","expm(A)

   Matrix exponential.

"),

("Base","lyap","lyap(A, C)

   Computes the solution \"X\" to the continuous Lyapunov equation
   \"AX + XA' + C = 0\", where no eigenvalue of \"A\" has a zero real
   part and no two eigenvalues are negative complex conjugates of each
   other.

"),

("Base","sylvester","sylvester(A, B, C)

   Computes the solution \"X\" to the Sylvester equation \"AX + XB + C
   = 0\", where \"A\", \"B\" and \"C\" have compatible dimensions and
   \"A\" and \"-B\" have no eigenvalues with equal real part.

"),

("Base","issym","issym(A) -> Bool

   Test whether a matrix is symmetric.

"),

("Base","isposdef","isposdef(A) -> Bool

   Test whether a matrix is positive definite.

"),

("Base","isposdef!","isposdef!(A) -> Bool

   Test whether a matrix is positive definite, overwriting \"A\" in
   the processes.

"),

("Base","istril","istril(A) -> Bool

   Test whether a matrix is lower triangular.

"),

("Base","istriu","istriu(A) -> Bool

   Test whether a matrix is upper triangular.

"),

("Base","ishermitian","ishermitian(A) -> Bool

   Test whether a matrix is Hermitian.

"),

("Base","transpose","transpose(A)

   The transposition operator (\".'\").

"),

("Base","ctranspose","ctranspose(A)

   The conjugate transposition operator (\"'\").

"),

("Base","eigs","eigs(A[, B], ; nev=6, which=\"LM\", tol=0.0, maxiter=1000, sigma=nothing, ritzvec=true, v0=zeros((0, ))) -> (d[, v], nconv, niter, nmult, resid)

   \"eigs\" computes eigenvalues \"d\" of \"A\" using Lanczos or
   Arnoldi iterations for real symmetric or general nonsymmetric
   matrices respectively. If \"B\" is provided, the generalized eigen-
   problem is solved.  The following keyword arguments are supported:
      * \"nev\": Number of eigenvalues

      * \"ncv\": Number of Krylov vectors used in the computation;
        should satisfy \"nev+1 <= ncv <= n\" for real symmetric
        problems and \"nev+2 <= ncv <= n\" for other problems; default
        is \"ncv = max(20,2*nev+1)\".

      * \"which\": type of eigenvalues to compute. See the note below.

        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\"which\\\" | type of eigenvalues                                                                                                         |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\":LM\\\"   | eigenvalues of largest magnitude (default)                                                                                  |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\":SM\\\"   | eigenvalues of smallest magnitude                                                                                           |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\":LR\\\"   | eigenvalues of largest real part                                                                                            |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\":SR\\\"   | eigenvalues of smallest real part                                                                                           |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\":LI\\\"   | eigenvalues of largest imaginary part (nonsymmetric or complex \\\"A\\\" only)                                                  |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\":SI\\\"   | eigenvalues of smallest imaginary part (nonsymmetric or complex \\\"A\\\" only)                                                 |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+
        | \\\":BE\\\"   | compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real symmetric \\\"A\\\" only) |
        +-----------+-----------------------------------------------------------------------------------------------------------------------------+

      * \"tol\": tolerance (tol \\le 0.0 defaults to
        \"DLAMCH('EPS')\")

      * \"maxiter\": Maximum number of iterations (default = 300)

      * \"sigma\": Specifies the level shift used in inverse
        iteration. If \"nothing\" (default), defaults to ordinary
        (forward) iterations. Otherwise, find eigenvalues close to
        \"sigma\" using shift and invert iterations.

      * \"ritzvec\": Returns the Ritz vectors \"v\" (eigenvectors) if
        \"true\"

      * \"v0\": starting vector from which to start the iterations

   \"eigs\" returns the \"nev\" requested eigenvalues in \"d\", the
   corresponding Ritz vectors \"v\" (only if \"ritzvec=true\"), the
   number of converged eigenvalues \"nconv\", the number of iterations
   \"niter\" and the number of matrix vector multiplications
   \"nmult\", as well as the final residual vector \"resid\".

   Note: The \"sigma\" and \"which\" keywords interact: the description of
     eigenvalues searched for by \"which\" do _not_ necessarily refer
     to the eigenvalues of \"A\", but rather the linear operator
     constructed by the specification of the iteration mode implied by
     \"sigma\".

     +-----------------+------------------------------------+------------------------------------+
     | \\\"sigma\\\"       | iteration mode                     | \\\"which\\\" refers to eigenvalues of |
     +-----------------+------------------------------------+------------------------------------+
     | \\\"nothing\\\"     | ordinary (forward)                 | A                                  |
     +-----------------+------------------------------------+------------------------------------+
     | real or complex | inverse with level shift \\\"sigma\\\" | (A - \\\\sigma I )^{-1}              |
     +-----------------+------------------------------------+------------------------------------+

"),

("Base","peakflops","peakflops(n; parallel=false)

   \"peakflops\" computes the peak flop rate of the computer by using
   BLAS double precision \"gemm!()\". By default, if no arguments are
   specified, it multiplies a matrix of size \"n x n\", where \"n =
   2000\". If the underlying BLAS is using multiple threads, higher
   flop rates are realized. The number of BLAS threads can be set with
   \"blas_set_num_threads(n)\".

   If the keyword argument \"parallel\" is set to \"true\",
   \"peakflops\" is run in parallel on all the worker processors. The
   flop rate of the entire parallel computer is returned. When running
   in parallel, only 1 BLAS thread is used. The argument \"n\" still
   refers to the size of the problem that is solved on each processor.

"),

("Base.LinAlg.BLAS","dot","dot(n, X, incx, Y, incy)

   Dot product of two vectors consisting of \"n\" elements of array
   \"X\" with stride \"incx\" and \"n\" elements of array \"Y\" with
   stride \"incy\".

"),

("Base.LinAlg.BLAS","dotu","dotu(n, X, incx, Y, incy)

   Dot function for two complex vectors.

"),

("Base.LinAlg.BLAS","dotc","dotc(n, X, incx, U, incy)

   Dot function for two complex vectors conjugating the first vector.

"),

("Base.LinAlg.BLAS","blascopy!","blascopy!(n, X, incx, Y, incy)

   Copy \"n\" elements of array \"X\" with stride \"incx\" to array
   \"Y\" with stride \"incy\".  Returns \"Y\".

"),

("Base.LinAlg.BLAS","nrm2","nrm2(n, X, incx)

   2-norm of a vector consisting of \"n\" elements of array \"X\" with
   stride \"incx\".

"),

("Base.LinAlg.BLAS","asum","asum(n, X, incx)

   sum of the absolute values of the first \"n\" elements of array
   \"X\" with stride \"incx\".

"),

("Base.LinAlg.BLAS","axpy!","axpy!(n, a, X, incx, Y, incy)

   Overwrite \"Y\" with \"a*X + Y\".  Returns \"Y\".

"),

("Base.LinAlg.BLAS","scal!","scal!(n, a, X, incx)

   Overwrite \"X\" with \"a*X\".  Returns \"X\".

"),

("Base.LinAlg.BLAS","scal","scal(n, a, X, incx)

   Returns \"a*X\".

"),

("Base.LinAlg.BLAS","syrk!","syrk!(uplo, trans, alpha, A, beta, C)

   Rank-k update of the symmetric matrix \"C\" as \"alpha*A*A.' +
   beta*C\" or \"alpha*A.'*A + beta*C\" according to whether \"trans\"
   is 'N' or 'T'.  When \"uplo\" is 'U' the upper triangle of \"C\" is
   updated ('L' for lower triangle).  Returns \"C\".

"),

("Base.LinAlg.BLAS","syrk","syrk(uplo, trans, alpha, A)

   Returns either the upper triangle or the lower triangle, according
   to \"uplo\" ('U' or 'L'), of \"alpha*A*A.'\" or \"alpha*A.'*A\",
   according to \"trans\" ('N' or 'T').

"),

("Base.LinAlg.BLAS","herk!","herk!(uplo, trans, alpha, A, beta, C)

   Methods for complex arrays only.  Rank-k update of the Hermitian
   matrix \"C\" as \"alpha*A*A' + beta*C\" or \"alpha*A'*A + beta*C\"
   according to whether \"trans\" is 'N' or 'T'.  When \"uplo\" is 'U'
   the upper triangle of \"C\" is updated ('L' for lower triangle).
   Returns \"C\".

"),

("Base.LinAlg.BLAS","herk","herk(uplo, trans, alpha, A)

   Methods for complex arrays only.  Returns either the upper triangle
   or the lower triangle, according to \"uplo\" ('U' or 'L'), of
   \"alpha*A*A'\" or \"alpha*A'*A\", according to \"trans\" ('N' or
   'T').

"),

("Base.LinAlg.BLAS","gbmv!","gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)

   Update vector \"y\" as \"alpha*A*x + beta*y\" or \"alpha*A'*x +
   beta*y\" according to \"trans\" ('N' or 'T').  The matrix \"A\" is
   a general band matrix of dimension \"m\" by \"size(A,2)\" with
   \"kl\" sub-diagonals and \"ku\" super-diagonals. Returns the
   updated \"y\".

"),

("Base.LinAlg.BLAS","gbmv","gbmv(trans, m, kl, ku, alpha, A, x, beta, y)

   Returns \"alpha*A*x\" or \"alpha*A'*x\" according to \"trans\" ('N'
   or 'T'). The matrix \"A\" is a general band matrix of dimension
   \"m\" by \"size(A,2)\" with \"kl\" sub-diagonals and \"ku\" super-
   diagonals.

"),

("Base.LinAlg.BLAS","sbmv!","sbmv!(uplo, k, alpha, A, x, beta, y)

   Update vector \"y\" as \"alpha*A*x + beta*y\" where \"A\" is a a
   symmetric band matrix of order \"size(A,2)\" with \"k\" super-
   diagonals stored in the argument \"A\".  The storage layout for
   \"A\" is described the reference BLAS module, level-2 BLAS at
   http://www.netlib.org/lapack/explore-html/.

   Returns the updated \"y\".

"),

("Base.LinAlg.BLAS","sbmv","sbmv(uplo, k, alpha, A, x)

   Returns \"alpha*A*x\" where \"A\" is a symmetric band matrix of
   order \"size(A,2)\" with \"k\" super-diagonals stored in the
   argument \"A\".

"),

("Base.LinAlg.BLAS","sbmv","sbmv(uplo, k, A, x)

   Returns \"A*x\" where \"A\" is a symmetric band matrix of order
   \"size(A,2)\" with \"k\" super-diagonals stored in the argument
   \"A\".

"),

("Base.LinAlg.BLAS","gemm!","gemm!(tA, tB, alpha, A, B, beta, C)

   Update \"C\" as \"alpha*A*B + beta*C\" or the other three variants
   according to \"tA\" (transpose \"A\") and \"tB\".  Returns the
   updated \"C\".

"),

("Base.LinAlg.BLAS","gemm","gemm(tA, tB, alpha, A, B)

   Returns \"alpha*A*B\" or the other three variants according to
   \"tA\" (transpose \"A\") and \"tB\".

"),

("Base.LinAlg.BLAS","gemm","gemm(tA, tB, A, B)

   Returns \"A*B\" or the other three variants according to \"tA\"
   (transpose \"A\") and \"tB\".

"),

("Base.LinAlg.BLAS","gemv!","gemv!(tA, alpha, A, x, beta, y)

   Update the vector \"y\" as \"alpha*A*x + beta*x\" or \"alpha*A'x +
   beta*x\" according to \"tA\" (transpose \"A\"). Returns the updated
   \"y\".

"),

("Base.LinAlg.BLAS","gemv","gemv(tA, alpha, A, x)

   Returns \"alpha*A*x\" or \"alpha*A'x\" according to \"tA\"
   (transpose \"A\").

"),

("Base.LinAlg.BLAS","gemv","gemv(tA, A, x)

   Returns \"A*x\" or \"A'x\" according to \"tA\" (transpose \"A\").

"),

("Base.LinAlg.BLAS","symm!","symm!(side, ul, alpha, A, B, beta, C)

   Update \"C\" as \"alpha*A*B + beta*C\" or \"alpha*B*A + beta*C\"
   according to \"side\". \"A\" is assumed to be symmetric.  Only the
   \"ul\" triangle of \"A\" is used.  Returns the updated \"C\".

"),

("Base.LinAlg.BLAS","symm","symm(side, ul, alpha, A, B)

   Returns \"alpha*A*B\" or \"alpha*B*A\" according to \"side\". \"A\"
   is assumed to be symmetric.  Only the \"ul\" triangle of \"A\" is
   used.

"),

("Base.LinAlg.BLAS","symm","symm(side, ul, A, B)

   Returns \"A*B\" or \"B*A\" according to \"side\".  \"A\" is assumed
   to be symmetric.  Only the \"ul\" triangle of \"A\" is used.

"),

("Base.LinAlg.BLAS","symm","symm(tA, tB, alpha, A, B)

   Returns \"alpha*A*B\" or the other three variants according to
   \"tA\" (transpose \"A\") and \"tB\".

"),

("Base.LinAlg.BLAS","symv!","symv!(ul, alpha, A, x, beta, y)

   Update the vector \"y\" as \"alpha*A*y + beta*y\". \"A\" is assumed
   to be symmetric.  Only the \"ul\" triangle of \"A\" is used.
   Returns the updated \"y\".

"),

("Base.LinAlg.BLAS","symv","symv(ul, alpha, A, x)

   Returns \"alpha*A*x\". \"A\" is assumed to be symmetric.  Only the
   \"ul\" triangle of \"A\" is used.

"),

("Base.LinAlg.BLAS","symv","symv(ul, A, x)

   Returns \"A*x\".  \"A\" is assumed to be symmetric.  Only the
   \"ul\" triangle of \"A\" is used.

"),

("Base.LinAlg.BLAS","trmm!","trmm!(side, ul, tA, dA, alpha, A, B)

   Update \"B\" as \"alpha*A*B\" or one of the other three variants
   determined by \"side\" (A on left or right) and \"tA\" (transpose
   A). Only the \"ul\" triangle of \"A\" is used.  \"dA\" indicates if
   \"A\" is unit-triangular (the diagonal is assumed to be all ones).
   Returns the updated \"B\".

"),

("Base.LinAlg.BLAS","trmm","trmm(side, ul, tA, dA, alpha, A, B)

   Returns \"alpha*A*B\" or one of the other three variants determined
   by \"side\" (A on left or right) and \"tA\" (transpose A). Only the
   \"ul\" triangle of \"A\" is used.  \"dA\" indicates if \"A\" is
   unit-triangular (the diagonal is assumed to be all ones).

"),

("Base.LinAlg.BLAS","trsm!","trsm!(side, ul, tA, dA, alpha, A, B)

   Overwrite \"B\" with the solution to \"A*X = alpha*B\" or one of
   the other three variants determined by \"side\" (A on left or right
   of \"X\") and \"tA\" (transpose A). Only the \"ul\" triangle of
   \"A\" is used.  \"dA\" indicates if \"A\" is unit-triangular (the
   diagonal is assumed to be all ones).  Returns the updated \"B\".

"),

("Base.LinAlg.BLAS","trsm","trsm(side, ul, tA, dA, alpha, A, B)

   Returns the solution to \"A*X = alpha*B\" or one of the other three
   variants determined by \"side\" (A on left or right of \"X\") and
   \"tA\" (transpose A). Only the \"ul\" triangle of \"A\" is used.
   \"dA\" indicates if \"A\" is unit-triangular (the diagonal is
   assumed to be all ones).

"),

("Base.LinAlg.BLAS","trmv!","trmv!(side, ul, tA, dA, alpha, A, b)

   Update \"b\" as \"alpha*A*b\" or one of the other three variants
   determined by \"side\" (A on left or right) and \"tA\" (transpose
   A). Only the \"ul\" triangle of \"A\" is used.  \"dA\" indicates if
   \"A\" is unit-triangular (the diagonal is assumed to be all ones).
   Returns the updated \"b\".

"),

("Base.LinAlg.BLAS","trmv","trmv(side, ul, tA, dA, alpha, A, b)

   Returns \"alpha*A*b\" or one of the other three variants determined
   by \"side\" (A on left or right) and \"tA\" (transpose A). Only the
   \"ul\" triangle of \"A\" is used.  \"dA\" indicates if \"A\" is
   unit-triangular (the diagonal is assumed to be all ones).

"),

("Base.LinAlg.BLAS","trsv!","trsv!(ul, tA, dA, A, b)

   Overwrite \"b\" with the solution to \"A*x = b\" or one of the
   other two variants determined by \"tA\" (transpose A) and \"ul\"
   (triangle of \"A\" used).  \"dA\" indicates if \"A\" is unit-
   triangular (the diagonal is assumed to be all ones).  Returns the
   updated \"b\".

"),

("Base.LinAlg.BLAS","trsv","trsv(ul, tA, dA, A, b)

   Returns the solution to \"A*x = b\" or one of the other two
   variants determined by \"tA\" (transpose A) and \"ul\" (triangle of
   \"A\" is used.) \"dA\" indicates if \"A\" is unit-triangular (the
   diagonal is assumed to be all ones).

"),

("Base.LinAlg.BLAS","blas_set_num_threads","blas_set_num_threads(n)

   Set the number of threads the BLAS library should use.

"),

("Base.Pkg","dir","dir() -> String

   Returns the absolute path of the package directory. This defaults
   to \"joinpath(homedir(),\".julia\")\" on all platforms (i.e.
   \"~/.julia\" in UNIX shell syntax). If the \"JULIA_PKGDIR\"
   environment variable is set, that path is used instead. If
   \"JULIA_PKGDIR\" is a relative path, it is interpreted relative to
   whatever the current working directory is.

"),

("Base.Pkg","dir","dir(names...) -> String

   Equivalent to \"normpath(Pkg.dir(),names...)\" – i.e. it appends
   path components to the package directory and normalizes the
   resulting path. In particular, \"Pkg.dir(pkg)\" returns the path to
   the package \"pkg\".

"),

("Base.Pkg","init","init()

   Initialize \"Pkg.dir()\" as a package directory. This will be done
   automatically when the \"JULIA_PKGDIR\" is not set and
   \"Pkg.dir()\" uses its default value.

"),

("Base.Pkg","resolve","resolve()

   Determines an optimal, consistent set of package versions to
   install or upgrade to. The optimal set of package versions is based
   on the contents of \"Pkg.dir(\"REQUIRE\")\" and the state of
   installed packages in \"Pkg.dir()\", Packages that are no longer
   required are moved into \"Pkg.dir(\".trash\")\".

"),

("Base.Pkg","edit","edit()

   Opens \"Pkg.dir(\"REQUIRE\")\" in the editor specified by the
   \"VISUAL\" or \"EDITOR\" environment variables; when the editor
   command returns, it runs \"Pkg.resolve()\" to determine and install
   a new optimal set of installed package versions.

"),

("Base.Pkg","add","add(pkg, vers...)

   Add a requirement entry for \"pkg\" to \"Pkg.dir(\"REQUIRE\")\" and
   call \"Pkg.resolve()\". If \"vers\" are given, they must be
   \"VersionNumber\" objects and they specify acceptable version
   intervals for \"pkg\".

"),

("Base.Pkg","rm","rm(pkg)

   Remove all requirement entries for \"pkg\" from
   \"Pkg.dir(\"REQUIRE\")\" and call \"Pkg.resolve()\".

"),

("Base.Pkg","clone","clone(url[, pkg])

   Clone a package directly from the git URL \"url\". The package does
   not need to be a registered in \"Pkg.dir(\"METADATA\")\". The
   package repo is cloned by the name \"pkg\" if provided; if not
   provided, \"pkg\" is determined automatically from \"url\".

"),

("Base.Pkg","clone","clone(pkg)

   If \"pkg\" has a URL registered in \"Pkg.dir(\"METADATA\")\", clone
   it from that URL on the default branch. The package does not need
   to have any registered versions.

"),

("Base.Pkg","available","available() -> Vector{ASCIIString}

   Returns the names of available packages.

"),

("Base.Pkg","available","available(pkg) -> Vector{VersionNumber}

   Returns the version numbers available for package \"pkg\".

"),

("Base.Pkg","installed","installed() -> Dict{ASCIIString,VersionNumber}

   Returns a dictionary mapping installed package names to the
   installed version number of each package.

"),

("Base.Pkg","installed","installed(pkg) -> Nothing | VersionNumber

   If \"pkg\" is installed, return the installed version number,
   otherwise return \"nothing\".

"),

("Base.Pkg","status","status()

   Prints out a summary of what packages are installed and what
   version and state they're in.

"),

("Base.Pkg","update","update()

   Update package the metadata repo – kept in
   \"Pkg.dir(\"METADATA\")\" – then update any fixed packages that can
   safely be pulled from their origin; then call \"Pkg.resolve()\" to
   determine a new optimal set of packages versions.

"),

("Base.Pkg","checkout","checkout(pkg[, branch=\"master\"])

   Checkout the \"Pkg.dir(pkg)\" repo to the branch \"branch\".
   Defaults to checking out the \"master\" branch. To go back to using
   the newest compatible released version, use \"Pkg.free(pkg)\"

"),

("Base.Pkg","pin","pin(pkg)

   Pin \"pkg\" at the current version. To go back to using the newest
   compatible released version, use \"Pkg.free(pkg)\"

"),

("Base.Pkg","pin","pin(pkg, version)

   Pin \"pkg\" at registered version \"version\".

"),

("Base.Pkg","free","free(pkg)

   Free the package \"pkg\" to be managed by the package manager
   again. It calls \"Pkg.resolve()\" to determine optimal package
   versions after. This is an inverse for both \"Pkg.checkout\" and
   \"Pkg.pin\".

"),

("Base.Pkg","build","build()

   Run the build scripts for all installed packages in depth-first
   recursive order.

"),

("Base.Pkg","build","build(pkgs...)

   Run the build script in \"deps/build.jl\" for each package in
   \"pkgs\" and all of their dependencies in depth-first recursive
   order. This is called automatically by \"Pkg.resolve()\" on all
   installed or updated packages.

"),

("Base.Pkg","generate","generate(pkg, license)

   Generate a new package named \"pkg\" with one of these license
   keys: \"\"MIT\"\" or \"\"BSD\"\". If you want to make a package
   with a different license, you can edit it afterwards. Generate
   creates a git repo at \"Pkg.dir(pkg)\" for the package and inside
   it \"LICENSE.md\", \"README.md\", the julia entrypoint
   \"\$pkg/src/\$pkg.jl\", and a travis test file, \".travis.yml\".

"),

("Base.Pkg","register","register(pkg[, url])

   Register \"pkg\" at the git URL \"url\", defaulting to the
   configured origin URL of the git repo \"Pkg.dir(pkg)\".

"),

("Base.Pkg","tag","tag(pkg[, ver[, commit]])

   Tag \"commit\" as version \"ver\" of package \"pkg\" and create a
   version entry in \"METADATA\". If not provided, \"commit\" defaults
   to the current commit of the \"pkg\" repo. If \"ver\" is one of the
   symbols \":patch\", \":minor\", \":major\" the next patch, minor or
   major version is used. If \"ver\" is not provided, it defaults to
   \":patch\".

"),

("Base.Pkg","publish","publish()

   For each new package version tagged in \"METADATA\" not already
   published, make sure that the tagged package commits have been
   pushed to the repo at the registered URL for the package and if
   they all have, open a pull request to \"METADATA\".

"),

("Base.Pkg","test","test()

   Run the tests for all installed packages ensuring that each
   package's test dependencies are installed for the duration of the
   test. A package is tested by running its \"test/runtests.jl\" file
   and test dependencies are specified in \"test/REQUIRE\".

"),

("Base.Pkg","test","test(pkgs...)

   Run the tests for each package in \"pkgs\" ensuring that each
   package's test dependencies are installed for the duration of the
   test. A package is tested by running its \"test/runtests.jl\" file
   and test dependencies are specified in \"test/REQUIRE\".

"),

("Base","@profile","@profile()

   \"@profile <expression>\" runs your expression while taking
   periodic backtraces.  These are appended to an internal buffer of
   backtraces.

"),

("Base.Profile","clear","clear()

   Clear any existing backtraces from the internal buffer.

"),

("Base.Profile","print","print([io::IO = STDOUT], [data::Vector]; format = :tree, C = false, combine = true, cols = tty_cols())

   Prints profiling results to \"io\" (by default, \"STDOUT\"). If you
   do not supply a \"data\" vector, the internal buffer of accumulated
   backtraces will be used.  \"format\" can be \":tree\" or \":flat\".
   If \"C==true\", backtraces from C and Fortran code are shown.
   \"combine==true\" merges instruction pointers that correspond to
   the same line of code.  \"cols\" controls the width of the display.

"),

("Base.Profile","print","print([io::IO = STDOUT], data::Vector, lidict::Dict; format = :tree, combine = true, cols = tty_cols())

   Prints profiling results to \"io\". This variant is used to examine
   results exported by a previous call to \"Profile.retrieve()\".
   Supply the vector \"data\" of backtraces and a dictionary
   \"lidict\" of line information.

"),

("Base.Profile","init","init(; n::Integer, delay::Float64)

   Configure the \"delay\" between backtraces (measured in seconds),
   and the number \"n\" of instruction pointers that may be stored.
   Each instruction pointer corresponds to a single line of code;
   backtraces generally consist of a long list of instruction
   pointers. Default settings can be obtained by calling this function
   with no arguments, and each can be set independently using keywords
   or in the order \"(n, delay)\".

"),

("Base.Profile","fetch","fetch() -> data

   Returns a reference to the internal buffer of backtraces. Note that
   subsequent operations, like \"Profile.clear()\", can affect
   \"data\" unless you first make a copy. Note that the values in
   \"data\" have meaning only on this machine in the current session,
   because it depends on the exact memory addresses used in JIT-
   compiling. This function is primarily for internal use;
   \"Profile.retrieve()\" may be a better choice for most users.

"),

("Base.Profile","retrieve","retrieve() -> data, lidict

   \"Exports\" profiling results in a portable format, returning the
   set of all backtraces (\"data\") and a dictionary that maps the
   (session-specific) instruction pointers in \"data\" to \"LineInfo\"
   values that store the file name, function name, and line number.
   This function allows you to save profiling results for future
   analysis.

"),


("Base","sort!","sort!(v, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

   Sort the vector \"v\" in place. \"QuickSort\" is used by default
   for numeric arrays while \"MergeSort\" is used for other arrays.
   You can specify an algorithm to use via the \"alg\" keyword (see
   Sorting Algorithms for available algorithms). The \"by\" keyword
   lets you provide a function that will be applied to each element
   before comparison; the \"lt\" keyword allows providing a custom
   \"less than\" function; use \"rev=true\" to reverse the sorting
   order. These options are independent and can be used together in
   all possible combinations: if both \"by\" and \"lt\" are specified,
   the \"lt\" function is applied to the result of the \"by\"
   function; \"rev=true\" reverses whatever ordering specified via the
   \"by\" and \"lt\" keywords.

"),

("Base","sort","sort(v, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

   Variant of \"sort!\" that returns a sorted copy of \"v\" leaving
   \"v\" itself unmodified.

"),

("Base","sort","sort(A, dim, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

   Sort a multidimensional array \"A\" along the given dimension.

"),

("Base","sortperm","sortperm(v, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

   Return a permutation vector of indices of \"v\" that puts it in
   sorted order. Specify \"alg\" to choose a particular sorting
   algorithm (see Sorting Algorithms). \"MergeSort\" is used by
   default, and since it is stable, the resulting permutation will be
   the lexicographically first one that puts the input array into
   sorted order – i.e. indices of equal elements appear in ascending
   order. If you choose a non-stable sorting algorithm such as
   \"QuickSort\", a different permutation that puts the array into
   order may be returned. The order is specified using the same
   keywords as \"sort!\".

"),

("Base","sortrows","sortrows(A, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

   Sort the rows of matrix \"A\" lexicographically.

"),

("Base","sortcols","sortcols(A, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

   Sort the columns of matrix \"A\" lexicographically.

"),

("Base","issorted","issorted(v, [by=<transform>,] [lt=<comparison>,] [rev=false])

   Test whether a vector is in sorted order. The \"by\", \"lt\" and
   \"rev\" keywords modify what order is considered to be sorted just
   as they do for \"sort\".

"),

("Base","searchsorted","searchsorted(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

   Returns the range of indices of \"a\" which compare as equal to
   \"x\" according to the order specified by the \"by\", \"lt\" and
   \"rev\" keywords, assuming that \"a\" is already sorted in that
   order. Returns an empty range located at the insertion point if
   \"a\" does not contain values equal to \"x\".

"),

("Base","searchsortedfirst","searchsortedfirst(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

   Returns the index of the first value in \"a\" greater than or equal
   to \"x\", according to the specified order. Returns \"length(a)+1\"
   if \"x\" is greater than all values in \"a\".

"),

("Base","searchsortedlast","searchsortedlast(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

   Returns the index of the last value in \"a\" less than or equal to
   \"x\", according to the specified order. Returns \"0\" if \"x\" is
   less than all values in \"a\".

"),

("Base","select!","select!(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])

   Partially sort the vector \"v\" in place, according to the order
   specified by \"by\", \"lt\" and \"rev\" so that the value at index
   \"k\" (or range of adjacent values if \"k\" is a range) occurs at
   the position where it would appear if the array were fully sorted.
   If \"k\" is a single index, that values is returned; if \"k\" is a
   range, an array of values at those indices is returned. Note that
   \"select!\" does not fully sort the input array, but does leave the
   returned elements where they would be if the array were fully
   sorted.

"),

("Base","select","select(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])

   Variant of \"select!\" which copies \"v\" before partially sorting
   it, thereby returning the same thing as \"select!\" but leaving
   \"v\" unmodified.

"),

("Base","sparse","sparse(I, J, V[, m, n, combine])

   Create a sparse matrix \"S\" of dimensions \"m x n\" such that
   \"S[I[k], J[k]] = V[k]\". The \"combine\" function is used to
   combine duplicates. If \"m\" and \"n\" are not specified, they are
   set to \"max(I)\" and \"max(J)\" respectively. If the \"combine\"
   function is not supplied, duplicates are added by default.

"),

("Base","sparsevec","sparsevec(I, V[, m, combine])

   Create a sparse matrix \"S\" of size \"m x 1\" such that \"S[I[k]]
   = V[k]\". Duplicates are combined using the \"combine\" function,
   which defaults to \"+\" if it is not provided. In julia, sparse
   vectors are really just sparse matrices with one column. Given
   Julia's Compressed Sparse Columns (CSC) storage format, a sparse
   column matrix with one column is sparse, whereas a sparse row
   matrix with one row ends up being dense.

"),

("Base","sparsevec","sparsevec(D::Dict[, m])

   Create a sparse matrix of size \"m x 1\" where the row values are
   keys from the dictionary, and the nonzero values are the values
   from the dictionary.

"),

("Base","issparse","issparse(S)

   Returns \"true\" if \"S\" is sparse, and \"false\" otherwise.

"),

("Base","sparse","sparse(A)

   Convert a dense matrix \"A\" into a sparse matrix.

"),

("Base","sparsevec","sparsevec(A)

   Convert a dense vector \"A\" into a sparse matrix of size \"m x
   1\". In julia, sparse vectors are really just sparse matrices with
   one column.

"),

("Base","full","full(S)

   Convert a sparse matrix \"S\" into a dense matrix.

"),

("Base","nnz","nnz(A)

   Returns the number of stored (filled) elements in a sparse matrix.

"),

("Base","spzeros","spzeros(m, n)

   Create an empty sparse matrix of size \"m x n\".

"),

("Base","spones","spones(S)

   Create a sparse matrix with the same structure as that of \"S\",
   but with every nonzero element having the value \"1.0\".

"),

("Base","speye","speye(type, m[, n])

   Create a sparse identity matrix of specified type of size \"m x
   m\". In case \"n\" is supplied, create a sparse identity matrix of
   size \"m x n\".

"),

("Base","spdiagm","spdiagm(B, d[, m, n])

   Construct a sparse diagonal matrix. \"B\" is a tuple of vectors
   containing the diagonals and \"d\" is a tuple containing the
   positions of the diagonals. In the case the input contains only one
   diagonaly, \"B\" can be a vector (instead of a tuple) and \"d\" can
   be the diagonal position (instead of a tuple), defaulting to 0
   (diagonal). Optionally, \"m\" and \"n\" specify the size of the
   resulting sparse matrix.

"),

("Base","sprand","sprand(m, n, p[, rng])

   Create a random \"m\" by \"n\" sparse matrix, in which the
   probability of any element being nonzero is independently given by
   \"p\" (and hence the mean density of nonzeros is also exactly
   \"p\"). Nonzero values are sampled from the distribution specified
   by \"rng\". The uniform distribution is used in case \"rng\" is not
   specified.

"),

("Base","sprandn","sprandn(m, n, p)

   Create a random \"m\" by \"n\" sparse matrix with the specified
   (independent) probability \"p\" of any entry being nonzero, where
   nonzero values are sampled from the normal distribution.

"),

("Base","sprandbool","sprandbool(m, n, p)

   Create a random \"m\" by \"n\" sparse boolean matrix with the
   specified (independent) probability \"p\" of any entry being
   \"true\".

"),

("Base","etree","etree(A[, post])

   Compute the elimination tree of a symmetric sparse matrix \"A\"
   from \"triu(A)\" and, optionally, its post-ordering permutation.

"),

("Base","symperm","symperm(A, p)

   Return the symmetric permutation of A, which is \"A[p,p]\". A
   should be symmetric and sparse, where only the upper triangular
   part of the matrix is stored. This algorithm ignores the lower
   triangular part of the matrix. Only the upper triangular part of
   the result is returned as well.

"),

("Base","nonzeros","nonzeros(A)

   Return a vector of the structural nonzero values in sparse matrix
   \"A\". This includes zeros that are explicitly stored in the sparse
   matrix. The returned vector points directly to the internal nonzero
   storage of \"A\", and any modifications to the returned vector will
   mutate \"A\" as well.

"),

("Base.Test","@test","@test(ex)

   Test the expression \"ex\" and calls the current handler to handle
   the result.

"),

("Base.Test","@test_throws","@test_throws(extype, ex)

   Test that the expression \"ex\" throws an exception of type
   \"extype\" and calls the current handler to handle the result.

"),

("Base.Test","@test_approx_eq","@test_approx_eq(a, b)

   Test two floating point numbers \"a\" and \"b\" for equality taking
   in account small numerical errors.

"),

("Base.Test","@test_approx_eq_eps","@test_approx_eq_eps(a, b, tol)

   Test two floating point numbers \"a\" and \"b\" for equality taking
   in account a margin of tolerance given by \"tol\".

"),

("Base.Test","with_handler","with_handler(f, handler)

   Run the function \"f\" using the \"handler\" as the handler.

"),

("Base","runtests","runtests([tests=[\"all\"][, numcores=iceil(CPU_CORES/2)]])

   Run the Julia unit tests listed in \"tests\", which can be either a
   string or an array of strings, using \"numcores\" processors.

"),


}