1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
|
.. currentmodule:: Base
**********************
The Standard Library
**********************
Introduction
------------
The Julia standard library contains a range of functions and macros appropriate for performing scientific and numerical computing, but is also as broad as those of many general purpose programming languages. Additional functionality is available from a growing collection of available packages. Functions are grouped by topic below.
Some general notes:
* Except for functions in built-in modules (:mod:`~Base.Pkg`, :mod:`~Base.Collections`, :mod:`~Base.Graphics`,
:mod:`~Base.Test` and :mod:`~Base.Profile`), all functions documented here are directly available for use in programs.
* To use module functions, use ``import Module`` to import the module, and ``Module.fn(x)`` to use the functions.
* Alternatively, ``using Module`` will import all exported ``Module`` functions into the current namespace.
* By convention, function names ending with an exclamation point (``!``) modify their arguments. Some functions have both modifying (e.g., ``sort!``) and non-modifying (``sort``) versions.
Getting Around
--------------
.. function:: exit([code])
Quit (or control-D at the prompt). The default exit code is zero, indicating that the processes completed successfully.
.. function:: quit()
Quit the program indicating that the processes completed succesfully. This function calls ``exit(0)`` (see :func:`exit`).
.. function:: atexit(f)
Register a zero-argument function to be called at exit.
.. function:: isinteractive() -> Bool
Determine whether Julia is running an interactive session.
.. function:: whos([Module,] [pattern::Regex])
Print information about global variables in a module, optionally restricted
to those matching ``pattern``.
.. function:: edit(file::String, [line])
Edit a file optionally providing a line number to edit at. Returns to the julia prompt when you quit the editor.
.. function:: edit(function, [types])
Edit the definition of a function, optionally specifying a tuple of types to indicate which method to edit.
.. function:: @edit
Evaluates the arguments to the function call, determines their types, and calls the ``edit`` function on the resulting expression
.. function:: less(file::String, [line])
Show a file using the default pager, optionally providing a starting line number. Returns to the julia prompt when you quit the pager.
.. function:: less(function, [types])
Show the definition of a function using the default pager, optionally specifying a tuple of types to indicate which method to see.
.. function:: @less
Evaluates the arguments to the function call, determines their types, and calls the ``less`` function on the resulting expression
.. function:: clipboard(x)
Send a printed form of ``x`` to the operating system clipboard ("copy").
.. function:: clipboard() -> String
Return a string with the contents of the operating system clipboard ("paste").
.. function:: require(file::String...)
Load source files once, in the context of the ``Main`` module, on every active node, searching standard locations for files. ``require`` is considered a top-level operation, so it sets the current ``include`` path but does not use it to search for files (see help for ``include``). This function is typically used to load library code, and is implicitly called by ``using`` to load packages.
When searching for files, ``require`` first looks in the current working directory, then looks for package code under ``Pkg.dir()``, then tries paths in the global array ``LOAD_PATH``.
.. function:: reload(file::String)
Like ``require``, except forces loading of files regardless of whether they have been loaded before. Typically used when interactively developing libraries.
.. function:: include(path::String)
Evaluate the contents of a source file in the current context. During including, a task-local include path is set to the directory containing the file. Nested calls to ``include`` will search relative to that path. All paths refer to files on node 1 when running in parallel, and files will be fetched from node 1. This function is typically used to load source interactively, or to combine files in packages that are broken into multiple source files.
.. function:: include_string(code::String)
Like ``include``, except reads code from the given string rather than from a file. Since there is no file path involved, no path processing or fetching from node 1 is done.
.. function:: help(name)
Get help for a function. ``name`` can be an object or a string.
.. function:: apropos(string)
Search documentation for functions related to ``string``.
.. function:: which(f, types)
Return the method of ``f`` (a ``Method`` object) that will be called for arguments with the given types.
.. function:: @which
Evaluates the arguments to the function call, determines their types, and calls the ``which`` function on the resulting expression
.. function:: methods(f, [types])
Show all methods of ``f`` with their argument types.
If ``types`` is specified, an array of methods whose types match is returned.
.. function:: methodswith(typ[, showparents])
Return an array of methods with an argument of type ``typ``. If optional
``showparents`` is ``true``, also return arguments with a parent type
of ``typ``, excluding type ``Any``.
.. function:: @show
Show an expression and result, returning the result
.. function:: versioninfo([verbose::Bool])
Print information about the version of Julia in use. If the ``verbose`` argument
is true, detailed system information is shown as well.
.. function:: workspace()
Replace the top-level module (``Main``) with a new one, providing a clean workspace.
The previous ``Main`` module is made available as ``LastMain``. A previously-loaded
package can be accessed using a statement such as ``using LastMain.Package``.
This function should only be used interactively.
All Objects
-----------
.. function:: is(x, y) -> Bool
Determine whether ``x`` and ``y`` are identical, in the sense that no program could distinguish them. Compares mutable objects by address in memory, and compares immutable objects (such as numbers) by contents at the bit level. This function is sometimes called ``egal``. The ``===`` operator is an alias for this function.
.. function:: isa(x, type) -> Bool
Determine whether ``x`` is of the given ``type``.
.. function:: isequal(x, y)
Similar to ``==``, except treats all floating-point ``NaN`` values as equal to each other,
and treats ``-0.0`` as unequal to ``0.0``.
For values that are not floating-point, ``isequal`` is the same as ``==``.
``isequal`` is the comparison function used by hash tables (``Dict``).
``isequal(x,y)`` must imply that ``hash(x) == hash(y)``.
Collections typically implement ``isequal`` by calling ``isequal`` recursively on
all contents.
Scalar types generally do not need to implement ``isequal``, unless they
represent floating-point numbers amenable to a more efficient implementation
than that provided as a generic fallback (based on ``isnan``, ``signbit``, and ``==``).
.. function:: isless(x, y)
Test whether ``x`` is less than ``y``, according to a canonical total order.
Values that are normally unordered, such as ``NaN``, are ordered in an arbitrary but consistent fashion. This is the default comparison used by ``sort``. Non-numeric types with a canonical total order should implement this function. Numeric types only need to implement it if they have special values such as ``NaN``.
.. function:: ifelse(condition::Bool, x, y)
Return ``x`` if ``condition`` is true, otherwise return ``y``. This differs from ``?`` or
``if`` in that it is an ordinary function, so all the arguments are evaluated first.
.. function:: lexcmp(x, y)
Compare ``x`` and ``y`` lexicographically and return -1, 0, or 1 depending on whether ``x`` is less than, equal to, or greater than ``y``, respectively.
This function should be defined for lexicographically comparable types, and ``lexless`` will call ``lexcmp`` by default.
.. function:: lexless(x, y)
Determine whether ``x`` is lexicographically less than ``y``.
.. function:: typeof(x)
Get the concrete type of ``x``.
.. function:: tuple(xs...)
Construct a tuple of the given objects.
.. function:: ntuple(n, f::Function)
Create a tuple of length ``n``, computing each element as ``f(i)``, where ``i`` is the index of the element.
.. function:: object_id(x)
Get a unique integer id for ``x``. ``object_id(x)==object_id(y)`` if and only if ``is(x,y)``.
.. function:: hash(x[, h])
Compute an integer hash code such that ``isequal(x,y)`` implies ``hash(x)==hash(y)``.
The optional second argument ``h`` is a hash code to be mixed with the result.
New types should implement the 2-argument form.
.. function:: finalizer(x, function)
Register a function ``f(x)`` to be called when there are no program-accessible references to ``x``. The behavior of this function is unpredictable if ``x`` is of a bits type.
.. function:: copy(x)
Create a shallow copy of ``x``: the outer structure is copied, but not all internal values. For example, copying an array produces a new array with identically-same elements as the original.
.. function:: deepcopy(x)
Create a deep copy of ``x``: everything is copied recursively, resulting in a fully independent object. For example, deep-copying an array produces a new array whose elements are deep-copies of the original elements.
As a special case, functions can only be actually deep-copied if they are anonymous, otherwise they are just copied. The difference is only relevant in the case of closures, i.e. functions which may contain hidden internal references.
While it isn't normally necessary, user-defined types can override the default ``deepcopy`` behavior by defining a specialized version of the function ``deepcopy_internal(x::T, dict::ObjectIdDict)`` (which shouldn't otherwise be used), where ``T`` is the type to be specialized for, and ``dict`` keeps track of objects copied so far within the recursion. Within the definition, ``deepcopy_internal`` should be used in place of ``deepcopy``, and the ``dict`` variable should be updated as appropriate before returning.
.. function:: isdefined([object,] index | symbol)
Tests whether an assignable location is defined. The arguments can be an
array and index, a composite object and field name (as a symbol), or a
module and a symbol.
With a single symbol argument, tests whether a global variable with that
name is defined in ``current_module()``.
.. function:: convert(type, x)
Try to convert ``x`` to the given type. Conversions from floating point to integer, rational to integer, and complex to real will raise an ``InexactError`` if ``x`` cannot be represented exactly in the new type.
.. function:: promote(xs...)
Convert all arguments to their common promotion type (if any), and return them all (as a tuple).
.. function:: oftype(x, y)
Convert ``y`` to the type of ``x``.
.. function:: widen(type | x)
If the argument is a type, return a "larger" type (for numeric types, this will be
a type with at least as much range and precision as the argument, and usually more).
Otherwise the argument ``x`` is converted to ``widen(typeof(x))``.
**Examples**::
julia> widen(Int32)
Int64
julia> widen(1.5f0)
1.5
.. function:: identity(x)
The identity function. Returns its argument.
Types
-----
.. function:: super(T::DataType)
Return the supertype of DataType T
.. function:: issubtype(type1, type2)
True if and only if all values of ``type1`` are also of ``type2``. Can also be written using the ``<:`` infix operator as ``type1 <: type2``.
.. function:: <:(T1, T2)
Subtype operator, equivalent to ``issubtype(T1,T2)``.
.. function:: subtypes(T::DataType)
Return a list of immediate subtypes of DataType T. Note that all currently loaded subtypes are included, including those not visible in the current module.
.. function:: subtypetree(T::DataType)
Return a nested list of all subtypes of DataType T. Note that all currently loaded subtypes are included, including those not visible in the current module.
.. function:: typemin(type)
The lowest value representable by the given (real) numeric type.
.. function:: typemax(type)
The highest value representable by the given (real) numeric type.
.. function:: realmin(type)
The smallest in absolute value non-subnormal value representable by the given floating-point type
.. function:: realmax(type)
The highest finite value representable by the given floating-point type
.. function:: maxintfloat(type)
The largest integer losslessly representable by the given floating-point type
.. function:: sizeof(type)
Size, in bytes, of the canonical binary representation of the given type, if any.
.. function:: eps([type])
The distance between 1.0 and the next larger representable floating-point value of ``type``. Only floating-point types are sensible arguments. If ``type`` is omitted, then ``eps(Float64)`` is returned.
.. function:: eps(x)
The distance between ``x`` and the next larger representable floating-point value of the same type as ``x``.
.. function:: promote_type(type1, type2)
Determine a type big enough to hold values of each argument type without loss, whenever possible. In some cases, where no type exists which to which both types can be promoted losslessly, some loss is tolerated; for example, ``promote_type(Int64,Float64)`` returns ``Float64`` even though strictly, not all ``Int64`` values can be represented exactly as ``Float64`` values.
.. function:: promote_rule(type1, type2)
Specifies what type should be used by ``promote`` when given values of types
``type1`` and ``type2``. This function should not be called directly, but
should have definitions added to it for new types as appropriate.
.. function:: getfield(value, name::Symbol)
Extract a named field from a value of composite type. The syntax ``a.b`` calls
``getfield(a, :b)``, and the syntax ``a.(b)`` calls ``getfield(a, b)``.
.. function:: setfield!(value, name::Symbol, x)
Assign ``x`` to a named field in ``value`` of composite type.
The syntax ``a.b = c`` calls ``setfield!(a, :b, c)``, and the syntax ``a.(b) = c``
calls ``setfield!(a, b, c)``.
.. function:: fieldoffsets(type)
The byte offset of each field of a type relative to the data start. For example, we could use it
in the following manner to summarize information about a struct type::
structinfo(T) = [zip(fieldoffsets(T),names(T),T.types)...]
structinfo(StatStruct)
.. function:: fieldtype(value, name::Symbol)
Determine the declared type of a named field in a value of composite type.
.. function:: isimmutable(v)
True if value ``v`` is immutable. See :ref:`man-immutable-composite-types` for a discussion of immutability.
.. function:: isbits(T)
True if ``T`` is a "plain data" type, meaning it is immutable and contains no references to other values. Typical examples are numeric types such as ``Uint8``, ``Float64``, and ``Complex{Float64}``.
.. function:: isleaftype(T)
Determine whether ``T`` is a concrete type that can have instances, meaning
its only subtypes are itself and ``None`` (but ``T`` itself is not
``None``).
.. function:: typejoin(T, S)
Compute a type that contains both ``T`` and ``S``.
.. function:: typeintersect(T, S)
Compute a type that contains the intersection of ``T`` and ``S``. Usually this will be the smallest such type or one close to it.
Generic Functions
-----------------
.. function:: apply(f, x...)
Accepts a function and several arguments, each of which must be iterable.
The elements generated by all the arguments are appended into a single
list, which is then passed to ``f`` as its argument list.
**Example**::
# Define a function f
julia> function f(x, y)
x + y
end
# Apply f with 1 and 2 as arguments
julia> apply(f, [1 2])
3
``apply`` is called to implement the ``...`` argument splicing syntax,
and is usually not called directly: ``apply(f,x) === f(x...)``
.. function:: method_exists(f, tuple) -> Bool
Determine whether the given generic function has a method matching the given tuple of argument types.
**Example**::
julia> method_exists(length, (Array,))
true
.. function:: applicable(f, args...) -> Bool
Determine whether the given generic function has a method applicable to the given arguments.
**Examples**::
julia> function f(x, y)
x + y
end
julia> applicable(f, 1)
false
julia> applicable(f, 1, 2)
true
.. function:: invoke(f, (types...), args...)
Invoke a method for the given generic function matching the specified types (as a tuple), on the specified arguments. The arguments must be compatible with the specified types. This allows invoking a method other than the most specific matching method, which is useful when the behavior of a more general definition is explicitly needed (often as part of the implementation of a more specific method of the same function).
.. function:: |>(x, f)
Applies a function to the preceding argument. This allows for easy function chaining.
**Example**: ``[1:5] |> x->x.^2 |> sum |> inv``
Syntax
------
.. function:: eval([m::Module], expr::Expr)
Evaluate an expression in the given module and return the result.
Every module (except those defined with ``baremodule``) has its own 1-argument definition
of ``eval``, which evaluates expressions in that module.
.. function:: @eval
Evaluate an expression and return the value.
.. function:: evalfile(path::String)
Evaluate all expressions in the given file, and return the value of the last one. No other processing (path searching, fetching from node 1, etc.) is performed.
.. function:: esc(e::ANY)
Only valid in the context of an Expr returned from a macro. Prevents the macro hygiene pass from turning embedded variables into gensym variables. See the :ref:`man-macros`
section of the Metaprogramming chapter of the manual for more details and examples.
.. function:: gensym([tag])
Generates a symbol which will not conflict with other variable names.
.. function:: @gensym
Generates a gensym symbol for a variable. For example, `@gensym x y` is transformed into `x = gensym("x"); y = gensym("y")`.
.. function:: parse(str, start; greedy=true, raise=true)
Parse the expression string and return an expression (which could later be passed to eval for execution). Start is the index of the first character to start parsing. If ``greedy`` is true (default), ``parse`` will try to consume as much input as it can; otherwise, it will stop as soon as it has parsed a valid expression. If ``raise`` is true (default), syntax errors will raise an error; otherwise, ``parse`` will return an expression that will raise an error upon evaluation.
.. function:: parse(str; raise=true)
Parse the whole string greedily, returning a single expression. An error is thrown if there are additional characters after the first expression. If ``raise`` is true (default), syntax errors will raise an error; otherwise, ``parse`` will return an expression that will raise an error upon evaluation.
Iteration
---------
Sequential iteration is implemented by the methods ``start``, ``done``, and
``next``. The general ``for`` loop::
for i = I # or "for i in I"
# body
end
is translated to::
state = start(I)
while !done(I, state)
(i, state) = next(I, state)
# body
end
The ``state`` object may be anything, and should be chosen appropriately for each iterable type.
.. function:: start(iter) -> state
Get initial iteration state for an iterable object
.. function:: done(iter, state) -> Bool
Test whether we are done iterating
.. function:: next(iter, state) -> item, state
For a given iterable object and iteration state, return the current item and the next iteration state
.. function:: zip(iters...)
For a set of iterable objects, returns an iterable of tuples, where the ``i``\ th tuple contains the ``i``\ th component of each input iterable.
Note that ``zip`` is its own inverse: ``[zip(zip(a...)...)...] == [a...]``.
.. function:: enumerate(iter)
Return an iterator that yields ``(i, x)`` where ``i`` is an index starting at 1, and ``x`` is the ``ith`` value from the given iterator. It's useful when you need not only the values `x` over which you are iterating, but also the index `i` of the iterations.
**Example**::
julia> a = ["a", "b", "c"]
julia> for (index, value) in enumerate(a)
println("$index $value")
end
1 a
2 b
3 c
Fully implemented by: ``Range``, ``UnitRange``, ``NDRange``, ``Tuple``, ``Real``, ``AbstractArray``, ``IntSet``, ``ObjectIdDict``, ``Dict``, ``WeakKeyDict``, ``EachLine``, ``String``, ``Set``, ``Task``.
General Collections
-------------------
.. function:: isempty(collection) -> Bool
Determine whether a collection is empty (has no elements).
**Examples**::
julia> a = []
julia> isempty(a)
true
julia> b = [1 2 3]
julia> isempty(b)
false
.. function:: empty!(collection) -> collection
Remove all elements from a ``collection``.
.. function:: length(collection) -> Integer
For ordered, indexable collections, the maximum index ``i`` for which ``getindex(collection, i)`` is valid. For unordered collections, the number of elements.
.. function:: endof(collection) -> Integer
Returns the last index of the collection.
**Example**::
julia> endof([1,2,4])
3
Fully implemented by: ``Range``, ``UnitRange``, ``Tuple``, ``Number``, ``AbstractArray``, ``IntSet``, ``Dict``, ``WeakKeyDict``, ``String``, ``Set``.
Iterable Collections
--------------------
.. function:: in(item, collection) -> Bool
Determine whether an item is in the given collection, in the sense that it is
``==`` to one of the values generated by iterating over the collection.
Some collections need a slightly different definition; for example Sets
check whether the item is ``isequal`` to one of the elements. Dicts look for
``(key,value)`` pairs, and the key is compared using ``isequal``. To test
for the presence of a key in a dictionary, use ``haskey`` or
``k in keys(dict)``.
.. function:: eltype(collection)
Determine the type of the elements generated by iterating ``collection``.
For associative collections, this will be a ``(key,value)`` tuple type.
.. function:: indexin(a, b)
Returns a vector containing the highest index in ``b``
for each value in ``a`` that is a member of ``b`` .
The output vector contains 0 wherever ``a`` is not a member of ``b``.
.. function:: findin(a, b)
Returns the indices of elements in collection ``a`` that appear in collection ``b``
.. function:: unique(itr[, dim])
Returns an array containing only the unique elements of the iterable ``itr``, in
the order that the first of each set of equivalent elements originally appears.
If ``dim`` is specified, returns unique regions of the array ``itr`` along ``dim``.
.. function:: reduce(op, v0, itr)
Reduce the given collection ``ìtr`` with the given binary operator. Reductions
for certain commonly-used operators have special implementations which should be
used instead: ``maximum(itr)``, ``minimum(itr)``, ``sum(itr)``,
``prod(itr)``, ``any(itr)``, ``all(itr)``.
The associativity of the reduction is implementation-dependent. This means
that you can't use non-associative operations like ``-`` because it is
undefined whether ``reduce(-,[1,2,3])`` should be evaluated as ``(1-2)-3``
or ``1-(2-3)``. Use ``foldl`` or ``foldr`` instead for guaranteed left or
right associativity.
Some operations accumulate error, and parallelism will also be easier if the
reduction can be executed in groups. Future versions of Julia might change
the algorithm. Note that the elements are not reordered if you use an ordered
collection.
.. function:: reduce(op, itr)
Like ``reduce`` but using the first element as v0.
.. function:: foldl(op, v0, itr)
Like ``reduce``, but with guaranteed left associativity.
.. function:: foldl(op, itr)
Like ``foldl``, but using the first element as v0.
.. function:: foldr(op, v0, itr)
Like ``reduce``, but with guaranteed right associativity.
.. function:: foldr(op, itr)
Like ``foldr``, but using the last element as v0.
.. function:: maximum(itr)
Returns the largest element in a collection.
.. function:: maximum(A, dims)
Compute the maximum value of an array over the given dimensions.
.. function:: maximum!(r, A)
Compute the maximum value of ``A`` over the singleton dimensions of ``r``,
and write results to ``r``.
.. function:: minimum(itr)
Returns the smallest element in a collection.
.. function:: minimum(A, dims)
Compute the minimum value of an array over the given dimensions.
.. function:: minimum!(r, A)
Compute the minimum value of ``A`` over the singleton dimensions of ``r``,
and write results to ``r``.
.. function:: extrema(itr)
Compute both the minimum and maximum element in a single pass, and
return them as a 2-tuple.
.. function:: indmax(itr) -> Integer
Returns the index of the maximum element in a collection.
.. function:: indmin(itr) -> Integer
Returns the index of the minimum element in a collection.
.. function:: findmax(itr) -> (x, index)
Returns the maximum element and its index.
.. function:: findmax(A, dims) -> (maxval, index)
For an array input, returns the value and index of the maximum over
the given dimensions.
.. function:: findmin(itr) -> (x, index)
Returns the minimum element and its index.
.. function:: findmin(A, dims) -> (minval, index)
For an array input, returns the value and index of the minimum over
the given dimensions.
.. function:: maxabs(itr)
Compute the maximum absolute value of a collection of values.
.. function:: maxabs(A, dims)
Compute the maximum absolute values over given dimensions.
.. function:: maxabs!(r, A)
Compute the maximum absolute values over the singleton dimensions of ``r``,
and write values to ``r``.
.. function:: minabs(itr)
Compute the minimum absolute value of a collection of values.
.. function:: minabs(A, dims)
Compute the minimum absolute values over given dimensions.
.. function:: minabs!(r, A)
Compute the minimum absolute values over the singleton dimensions of ``r``,
and write values to ``r``.
.. function:: sum(itr)
Returns the sum of all elements in a collection.
.. function:: sum(A, dims)
Sum elements of an array over the given dimensions.
.. function:: sum!(r, A)
Sum elements of ``A`` over the singleton dimensions of ``r``,
and write results to ``r``.
.. function:: sum(f, itr)
Sum the results of calling function ``f`` on each element of ``itr``.
.. function:: sumabs(itr)
Sum absolute values of all elements in a collection. This is
equivalent to `sum(abs(itr))` but faster.
.. function:: sumabs(A, dims)
Sum absolute values of elements of an array over the given
dimensions.
.. function:: sumabs!(r, A)
Sum absolute values of elements of ``A`` over the singleton
dimensions of ``r``, and write results to ``r``.
.. function:: sumabs2(itr)
Sum squared absolute values of all elements in a collection. This
is equivalent to `sum(abs2(itr))` but faster.
.. function:: sumabs2(A, dims)
Sum squared absolute values of elements of an array over the given
dimensions.
.. function:: sumabs2!(r, A)
Sum squared absolute values of elements of ``A`` over the singleton
dimensions of ``r``, and write results to ``r``.
.. function:: prod(itr)
Returns the product of all elements of a collection.
.. function:: prod(A, dims)
Multiply elements of an array over the given dimensions.
.. function:: prod!(r, A)
Multiply elements of ``A`` over the singleton dimensions of ``r``,
and write results to ``r``.
.. function:: any(itr) -> Bool
Test whether any elements of a boolean collection are true.
.. function:: any(A, dims)
Test whether any values along the given dimensions of an array are true.
.. function:: any!(r, A)
Test whether any values in ``A`` along the singleton dimensions of ``r`` are true,
and write results to ``r``.
.. function:: all(itr) -> Bool
Test whether all elements of a boolean collection are true.
.. function:: all(A, dims)
Test whether all values along the given dimensions of an array are true.
.. function:: all!(r, A)
Test whether all values in ``A`` along the singleton dimensions of ``r`` are true,
and write results to ``r``.
.. function:: count(p, itr) -> Integer
Count the number of elements in ``itr`` for which predicate ``p`` returns true.
.. function:: any(p, itr) -> Bool
Determine whether predicate ``p`` returns true for any elements of ``itr``.
.. function:: all(p, itr) -> Bool
Determine whether predicate ``p`` returns true for all elements of ``itr``.
**Example**::
julia> all(i->(4<=i<=6), [4,5,6])
true
.. function:: map(f, c...) -> collection
Transform collection ``c`` by applying ``f`` to each element.
For multiple collection arguments, apply ``f`` elementwise.
**Examples**::
julia> map((x) -> x * 2, [1, 2, 3])
[2, 4, 6]
julia> map(+, [1, 2, 3], [10, 20, 30])
[11, 22, 33]
.. function:: map!(function, collection)
In-place version of :func:`map`.
.. function:: map!(function, destination, collection...)
Like :func:`map()`, but stores the result in ``destination`` rather than a
new collection. ``destination`` must be at least as large as the first
collection.
.. function:: mapreduce(f, op, itr)
Applies function ``f`` to each element in ``itr`` and then reduces the result using the binary function ``op``.
**Example**: ``mapreduce(x->x^2, +, [1:3]) == 1 + 4 + 9 == 14``
The associativity of the reduction is implementation-dependent; if you
need a particular associativity, e.g. left-to-right, you should write
your own loop. See documentation for ``reduce``.
.. function:: first(coll)
Get the first element of an iterable collection.
.. function:: last(coll)
Get the last element of an ordered collection, if it can be computed in O(1) time.
This is accomplished by calling ``endof`` to get the last index.
.. function:: step(r)
Get the step size of a ``Range`` object.
.. function:: collect(collection)
Return an array of all items in a collection. For associative collections, returns (key, value) tuples.
.. function:: collect(element_type, collection)
Return an array of type ``Array{element_type,1}`` of all items in a collection.
.. function:: issubset(a, b)
Determine whether every element of ``a`` is also in ``b``, using the
``in`` function.
.. function:: filter(function, collection)
Return a copy of ``collection``, removing elements for which ``function`` is false.
For associative collections, the function is passed two arguments (key and value).
.. function:: filter!(function, collection)
Update ``collection``, removing elements for which ``function`` is false.
For associative collections, the function is passed two arguments (key and value).
Indexable Collections
---------------------
.. function:: getindex(collection, key...)
Retrieve the value(s) stored at the given key or index within a collection.
The syntax ``a[i,j,...]`` is converted by the compiler to
``getindex(a, i, j, ...)``.
.. function:: setindex!(collection, value, key...)
Store the given value at the given key or index within a collection.
The syntax ``a[i,j,...] = x`` is converted by the compiler to
``setindex!(a, x, i, j, ...)``.
Fully implemented by: ``Array``, ``DArray``, ``BitArray``, ``AbstractArray``, ``SubArray``, ``ObjectIdDict``, ``Dict``, ``WeakKeyDict``, ``String``.
Partially implemented by: ``Range``, ``UnitRange``, ``Tuple``.
Associative Collections
-----------------------
``Dict`` is the standard associative collection. Its implementation uses the ``hash(x)`` as the hashing function for the key, and ``isequal(x,y)`` to determine equality. Define these two functions for custom types to override how they are stored in a hash table.
``ObjectIdDict`` is a special hash table where the keys are always object identities. ``WeakKeyDict`` is a hash table implementation where the keys are weak references to objects, and thus may be garbage collected even when referenced in a hash table.
Dicts can be created using a literal syntax: ``{"A"=>1, "B"=>2}``. Use of curly brackets will create a ``Dict`` of type ``Dict{Any,Any}``. Use of square brackets will attempt to infer type information from the keys and values (i.e. ``["A"=>1, "B"=>2]`` creates a ``Dict{ASCIIString, Int64}``). To explicitly specify types use the syntax: ``(KeyType=>ValueType)[...]``. For example, ``(ASCIIString=>Int32)["A"=>1, "B"=>2]``.
As with arrays, ``Dicts`` may be created with comprehensions. For example,
``{i => f(i) for i = 1:10}``.
Given a dictionary ``D``, the syntax ``D[x]`` returns the value of key ``x`` (if it exists) or throws an error, and ``D[x] = y`` stores the key-value pair ``x => y`` in ``D`` (replacing any existing value for the key ``x``). Multiple arguments to ``D[...]`` are converted to tuples; for example, the syntax ``D[x,y]`` is equivalent to ``D[(x,y)]``, i.e. it refers to the value keyed by the tuple ``(x,y)``.
.. function:: Dict()
``Dict{K,V}()`` constructs a hashtable with keys of type K and values of type V.
The literal syntax is ``{"A"=>1, "B"=>2}`` for a ``Dict{Any,Any}``, or
``["A"=>1, "B"=>2]`` for a ``Dict`` of inferred type.
.. function:: haskey(collection, key) -> Bool
Determine whether a collection has a mapping for a given key.
.. function:: get(collection, key, default)
Return the value stored for the given key, or the given default value if no mapping for the key is present.
.. function:: get(f::Function, collection, key)
Return the value stored for the given key, or if no mapping for the key is present, return ``f()``. Use ``get!`` to also store the default value in the dictionary.
This is intended to be called using ``do`` block syntax::
get(dict, key) do
# default value calculated here
time()
end
.. function:: get!(collection, key, default)
Return the value stored for the given key, or if no mapping for the key is present, store ``key => default``, and return ``default``.
.. function:: get!(f::Function, collection, key)
Return the value stored for the given key, or if no mapping for the key is present, store ``key => f()``, and return ``f()``.
This is intended to be called using ``do`` block syntax::
get!(dict, key) do
# default value calculated here
time()
end
.. function:: getkey(collection, key, default)
Return the key matching argument ``key`` if one exists in ``collection``, otherwise return ``default``.
.. function:: delete!(collection, key)
Delete the mapping for the given key in a collection, and return the colection.
.. function:: pop!(collection, key[, default])
Delete and return the mapping for ``key`` if it exists in ``collection``, otherwise return ``default``, or throw an error if default is not specified.
.. function:: keys(collection)
Return an iterator over all keys in a collection. ``collect(keys(d))`` returns an array of keys.
.. function:: values(collection)
Return an iterator over all values in a collection. ``collect(values(d))`` returns an array of values.
.. function:: merge(collection, others...)
Construct a merged collection from the given collections.
.. function:: merge!(collection, others...)
Update collection with pairs from the other collections
.. function:: sizehint(s, n)
Suggest that collection ``s`` reserve capacity for at least ``n`` elements. This can improve performance.
Fully implemented by: ``ObjectIdDict``, ``Dict``, ``WeakKeyDict``.
Partially implemented by: ``IntSet``, ``Set``, ``EnvHash``, ``Array``, ``BitArray``.
Set-Like Collections
--------------------
.. function:: Set([itr])
Construct a ``Set`` of the values generated by the given iterable object, or an empty set.
Should be used instead of ``IntSet`` for sparse integer sets, or for sets of arbitrary objects.
.. function:: IntSet([itr])
Construct a sorted set of the integers generated by the given iterable object, or an empty set. Implemented as a bit string, and therefore designed for dense integer sets. Only non-negative integers can be stored. If the set will be sparse (for example holding a single very large integer), use ``Set`` instead.
.. function:: union(s1,s2...)
Construct the union of two or more sets. Maintains order with arrays.
.. function:: union!(s, iterable)
Union each element of ``iterable`` into set ``s`` in-place.
.. function:: intersect(s1,s2...)
Construct the intersection of two or more sets. Maintains order and multiplicity of the first argument for arrays and ranges.
.. function:: setdiff(s1,s2)
Construct the set of elements in ``s1`` but not ``s2``. Maintains order with arrays.
Note that both arguments must be collections, and both will be iterated over.
In particular, ``setdiff(set,element)`` where ``element`` is a potential member of
``set``, will not work in general.
.. function:: setdiff!(s, iterable)
Remove each element of ``iterable`` from set ``s`` in-place.
.. function:: symdiff(s1,s2...)
Construct the symmetric difference of elements in the passed in sets or arrays. Maintains order with arrays.
.. function:: symdiff!(s, n)
IntSet s is destructively modified to toggle the inclusion of integer ``n``.
.. function:: symdiff!(s, itr)
For each element in ``itr``, destructively toggle its inclusion in set ``s``.
.. function:: symdiff!(s1, s2)
Construct the symmetric difference of IntSets ``s1`` and ``s2``, storing the result in ``s1``.
.. function:: complement(s)
Returns the set-complement of IntSet s.
.. function:: complement!(s)
Mutates IntSet s into its set-complement.
.. function:: intersect!(s1, s2)
Intersects IntSets s1 and s2 and overwrites the set s1 with the result. If needed, s1 will be expanded to the size of s2.
.. function:: issubset(A, S) -> Bool
True if ``A ⊆ S`` (A is a subset of or equal to S)
Fully implemented by: ``IntSet``, ``Set``.
Partially implemented by: ``Array``.
Dequeues
--------
.. function:: push!(collection, items...) -> collection
Insert items at the end of a collection.
.. function:: pop!(collection) -> item
Remove the last item in a collection and return it.
.. function:: unshift!(collection, items...) -> collection
Insert items at the beginning of a collection.
.. function:: shift!(collection) -> item
Remove the first item in a collection.
.. function:: insert!(collection, index, item)
Insert an item at the given index.
.. function:: deleteat!(collection, index)
Remove the item at the given index, and return the modified collection. Subsequent items
are shifted to fill the resulting gap.
.. function:: deleteat!(collection, itr)
Remove the items at the indices given by `itr`, and return the modified collection. Subsequent
items are shifted to fill the resulting gap. `itr` must be sorted and unique.
.. function:: splice!(collection, index, [replacement]) -> item
Remove the item at the given index, and return the removed item. Subsequent items
are shifted down to fill the resulting gap. If specified, replacement values from
an ordered collection will be spliced in place of the removed item.
To insert ``replacement`` before an index ``n`` without removing any items, use ``splice!(collection, n:n-1, replacement)``.
.. function:: splice!(collection, range, [replacement]) -> items
Remove items in the specified index range, and return a collection containing the
removed items. Subsequent items are shifted down to fill the resulting gap.
If specified, replacement values from an ordered collection will be spliced in place
of the removed items.
To insert ``replacement`` before an index ``n`` without removing any items, use ``splice!(collection, n:n-1, replacement)``.
.. function:: resize!(collection, n) -> collection
Resize collection to contain ``n`` elements.
.. function:: append!(collection, items) -> collection.
Add the elements of ``items`` to the end of a collection. ``append!([1],[2,3]) => [1,2,3]``
.. function:: prepend!(collection, items) -> collection
Insert the elements of ``items`` to the beginning of a collection. ``prepend!([3],[1,2]) => [1,2,3]``
Fully implemented by: ``Vector`` (aka 1-d ``Array``), ``BitVector`` (aka 1-d ``BitArray``).
Strings
-------
.. function:: length(s)
The number of characters in string ``s``.
.. function:: sizeof(s::String)
The number of bytes in string ``s``.
.. function:: *(s, t)
Concatenate strings. The ``*`` operator is an alias to this function.
**Example**::
julia> "Hello " * "world"
"Hello world"
.. function:: ^(s, n)
Repeat ``n`` times the string ``s``. The ``^`` operator is an alias to this function.
**Example**::
julia> "Test "^3
"Test Test Test "
.. function:: string(xs...)
Create a string from any values using the ``print`` function.
.. function:: repr(x)
Create a string from any value using the ``showall`` function.
.. function:: bytestring(::Ptr{Uint8}, [length])
Create a string from the address of a C (0-terminated) string encoded in ASCII or UTF-8. A copy is made; the ptr can be safely freed. If ``length`` is specified, the string does not have to be 0-terminated.
.. function:: bytestring(s)
Convert a string to a contiguous byte array representation appropriate for passing it to C functions. The string will be encoded as either ASCII or UTF-8.
.. function:: ascii(::Array{Uint8,1})
Create an ASCII string from a byte array.
.. function:: ascii(s)
Convert a string to a contiguous ASCII string (all characters must be valid ASCII characters).
.. function:: utf8(::Array{Uint8,1})
Create a UTF-8 string from a byte array.
.. function:: utf8(s)
Convert a string to a contiguous UTF-8 string (all characters must be valid UTF-8 characters).
.. function:: normalize_string(s, normalform::Symbol)
Normalize the string ``s`` according to one of the four "normal
forms" of the Unicode standard: ``normalform`` can be ``:NFC``,
``:NFD``, ``:NFKC``, or ``:NFKD``. Normal forms C (canonical
composition) and D (canonical decomposition) convert different
visually identical representations of the same abstract string into
a single canonical form, with form C being more compact. Normal
forms KC and KD additionally canonicalize "compatibility
equivalents": they convert characters that are abstractly similar
but visually distinct into a single canonical choice (e.g. they expand
ligatures into the individual characters), with form KC being more compact.
Alternatively, finer control and additional transformations may be
be obtained by calling `normalize_string(s; keywords...)`, where
any number of the following boolean keywords options (which all default
to ``false`` except for ``compose``) are specified:
* ``compose=false``: do not perform canonical composition
* ``decompose=true``: do canonical decomposition instead of canonical composition (``compose=true`` is ignored if present)
* ``compat=true``: compatibility equivalents are canonicalized
* ``casefold=true``: perform Unicode case folding, e.g. for case-insensitive string comparison
* ``newline2lf=true``, ``newline2ls=true``, or ``newline2ps=true``: convert various newline sequences (LF, CRLF, CR, NEL) into a linefeed (LF), line-separation (LS), or paragraph-separation (PS) character, respectively
* ``stripmark=true``: strip diacritical marks (e.g. accents)
* ``stripignore=true``: strip Unicode's "default ignorable" characters (e.g. the soft hyphen or the left-to-right marker)
* ``stripcc=true``: strip control characters; horizontal tabs and form feeds are converted to spaces; newlines are also converted to spaces unless a newline-conversion flag was specified
* ``rejectna=true``: throw an error if unassigned code points are found
* ``stable=true``: enforce Unicode Versioning Stability
For example, NFKC corresponds to the options ``compose=true, compat=true, stable=true``.
.. function:: is_valid_ascii(s) -> Bool
Returns true if the string or byte vector is valid ASCII, false otherwise.
.. function:: is_valid_utf8(s) -> Bool
Returns true if the string or byte vector is valid UTF-8, false otherwise.
.. function:: is_valid_char(c) -> Bool
Returns true if the given char or integer is a valid Unicode code point.
.. function:: is_assigned_char(c) -> Bool
Returns true if the given char or integer is an assigned Unicode code point.
.. function:: ismatch(r::Regex, s::String) -> Bool
Test whether a string contains a match of the given regular expression.
.. function:: match(r::Regex, s::String[, idx::Integer[, addopts]])
Search for the first match of the regular expression ``r`` in ``s`` and return a RegexMatch object containing the match, or nothing if the match failed. The matching substring can be retrieved by accessing ``m.match`` and the captured sequences can be retrieved by accessing ``m.captures`` The optional ``idx`` argument specifies an index at which to start the search.
.. function:: eachmatch(r::Regex, s::String[, overlap::Bool=false])
Search for all matches of a the regular expression ``r`` in ``s`` and return a iterator over the matches. If overlap is true, the matching sequences are allowed to overlap indices in the original string, otherwise they must be from distinct character ranges.
.. function:: matchall(r::Regex, s::String[, overlap::Bool=false]) -> Vector{String}
Return a vector of the matching substrings from eachmatch.
.. function:: lpad(string, n, p)
Make a string at least ``n`` characters long by padding on the left with copies of ``p``.
.. function:: rpad(string, n, p)
Make a string at least ``n`` characters long by padding on the right with copies of ``p``.
.. function:: search(string, chars, [start])
Search for the first occurance of the given characters within the given string. The second argument may be a single character, a vector or a set of characters, a string, or a regular expression (though regular expressions are only allowed on contiguous strings, such as ASCII or UTF-8 strings). The third argument optionally specifies a starting index. The return value is a range of indexes where the matching sequence is found, such that ``s[search(s,x)] == x``:
``search(string, "substring")`` = ``start:end`` such that ``string[start:end] == "substring"``, or ``0:-1`` if unmatched.
``search(string, 'c')`` = ``index`` such that ``string[index] == 'c'``, or ``0`` if unmatched.
.. function:: rsearch(string, chars, [start])
Similar to ``search``, but returning the last occurance of the given characters within the given string, searching in reverse from ``start``.
.. function:: searchindex(string, substring, [start])
Similar to ``search``, but return only the start index at which the substring is found, or 0 if it is not.
.. function:: rsearchindex(string, substring, [start])
Similar to ``rsearch``, but return only the start index at which the substring is found, or 0 if it is not.
.. function:: contains(haystack, needle)
Determine whether the second argument is a substring of the first.
.. function:: replace(string, pat, r[, n])
Search for the given pattern ``pat``, and replace each occurrence with ``r``. If ``n`` is provided, replace at most ``n`` occurrences. As with search, the second argument may be a single character, a vector or a set of characters, a string, or a regular expression. If ``r`` is a function, each occurrence is replaced with ``r(s)`` where ``s`` is the matched substring.
.. function:: split(string, [chars, [limit,] [include_empty]])
Return an array of substrings by splitting the given string on occurrences of the given character delimiters, which may be specified in any of the formats allowed by ``search``'s second argument (i.e. a single character, collection of characters, string, or regular expression). If ``chars`` is omitted, it defaults to the set of all space characters, and ``include_empty`` is taken to be false. The last two arguments are also optional: they are are a maximum size for the result and a flag determining whether empty fields should be included in the result.
.. function:: rsplit(string, [chars, [limit,] [include_empty]])
Similar to ``split``, but starting from the end of the string.
.. function:: strip(string, [chars])
Return ``string`` with any leading and trailing whitespace removed. If ``chars`` (a character, or vector or set of characters) is provided, instead remove characters contained in it.
.. function:: lstrip(string, [chars])
Return ``string`` with any leading whitespace removed. If ``chars`` (a character, or vector or set of characters) is provided, instead remove characters contained in it.
.. function:: rstrip(string, [chars])
Return ``string`` with any trailing whitespace removed. If ``chars`` (a character, or vector or set of characters) is provided, instead remove characters contained in it.
.. function:: beginswith(string, prefix | chars)
Returns ``true`` if ``string`` starts with ``prefix``. If the second argument is a vector or set of characters, tests whether the first character of ``string`` belongs to that set.
.. function:: endswith(string, suffix | chars)
Returns ``true`` if ``string`` ends with ``suffix``. If the second argument is a vector or set of characters, tests whether the last character of ``string`` belongs to that set.
.. function:: uppercase(string)
Returns ``string`` with all characters converted to uppercase.
.. function:: lowercase(string)
Returns ``string`` with all characters converted to lowercase.
.. function:: ucfirst(string)
Returns ``string`` with the first character converted to uppercase.
.. function:: lcfirst(string)
Returns ``string`` with the first character converted to lowercase.
.. function:: join(strings, delim)
Join an array of strings into a single string, inserting the given delimiter between adjacent strings.
.. function:: chop(string)
Remove the last character from a string
.. function:: chomp(string)
Remove a trailing newline from a string
.. function:: ind2chr(string, i)
Convert a byte index to a character index
.. function:: chr2ind(string, i)
Convert a character index to a byte index
.. function:: isvalid(str, i)
Tells whether index ``i`` is valid for the given string
.. function:: nextind(str, i)
Get the next valid string index after ``i``. Returns a value greater than ``endof(str)``
at or after the end of the string.
.. function:: prevind(str, i)
Get the previous valid string index before ``i``. Returns a value less than ``1`` at
the beginning of the string.
.. function:: randstring(len)
Create a random ASCII string of length ``len``, consisting of upper- and lower-case letters and the digits 0-9
.. function:: charwidth(c)
Gives the number of columns needed to print a character.
.. function:: strwidth(s)
Gives the number of columns needed to print a string.
.. function:: isalnum(c::Union(Char,String)) -> Bool
Tests whether a character is alphanumeric, or whether this
is true for all elements of a string.
.. function:: isalpha(c::Union(Char,String)) -> Bool
Tests whether a character is alphabetic, or whether this
is true for all elements of a string.
.. function:: isascii(c::Union(Char,String)) -> Bool
Tests whether a character belongs to the ASCII character set, or whether this
is true for all elements of a string.
.. function:: isblank(c::Union(Char,String)) -> Bool
Tests whether a character is a tab or space, or whether this
is true for all elements of a string.
.. function:: iscntrl(c::Union(Char,String)) -> Bool
Tests whether a character is a control character, or whether this
is true for all elements of a string.
.. function:: isdigit(c::Union(Char,String)) -> Bool
Tests whether a character is a numeric digit (0-9), or whether this
is true for all elements of a string.
.. function:: isgraph(c::Union(Char,String)) -> Bool
Tests whether a character is printable, and not a space, or whether this
is true for all elements of a string.
.. function:: islower(c::Union(Char,String)) -> Bool
Tests whether a character is a lowercase letter, or whether this
is true for all elements of a string.
.. function:: isprint(c::Union(Char,String)) -> Bool
Tests whether a character is printable, including space, or whether this
is true for all elements of a string.
.. function:: ispunct(c::Union(Char,String)) -> Bool
Tests whether a character is printable, and not a space or
alphanumeric, or whether this is true for all elements of a string.
.. function:: isspace(c::Union(Char,String)) -> Bool
Tests whether a character is any whitespace character, or whether this
is true for all elements of a string.
.. function:: isupper(c::Union(Char,String)) -> Bool
Tests whether a character is an uppercase letter, or whether this
is true for all elements of a string.
.. function:: isxdigit(c::Union(Char,String)) -> Bool
Tests whether a character is a valid hexadecimal digit, or whether this
is true for all elements of a string.
.. function:: symbol(str) -> Symbol
Convert a string to a ``Symbol``.
.. function:: escape_string(str::String) -> String
General escaping of traditional C and Unicode escape sequences. See :func:`print_escaped` for more general escaping.
.. function:: unescape_string(s::String) -> String
General unescaping of traditional C and Unicode escape sequences. Reverse of :func:`escape_string`. See also :func:`print_unescaped`.
.. function:: utf16(s)
Create a UTF-16 string from a byte array, array of ``Uint16``, or
any other string type. (Data must be valid UTF-16. Conversions of
byte arrays check for a byte-order marker in the first two bytes,
and do not include it in the resulting string.)
Note that the resulting ``UTF16String`` data is terminated by the NUL
codepoint (16-bit zero), which is not treated as a character in the
string (so that it is mostly invisible in Julia); this allows the
string to be passed directly to external functions requiring
NUL-terminated data. This NUL is appended automatically by the
`utf16(s)` conversion function. If you have a ``Uint16`` array
``A`` that is already NUL-terminated valid UTF-16 data, then you
can instead use `UTF16String(A)`` to construct the string without
making a copy of the data and treating the NUL as a terminator
rather than as part of the string.
.. function:: utf16(::Union(Ptr{Uint16},Ptr{Int16}) [, length])
Create a string from the address of a NUL-terminated UTF-16 string. A copy is made; the pointer can be safely freed. If ``length`` is specified, the string does not have to be NUL-terminated.
.. function:: is_valid_utf16(s) -> Bool
Returns true if the string or ``Uint16`` array is valid UTF-16.
.. function:: utf32(s)
Create a UTF-32 string from a byte array, array of ``Uint32``, or
any other string type. (Conversions of byte arrays check for a
byte-order marker in the first four bytes, and do not include it in
the resulting string.)
Note that the resulting ``UTF32String`` data is terminated by the NUL
codepoint (32-bit zero), which is not treated as a character in the
string (so that it is mostly invisible in Julia); this allows the
string to be passed directly to external functions requiring
NUL-terminated data. This NUL is appended automatically by the
`utf32(s)` conversion function. If you have a ``Uint32`` array
``A`` that is already NUL-terminated UTF-32 data, then you
can instead use `UTF32String(A)`` to construct the string without
making a copy of the data and treating the NUL as a terminator
rather than as part of the string.
.. function:: utf32(::Union(Ptr{Char},Ptr{Uint32},Ptr{Int32}) [, length])
Create a string from the address of a NUL-terminated UTF-32 string. A copy is made; the pointer can be safely freed. If ``length`` is specified, the string does not have to be NUL-terminated.
.. function:: wstring(s)
This is a synonym for either ``utf32(s)`` or ``utf16(s)``,
depending on whether ``Cwchar_t`` is 32 or 16 bits, respectively.
The synonym ``WString`` for ``UTF32String`` or ``UTF16String``
is also provided.
I/O
---
.. data:: STDOUT
Global variable referring to the standard out stream.
.. data:: STDERR
Global variable referring to the standard error stream.
.. data:: STDIN
Global variable referring to the standard input stream.
.. function:: open(file_name, [read, write, create, truncate, append]) -> IOStream
Open a file in a mode specified by five boolean arguments. The default is to open files for reading only. Returns a stream for accessing the file.
.. function:: open(file_name, [mode]) -> IOStream
Alternate syntax for open, where a string-based mode specifier is used instead of the five booleans. The values of ``mode`` correspond to those from ``fopen(3)`` or Perl ``open``, and are equivalent to setting the following boolean groups:
==== =================================
r read
r+ read, write
w write, create, truncate
w+ read, write, create, truncate
a write, create, append
a+ read, write, create, append
==== =================================
.. function:: open(f::function, args...)
Apply the function ``f`` to the result of ``open(args...)`` and close the resulting file descriptor upon completion.
**Example**: ``open(readall, "file.txt")``
.. function:: IOBuffer() -> IOBuffer
Create an in-memory I/O stream.
.. function:: IOBuffer(size::Int)
Create a fixed size IOBuffer. The buffer will not grow dynamically.
.. function:: IOBuffer(string)
Create a read-only IOBuffer on the data underlying the given string
.. function:: IOBuffer([data,],[readable,writable,[maxsize]])
Create an IOBuffer, which may optionally operate on a pre-existing array. If the readable/writable arguments are given,
they restrict whether or not the buffer may be read from or written to respectively. By default the buffer is readable
but not writable. The last argument optionally specifies a size beyond which the buffer may not be grown.
.. function:: takebuf_array(b::IOBuffer)
Obtain the contents of an ``IOBuffer`` as an array, without copying.
.. function:: takebuf_string(b::IOBuffer)
Obtain the contents of an ``IOBuffer`` as a string, without copying.
.. function:: fdio([name::String, ]fd::Integer[, own::Bool]) -> IOStream
Create an ``IOStream`` object from an integer file descriptor. If ``own`` is true, closing this object will close the underlying descriptor. By default, an ``IOStream`` is closed when it is garbage collected. ``name`` allows you to associate the descriptor with a named file.
.. function:: flush(stream)
Commit all currently buffered writes to the given stream.
.. function:: flush_cstdio()
Flushes the C ``stdout`` and ``stderr`` streams (which may have been
written to by external C code).
.. function:: close(stream)
Close an I/O stream. Performs a ``flush`` first.
.. function:: write(stream, x)
Write the canonical binary representation of a value to the given stream.
.. function:: read(stream, type)
Read a value of the given type from a stream, in canonical binary representation.
.. function:: read(stream, type, dims)
Read a series of values of the given type from a stream, in canonical binary representation. ``dims`` is either a tuple or a series of integer arguments specifying the size of ``Array`` to return.
.. function:: read!(stream, array::Array)
Read binary data from a stream, filling in the argument ``array``.
.. function:: readbytes!(stream, b::Vector{Uint8}, nb=length(b))
Read at most ``nb`` bytes from the stream into ``b``, returning the
number of bytes read (increasing the size of ``b`` as needed).
.. function:: readbytes(stream, nb=typemax(Int))
Read at most ``nb`` bytes from the stream, returning a
``Vector{Uint8}`` of the bytes read.
.. function:: position(s)
Get the current position of a stream.
.. function:: seek(s, pos)
Seek a stream to the given position.
.. function:: seekstart(s)
Seek a stream to its beginning.
.. function:: seekend(s)
Seek a stream to its end.
.. function:: skip(s, offset)
Seek a stream relative to the current position.
.. function:: mark(s)
Add a mark at the current position of stream ``s``. Returns the marked position.
See also :func:`unmark`, :func:`reset`, :func:`ismarked`
.. function:: unmark(s)
Remove a mark from stream ``s``.
Returns ``true`` if the stream was marked, ``false`` otherwise.
See also :func:`mark`, :func:`reset`, :func:`ismarked`
.. function:: reset(s)
Reset a stream ``s`` to a previously marked position, and remove the mark.
Returns the previously marked position.
Throws an error if the stream is not marked.
See also :func:`mark`, :func:`unmark`, :func:`ismarked`
.. function:: ismarked(s)
Returns true if stream ``s`` is marked.
See also :func:`mark`, :func:`unmark`, :func:`reset`
.. function:: eof(stream) -> Bool
Tests whether an I/O stream is at end-of-file. If the stream is not yet
exhausted, this function will block to wait for more data if necessary, and
then return ``false``. Therefore it is always safe to read one byte after
seeing ``eof`` return ``false``. ``eof`` will return ``false`` as long
as buffered data is still available, even if the remote end of a
connection is closed.
.. function:: isreadonly(stream) -> Bool
Determine whether a stream is read-only.
.. function:: isopen(stream) -> Bool
Determine whether a stream is open (i.e. has not been closed yet).
If the connection has been closed remotely (in case of e.g. a socket),
``isopen`` will return ``false`` even though buffered data may still be
available. Use ``eof`` to check if necessary.
.. function:: ntoh(x)
Converts the endianness of a value from Network byte order (big-endian) to
that used by the Host.
.. function:: hton(x)
Converts the endianness of a value from that used by the Host to Network
byte order (big-endian).
.. function:: ltoh(x)
Converts the endianness of a value from Little-endian to that used by the
Host.
.. function:: htol(x)
Converts the endianness of a value from that used by the Host to
Little-endian.
.. data:: ENDIAN_BOM
The 32-bit byte-order-mark indicates the native byte order of the host machine. Little-endian machines will contain the value 0x04030201. Big-endian machines will contain the value 0x01020304.
.. function:: serialize(stream, value)
Write an arbitrary value to a stream in an opaque format, such that it can
be read back by ``deserialize``. The read-back value will be as identical as
possible to the original. In general, this process will not work if the
reading and writing are done by different versions of Julia, or
an instance of Julia with a different system image.
.. function:: deserialize(stream)
Read a value written by ``serialize``.
.. function:: print_escaped(io, str::String, esc::String)
General escaping of traditional C and Unicode escape sequences, plus any characters in esc are also escaped (with a backslash).
.. function:: print_unescaped(io, s::String)
General unescaping of traditional C and Unicode escape sequences. Reverse of :func:`print_escaped`.
.. function:: print_joined(io, items, delim, [last])
Print elements of ``items`` to ``io`` with ``delim`` between them. If ``last`` is specified, it is used as the final delimiter instead of ``delim``.
.. function:: print_shortest(io, x)
Print the shortest possible representation of number ``x`` as a floating point number, ensuring that it would parse to the exact same number.
.. function:: fd(stream)
Returns the file descriptor backing the stream or file. Note that this function only applies to synchronous `File`'s and `IOStream`'s
not to any of the asynchronous streams.
.. function:: redirect_stdout()
Create a pipe to which all C and Julia level STDOUT output will be redirected. Returns a tuple (rd,wr)
representing the pipe ends. Data written to STDOUT may now be read from the rd end of the pipe. The
wr end is given for convenience in case the old STDOUT object was cached by the user and needs to be
replaced elsewhere.
.. function:: redirect_stdout(stream)
Replace STDOUT by stream for all C and julia level output to STDOUT. Note that `stream` must be a TTY, a Pipe or a
TcpSocket.
.. function:: redirect_stderr([stream])
Like redirect_stdout, but for STDERR
.. function:: redirect_stdin([stream])
Like redirect_stdout, but for STDIN. Note that the order of the return tuple is still (rd,wr), i.e. data to be read
from STDIN, may be written to wr.
.. function:: readchomp(x)
Read the entirety of x as a string but remove trailing newlines. Equivalent to chomp(readall(x)).
.. function:: readdir([dir]) -> Vector{ByteString}
Returns the files and directories in the directory `dir` (or the current working directory if not given).
.. function:: truncate(file,n)
Resize the file or buffer given by the first argument to exactly `n` bytes, filling previously unallocated space with '\0'
if the file or buffer is grown
.. function:: skipchars(stream, predicate; linecomment::Char)
Advance the stream until before the first character for which ``predicate`` returns false. For example ``skipchars(stream, isspace)`` will skip all whitespace. If keyword argument ``linecomment`` is specified, characters from that character through the end of a line will also be skipped.
.. function:: countlines(io,[eol::Char])
Read io until the end of the stream/file and count the number of non-empty lines. To specify a file pass the filename as the first
argument. EOL markers other than '\n' are supported by passing them as the second argument.
.. function:: PipeBuffer()
An IOBuffer that allows reading and performs writes by appending. Seeking and truncating are not supported. See IOBuffer for the available constructors.
.. function:: PipeBuffer(data::Vector{Uint8},[maxsize])
Create a PipeBuffer to operate on a data vector, optionally specifying a size beyond which the underlying Array may not be grown.
.. function:: readavailable(stream)
Read all available data on the stream, blocking the task only if no data is available.
.. function:: stat(file)
Returns a structure whose fields contain information about the file. The fields of the structure are:
========= ======================================================================
size The size (in bytes) of the file
device ID of the device that contains the file
inode The inode number of the file
mode The protection mode of the file
nlink The number of hard links to the file
uid The user id of the owner of the file
gid The group id of the file owner
rdev If this file refers to a device, the ID of the device it refers to
blksize The file-system preffered block size for the file
blocks The number of such blocks allocated
mtime Unix timestamp of when the file was last modified
ctime Unix timestamp of when the file was created
========= ======================================================================
.. function:: lstat(file)
Like stat, but for symbolic links gets the info for the link itself rather than the file it refers to. This function must be called on a file path rather than a file object or a file descriptor.
.. function:: ctime(file)
Equivalent to stat(file).ctime
.. function:: mtime(file)
Equivalent to stat(file).mtime
.. function:: filemode(file)
Equivalent to stat(file).mode
.. function:: filesize(path...)
Equivalent to stat(file).size
.. function:: uperm(file)
Gets the permissions of the owner of the file as a bitfield of
==== =====================
01 Execute Permission
02 Write Permission
04 Read Permission
==== =====================
For allowed arguments, see ``stat``.
.. function:: gperm(file)
Like uperm but gets the permissions of the group owning the file
.. function:: operm(file)
Like uperm but gets the permissions for people who neither own the file nor are a
member of the group owning the file
.. function:: cp(src::String,dst::String)
Copy a file from `src` to `dest`.
.. function:: download(url,[localfile])
Download a file from the given url, optionally renaming it to the given local file name.
Note that this function relies on the availability of external tools such as ``curl``,
``wget`` or ``fetch`` to download the file and is provided for convenience. For production
use or situations in which more options are need, please use a package that provides the
desired functionality instead.
.. function:: mv(src::String,dst::String)
Move a file from `src` to `dst`.
.. function:: rm(path::String; recursive=false)
Delete the file, link, or empty directory at the given path. If ``recursive=true`` is
passed and the path is a directory, then all contents are removed recursively.
.. function:: touch(path::String)
Update the last-modified timestamp on a file to the current time.
Network I/O
-----------
.. function:: connect([host],port) -> TcpSocket
Connect to the host ``host`` on port ``port``
.. function:: connect(path) -> Pipe
Connect to the Named Pipe/Domain Socket at ``path``
.. function:: listen([addr,]port) -> TcpServer
Listen on port on the address specified by ``addr``. By default this listens on localhost only.
To listen on all interfaces pass, ``IPv4(0)`` or ``IPv6(0)`` as appropriate.
.. function:: listen(path) -> PipeServer
Listens on/Creates a Named Pipe/Domain Socket
.. function:: getaddrinfo(host)
Gets the IP address of the ``host`` (may have to do a DNS lookup)
.. function:: parseip(addr)
Parse a string specifying an IPv4 or IPv6 ip address.
.. function:: IPv4(host::Integer) -> IPv4
Returns IPv4 object from ip address formatted as Integer
.. function:: IPv6(host::Integer) -> IPv6
Returns IPv6 object from ip address formatted as Integer
.. function:: nb_available(stream)
Returns the number of bytes available for reading before a read from this stream or buffer will block.
.. function:: accept(server[,client])
Accepts a connection on the given server and returns a connection to the client. An uninitialized client
stream may be provided, in which case it will be used instead of creating a new stream.
.. function:: listenany(port_hint) -> (Uint16,TcpServer)
Create a TcpServer on any port, using hint as a starting point. Returns a tuple of the actual port that the server
was created on and the server itself.
.. function:: watch_file(cb=false, s; poll=false)
Watch file or directory ``s`` and run callback ``cb`` when ``s`` is modified. The ``poll`` parameter specifies whether to use file system event monitoring or polling. The callback function ``cb`` should accept 3 arguments: ``(filename, events, status)`` where ``filename`` is the name of file that was modified, ``events`` is an object with boolean fields ``changed`` and ``renamed`` when using file system event monitoring, or ``readable`` and ``writable`` when using polling, and ``status`` is always 0. Pass ``false`` for ``cb`` to not use a callback function.
.. function:: poll_fd(fd, seconds::Real; readable=false, writable=false)
Poll a file descriptor fd for changes in the read or write availability and with a timeout given by the second argument.
If the timeout is not needed, use ``wait(fd)`` instead. The keyword arguments determine which of read and/or write status
should be monitored and at least one of them needs to be set to true.
The returned value is an object with boolean fields ``readable``, ``writable``, and
``timedout``, giving the result of the polling.
.. function:: poll_file(s, interval_seconds::Real, seconds::Real)
Monitor a file for changes by polling every `interval_seconds` seconds for `seconds` seconds. A return value of true indicates
the file changed, a return value of false indicates a timeout.
Text I/O
--------
.. function:: show(x)
Write an informative text representation of a value to the current output stream. New types should overload ``show(io, x)`` where the first argument is a stream.
The representation used by ``show`` generally includes Julia-specific formatting and type information.
.. function:: showcompact(x)
Show a more compact representation of a value. This is used for printing
array elements. If a new type has a different compact representation, it
should overload ``showcompact(io, x)`` where the first argument is a stream.
.. function:: showall(x)
Similar to ``show``, except shows all elements of arrays.
.. function:: summary(x)
Return a string giving a brief description of a value. By default returns
``string(typeof(x))``. For arrays, returns strings like "2x2 Float64 Array".
.. function:: print(x)
Write (to the default output stream) a canonical (un-decorated) text representation of a value if there is one, otherwise call ``show``.
The representation used by ``print`` includes minimal formatting and tries to avoid Julia-specific details.
.. function:: println(x)
Print (using :func:`print`) ``x`` followed by a newline.
.. function:: print_with_color(color::Symbol, [io], strings...)
Print strings in a color specified as a symbol, for example ``:red`` or ``:blue``.
.. function:: info(msg)
Display an informational message.
.. function:: warn(msg)
Display a warning.
.. function:: @printf([io::IOStream], "%Fmt", args...)
Print arg(s) using C ``printf()`` style format specification string. Optionally, an IOStream may be passed as the first argument to redirect output.
.. function:: @sprintf("%Fmt", args...)
Return ``@printf`` formatted output as string.
.. function:: sprint(f::Function, args...)
Call the given function with an I/O stream and the supplied extra arguments.
Everything written to this I/O stream is returned as a string.
.. function:: showerror(io, e)
Show a descriptive representation of an exception object.
.. function:: dump(x)
Show all user-visible structure of a value.
.. function:: xdump(x)
Show all structure of a value, including all fields of objects.
.. function:: readall(stream::IO)
Read the entire contents of an I/O stream as a string.
.. function:: readall(filename::String)
Open ``filename``, read the entire contents as a string, then close the file.
Equivalent to ``open(readall, filename)``.
.. function:: readline(stream=STDIN)
Read a single line of text, including a trailing newline character (if one is reached before the end of the input), from the given ``stream`` (defaults to ``STDIN``),
.. function:: readuntil(stream, delim)
Read a string, up to and including the given delimiter byte.
.. function:: readlines(stream)
Read all lines as an array.
.. function:: eachline(stream)
Create an iterable object that will yield each line from a stream.
.. function:: readdlm(source, delim::Char, T::Type, eol::Char; header=false, skipstart=0, use_mmap, ignore_invalid_chars=false, quotes=true, dims, comments=true, comment_char='#')
Read a matrix from the source where each line (separated by ``eol``) gives one row, with elements separated by the given delimeter. The source can be a text file, stream or byte array. Memory mapped files can be used by passing the byte array representation of the mapped segment as source.
If ``T`` is a numeric type, the result is an array of that type, with any non-numeric elements as ``NaN`` for floating-point types, or zero. Other useful values of ``T`` include ``ASCIIString``, ``String``, and ``Any``.
If ``header`` is ``true``, the first row of data will be read as header and the tuple ``(data_cells, header_cells)`` is returned instead of only ``data_cells``.
Specifying ``skipstart`` will ignore the corresponding number of initial lines from the input.
If ``use_mmap`` is ``true``, the file specified by ``source`` is memory mapped for potential speedups. Default is ``true`` except on Windows. On Windows, you may want to specify ``true`` if the file is large, and is only read once and not written to.
If ``ignore_invalid_chars`` is ``true``, bytes in ``source`` with invalid character encoding will be ignored. Otherwise an error is thrown indicating the offending character position.
If ``quotes`` is ``true``, column enclosed within double-quote (``) characters are allowed to contain new lines and column delimiters. Double-quote characters within a quoted field must be escaped with another double-quote.
Specifying ``dims`` as a tuple of the expected rows and columns (including header, if any) may speed up reading of large files.
If ``comments`` is ``true``, lines beginning with ``comment_char`` and text following ``comment_char`` in any line are ignored.
.. function:: readdlm(source, delim::Char, eol::Char; options...)
If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a cell array of numbers and strings is returned.
.. function:: readdlm(source, delim::Char, T::Type; options...)
The end of line delimiter is taken as ``\n``.
.. function:: readdlm(source, delim::Char; options...)
The end of line delimiter is taken as ``\n``. If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a cell array of numbers and strings is returned.
.. function:: readdlm(source, T::Type; options...)
The columns are assumed to be separated by one or more whitespaces. The end of line delimiter is taken as ``\n``.
.. function:: readdlm(source; options...)
The columns are assumed to be separated by one or more whitespaces. The end of line delimiter is taken as ``\n``. If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a cell array of numbers and strings is returned.
.. function:: writedlm(f, A, delim='\t')
Write ``A`` (either an array type or an iterable collection of iterable rows) as text to ``f`` (either a filename string or an ``IO`` stream) using the given delimeter ``delim`` (which defaults to tab, but can be any printable Julia object, typically a ``Char`` or ``String``).
For example, two vectors ``x`` and ``y`` of the same length can
be written as two columns of tab-delimited text to ``f`` by
either ``writedlm(f, [x y])`` or by ``writedlm(f, zip(x, y))``.
.. function:: readcsv(source, [T::Type]; options...)
Equivalent to ``readdlm`` with ``delim`` set to comma.
.. function:: writecsv(filename, A)
Equivalent to ``writedlm`` with ``delim`` set to comma.
.. function:: Base64Pipe(ostream)
Returns a new write-only I/O stream, which converts any bytes written
to it into base64-encoded ASCII bytes written to ``ostream``. Calling
``close`` on the ``Base64Pipe`` stream is necessary to complete the
encoding (but does not close ``ostream``).
.. function:: base64(writefunc, args...)
base64(args...)
Given a ``write``-like function ``writefunc``, which takes an I/O
stream as its first argument, ``base64(writefunc, args...)``
calls ``writefunc`` to write ``args...`` to a base64-encoded string,
and returns the string. ``base64(args...)`` is equivalent to
``base64(write, args...)``: it converts its arguments into bytes
using the standard ``write`` functions and returns the base64-encoded
string.
Multimedia I/O
--------------
Just as text output is performed by ``print`` and user-defined types
can indicate their textual representation by overloading ``show``,
Julia provides a standardized mechanism for rich multimedia output
(such as images, formatted text, or even audio and video), consisting
of three parts:
* A function ``display(x)`` to request the richest available multimedia
display of a Julia object ``x`` (with a plain-text fallback).
* Overloading ``writemime`` allows one to indicate arbitrary multimedia
representations (keyed by standard MIME types) of user-defined types.
* Multimedia-capable display backends may be registered by subclassing
a generic ``Display`` type and pushing them onto a stack of display
backends via ``pushdisplay``.
The base Julia runtime provides only plain-text display, but richer
displays may be enabled by loading external modules or by using graphical
Julia environments (such as the IPython-based IJulia notebook).
.. function:: display(x)
display(d::Display, x)
display(mime, x)
display(d::Display, mime, x)
Display ``x`` using the topmost applicable display in the display stack,
typically using the richest supported multimedia output for ``x``, with
plain-text ``STDOUT`` output as a fallback. The ``display(d, x)`` variant
attempts to display ``x`` on the given display ``d`` only, throwing
a ``MethodError`` if ``d`` cannot display objects of this type.
There are also two variants with a ``mime`` argument (a MIME type
string, such as ``"image/png"``), which attempt to display ``x`` using the
requesed MIME type *only*, throwing a ``MethodError`` if this type
is not supported by either the display(s) or by ``x``. With these
variants, one can also supply the "raw" data in the requested MIME
type by passing ``x::String`` (for MIME types with text-based storage,
such as text/html or application/postscript) or ``x::Vector{Uint8}``
(for binary MIME types).
.. function:: redisplay(x)
redisplay(d::Display, x)
redisplay(mime, x)
redisplay(d::Display, mime, x)
By default, the ``redisplay`` functions simply call ``display``. However,
some display backends may override ``redisplay`` to modify an existing
display of ``x`` (if any). Using ``redisplay`` is also a hint to the
backend that ``x`` may be redisplayed several times, and the backend
may choose to defer the display until (for example) the next interactive
prompt.
.. function:: displayable(mime) -> Bool
displayable(d::Display, mime) -> Bool
Returns a boolean value indicating whether the given ``mime`` type (string)
is displayable by any of the displays in the current display stack, or
specifically by the display ``d`` in the second variant.
.. function:: writemime(stream, mime, x)
The ``display`` functions ultimately call ``writemime`` in order to
write an object ``x`` as a given ``mime`` type to a given I/O
``stream`` (usually a memory buffer), if possible. In order to
provide a rich multimedia representation of a user-defined type
``T``, it is only necessary to define a new ``writemime`` method for
``T``, via: ``writemime(stream, ::MIME"mime", x::T) = ...``, where
``mime`` is a MIME-type string and the function body calls
``write`` (or similar) to write that representation of ``x`` to
``stream``. (Note that the ``MIME""`` notation only supports literal
strings; to construct ``MIME`` types in a more flexible manner use
``MIME{symbol("")}``.)
For example, if you define a ``MyImage`` type and know how to write
it to a PNG file, you could define a function ``writemime(stream,
::MIME"image/png", x::MyImage) = ...``` to allow your images to
be displayed on any PNG-capable ``Display`` (such as IJulia).
As usual, be sure to ``import Base.writemime`` in order to add
new methods to the built-in Julia function ``writemime``.
Technically, the ``MIME"mime"`` macro defines a singleton type for
the given ``mime`` string, which allows us to exploit Julia's
dispatch mechanisms in determining how to display objects of any
given type.
.. function:: mimewritable(mime, x)
Returns a boolean value indicating whether or not the object ``x``
can be written as the given ``mime`` type. (By default, this
is determined automatically by the existence of the corresponding
``writemime`` function for ``typeof(x)``.)
.. function:: reprmime(mime, x)
Returns a ``String`` or ``Vector{Uint8}`` containing the
representation of ``x`` in the requested ``mime`` type, as written
by ``writemime`` (throwing a ``MethodError`` if no appropriate
``writemime`` is available). A ``String`` is returned for MIME
types with textual representations (such as ``"text/html"`` or
``"application/postscript"``), whereas binary data is returned as
``Vector{Uint8}``. (The function ``istext(mime)`` returns whether
or not Julia treats a given ``mime`` type as text.)
As a special case, if ``x`` is a ``String`` (for textual MIME types)
or a ``Vector{Uint8}`` (for binary MIME types), the ``reprmime`` function
assumes that ``x`` is already in the requested ``mime`` format and
simply returns ``x``.
.. function:: stringmime(mime, x)
Returns a ``String`` containing the representation of ``x`` in the
requested ``mime`` type. This is similar to ``reprmime`` except
that binary data is base64-encoded as an ASCII string.
As mentioned above, one can also define new display backends. For
example, a module that can display PNG images in a window can register
this capability with Julia, so that calling ``display(x)`` on types
with PNG representations will automatically display the image using
the module's window.
In order to define a new display backend, one should first create a
subtype ``D`` of the abstract class ``Display``. Then, for each MIME
type (``mime`` string) that can be displayed on ``D``, one should
define a function ``display(d::D, ::MIME"mime", x) = ...`` that
displays ``x`` as that MIME type, usually by calling ``reprmime(mime,
x)``. A ``MethodError`` should be thrown if ``x`` cannot be displayed
as that MIME type; this is automatic if one calls ``reprmime``.
Finally, one should define a function ``display(d::D, x)`` that
queries ``mimewritable(mime, x)`` for the ``mime`` types supported by
``D`` and displays the "best" one; a ``MethodError`` should be thrown
if no supported MIME types are found for ``x``. Similarly, some
subtypes may wish to override ``redisplay(d::D, ...)``. (Again, one
should ``import Base.display`` to add new methods to ``display``.)
The return values of these functions are up to the implementation
(since in some cases it may be useful to return a display "handle" of
some type). The display functions for ``D`` can then be called
directly, but they can also be invoked automatically from
``display(x)`` simply by pushing a new display onto the display-backend
stack with:
.. function:: pushdisplay(d::Display)
Pushes a new display ``d`` on top of the global display-backend
stack. Calling ``display(x)`` or ``display(mime, x)`` will display
``x`` on the topmost compatible backend in the stack (i.e., the
topmost backend that does not throw a ``MethodError``).
.. function:: popdisplay()
popdisplay(d::Display)
Pop the topmost backend off of the display-backend stack, or the
topmost copy of ``d`` in the second variant.
.. function:: TextDisplay(stream)
Returns a ``TextDisplay <: Display``, which can display any object
as the text/plain MIME type (only), writing the text representation
to the given I/O stream. (The text representation is the same
as the way an object is printed in the Julia REPL.)
.. function:: istext(m::MIME)
Determine whether a MIME type is text data.
Memory-mapped I/O
-----------------
.. function:: mmap_array(type, dims, stream, [offset])
Create an ``Array`` whose values are linked to a file, using memory-mapping. This provides a convenient way of working with data too large to fit in the computer's memory.
The type determines how the bytes of the array are interpreted. Note that the file must be stored in binary format, and no format conversions are possible (this is a limitation of operating systems, not Julia).
dims is a tuple specifying the size of the array.
The file is passed via the stream argument. When you initialize the stream, use ``"r"`` for a "read-only" array, and ``"w+"`` to create a new array used to write values to disk.
Optionally, you can specify an offset (in bytes) if, for example, you want to skip over a header in the file. The default value for the offset is the current stream position.
**Example**::
# Create a file for mmapping
# (you could alternatively use mmap_array to do this step, too)
A = rand(1:20, 5, 30)
s = open("/tmp/mmap.bin", "w+")
# We'll write the dimensions of the array as the first two Ints in the file
write(s, size(A,1))
write(s, size(A,2))
# Now write the data
write(s, A)
close(s)
# Test by reading it back in
s = open("/tmp/mmap.bin") # default is read-only
m = read(s, Int)
n = read(s, Int)
A2 = mmap_array(Int, (m,n), s)
This would create a m-by-n ``Matrix{Int}``, linked to the file associated with stream ``s``.
A more portable file would need to encode the word size---32 bit or 64 bit---and endianness information in the header. In practice, consider encoding binary data using standard formats like HDF5 (which can be used with memory-mapping).
.. function:: mmap_bitarray([type,] dims, stream, [offset])
Create a ``BitArray`` whose values are linked to a file, using memory-mapping; it has the same purpose, works in the same way, and has the same arguments, as :func:`mmap_array`, but the byte representation is different. The ``type`` parameter is optional, and must be ``Bool`` if given.
**Example**: ``B = mmap_bitarray((25,30000), s)``
This would create a 25-by-30000 ``BitArray``, linked to the file associated with stream ``s``.
.. function:: msync(array)
Forces synchronization between the in-memory version of a memory-mapped ``Array`` or ``BitArray`` and the on-disk version.
.. function:: msync(ptr, len, [flags])
Forces synchronization of the mmap'd memory region from ptr to ptr+len. Flags defaults to MS_SYNC, but can be a combination of MS_ASYNC, MS_SYNC, or MS_INVALIDATE. See your platform man page for specifics. The flags argument is not valid on Windows.
You may not need to call ``msync``, because synchronization is performed at intervals automatically by the operating system. However, you can call this directly if, for example, you are concerned about losing the result of a long-running calculation.
.. data:: MS_ASYNC
Enum constant for msync. See your platform man page for details. (not available on Windows).
.. data:: MS_SYNC
Enum constant for msync. See your platform man page for details. (not available on Windows).
.. data:: MS_INVALIDATE
Enum constant for msync. See your platform man page for details. (not available on Windows).
.. function:: mmap(len, prot, flags, fd, offset)
Low-level interface to the mmap system call. See the man page.
.. function:: munmap(pointer, len)
Low-level interface for unmapping memory (see the man page). With mmap_array you do not need to call this directly; the memory is unmapped for you when the array goes out of scope.
Standard Numeric Types
----------------------
``Bool`` ``Int8`` ``Uint8`` ``Int16`` ``Uint16`` ``Int32`` ``Uint32`` ``Int64`` ``Uint64`` ``Int128`` ``Uint128`` ``Float16`` ``Float32`` ``Float64`` ``Complex64`` ``Complex128``
.. _mathematical-operators:
Mathematical Operators
----------------------
.. function:: -(x)
Unary minus operator.
.. _+:
.. function:: +(x, y...)
Addition operator. ``x+y+z+...`` calls this function with all arguments, i.e.
``+(x, y, z, ...)``.
.. _-:
.. function:: -(x, y)
Subtraction operator.
.. _*:
.. function:: *(x, y...)
Multiplication operator. ``x*y*z*...`` calls this function with all arguments, i.e.
``*(x, y, z, ...)``.
.. _/:
.. function:: /(x, y)
Right division operator: multiplication of ``x`` by the inverse of ``y`` on the right.
Gives floating-point results for integer arguments.
.. _\\:
.. function:: \\(x, y)
Left division operator: multiplication of ``y`` by the inverse of ``x`` on the left.
Gives floating-point results for integer arguments.
.. _^:
.. function:: ^(x, y)
Exponentiation operator.
.. _.+:
.. function:: .+(x, y)
Element-wise addition operator.
.. _.-:
.. function:: .-(x, y)
Element-wise subtraction operator.
.. _.*:
.. function:: .*(x, y)
Element-wise multiplication operator.
.. _./:
.. function:: ./(x, y)
Element-wise right division operator.
.. _.\\:
.. function:: .\\(x, y)
Element-wise left division operator.
.. _.^:
.. function:: .^(x, y)
Element-wise exponentiation operator.
.. function:: div(a,b)
Compute a/b, truncating to an integer.
.. function:: fld(a,b)
Largest integer less than or equal to a/b.
.. function:: mod(x,m)
Modulus after division, returning in the range [0,m).
.. function:: mod2pi(x)
Modulus after division by 2pi, returning in the range [0,2pi).
This function computes a floating point representation of the modulus after
division by numerically exact 2pi, and is therefore not exactly the same as
mod(x,2pi), which would compute the modulus of x relative to division by the
floating-point number 2pi.
.. function:: rem(x, m)
Remainder after division.
.. function:: divrem(x, y)
Returns ``(x/y, x%y)``.
.. _%:
.. function:: %(x, m)
Remainder after division. The operator form of ``rem``.
.. function:: mod1(x,m)
Modulus after division, returning in the range (0,m]
.. function:: rem1(x,m)
Remainder after division, returning in the range (0,m]
.. _//:
.. function:: //(num, den)
Divide two integers or rational numbers, giving a ``Rational`` result.
.. function:: rationalize([Type=Int,] x; tol=eps(x))
Approximate floating point number ``x`` as a Rational number with components of the given
integer type. The result will differ from ``x`` by no more than ``tol``.
.. function:: num(x)
Numerator of the rational representation of ``x``
.. function:: den(x)
Denominator of the rational representation of ``x``
.. _<<:
.. function:: <<(x, n)
Left bit shift operator.
.. _>>:
.. function:: >>(x, n)
Right bit shift operator, preserving the sign of ``x``.
.. _>>>:
.. function:: >>>(x, n)
Unsigned right bit shift operator.
.. _\::
.. function:: \:(start, [step], stop)
Range operator. ``a:b`` constructs a range from ``a`` to ``b`` with a step size of 1,
and ``a:s:b`` is similar but uses a step size of ``s``. These syntaxes call the
function ``colon``.
The colon is also used in indexing to select whole dimensions.
.. function:: colon(start, [step], stop)
Called by ``:`` syntax for constructing ranges.
.. function:: range(start, [step], length)
Construct a range by length, given a starting value and optional step (defaults to 1).
.. function:: linrange(start, end, length)
Construct a range by length, given a starting and ending value.
.. _==:
.. function:: ==(x, y)
Generic equality operator, giving a single ``Bool`` result. Falls back to ``===``.
Should be implemented for all types with a notion of equality, based
on the abstract value that an instance represents. For example, all numeric types are compared
by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring
encoding.
Follows IEEE semantics for floating-point numbers.
Collections should generally implement ``==`` by calling ``==`` recursively on all contents.
New numeric types should implement this function for two arguments of the new type, and handle
comparison to other types via promotion rules where possible.
.. _!=:
.. function:: !=(x, y)
Not-equals comparison operator. Always gives the opposite answer as ``==``.
New types should generally not implement this, and rely on the fallback
definition ``!=(x,y) = !(x==y)`` instead.
.. _===:
.. function:: ===(x, y)
See the :func:`is` operator
.. _!==:
.. function:: !==(x, y)
Equivalent to ``!is(x, y)``
.. _<:
.. function:: <(x, y)
Less-than comparison operator. New numeric types should implement this function
for two arguments of the new type.
Because of the behavior of floating-point NaN values, ``<`` implements a
partial order. Types with a canonical partial order should implement ``<``, and
types with a canonical total order should implement ``isless``.
.. _<=:
.. function:: <=(x, y)
Less-than-or-equals comparison operator.
.. _>:
.. function:: >(x, y)
Greater-than comparison operator. Generally, new types should implement ``<``
instead of this function, and rely on the fallback definition ``>(x,y) = y<x``.
.. _>=:
.. function:: >=(x, y)
Greater-than-or-equals comparison operator.
.. _.==:
.. function:: .==(x, y)
Element-wise equality comparison operator.
.. _.!=:
.. function:: .!=(x, y)
Element-wise not-equals comparison operator.
.. _.<:
.. function:: .<(x, y)
Element-wise less-than comparison operator.
.. _.<=:
.. function:: .<=(x, y)
Element-wise less-than-or-equals comparison operator.
.. _.>:
.. function:: .>(x, y)
Element-wise greater-than comparison operator.
.. _.>=:
.. function:: .>=(x, y)
Element-wise greater-than-or-equals comparison operator.
.. function:: cmp(x,y)
Return -1, 0, or 1 depending on whether ``x`` is less than, equal to, or greater
than ``y``, respectively. Uses the total order implemented by ``isless``. For
floating-point numbers, uses ``<`` but throws an error for unordered arguments.
.. _~:
.. function:: ~(x)
Bitwise not
.. _&:
.. function:: &(x, y)
Bitwise and
.. _|:
.. function:: |(x, y)
Bitwise or
.. _$:
.. function:: $(x, y)
Bitwise exclusive or
.. _!:
.. function:: !(x)
Boolean not
.. _&&:
.. function:: x && y
Short-circuiting boolean and
.. _||:
.. function:: x || y
Short-circuiting boolean or
.. function:: A_ldiv_Bc(a,b)
Matrix operator A \\ B\ :sup:`H`
.. function:: A_ldiv_Bt(a,b)
Matrix operator A \\ B\ :sup:`T`
.. function:: A_mul_B(...)
Matrix operator A B
.. function:: A_mul_Bc(...)
Matrix operator A B\ :sup:`H`
.. function:: A_mul_Bt(...)
Matrix operator A B\ :sup:`T`
.. function:: A_rdiv_Bc(...)
Matrix operator A / B\ :sup:`H`
.. function:: A_rdiv_Bt(a,b)
Matrix operator A / B\ :sup:`T`
.. function:: Ac_ldiv_B(...)
Matrix operator A\ :sup:`H` \\ B
.. function:: Ac_ldiv_Bc(...)
Matrix operator A\ :sup:`H` \\ B\ :sup:`H`
.. function:: Ac_mul_B(...)
Matrix operator A\ :sup:`H` B
.. function:: Ac_mul_Bc(...)
Matrix operator A\ :sup:`H` B\ :sup:`H`
.. function:: Ac_rdiv_B(a,b)
Matrix operator A\ :sup:`H` / B
.. function:: Ac_rdiv_Bc(a,b)
Matrix operator A\ :sup:`H` / B\ :sup:`H`
.. function:: At_ldiv_B(...)
Matrix operator A\ :sup:`T` \\ B
.. function:: At_ldiv_Bt(...)
Matrix operator A\ :sup:`T` \\ B\ :sup:`T`
.. function:: At_mul_B(...)
Matrix operator A\ :sup:`T` B
.. function:: At_mul_Bt(...)
Matrix operator A\ :sup:`T` B\ :sup:`T`
.. function:: At_rdiv_B(a,b)
Matrix operator A\ :sup:`T` / B
.. function:: At_rdiv_Bt(a,b)
Matrix operator A\ :sup:`T` / B\ :sup:`T`
Mathematical Functions
----------------------
.. function:: isapprox(x::Number, y::Number; rtol::Real=cbrt(maxeps), atol::Real=sqrt(maxeps))
Inexact equality comparison - behaves slightly different depending on types of input args:
* For ``FloatingPoint`` numbers, ``isapprox`` returns ``true`` if ``abs(x-y) <= atol + rtol*max(abs(x), abs(y))``.
* For ``Integer`` and ``Rational`` numbers, ``isapprox`` returns ``true`` if ``abs(x-y) <= atol``. The `rtol` argument is ignored. If one of ``x`` and ``y`` is ``FloatingPoint``, the other is promoted, and the method above is called instead.
* For ``Complex`` numbers, the distance in the complex plane is compared, using the same criterion as above.
For default tolerance arguments, ``maxeps = max(eps(abs(x)), eps(abs(y)))``.
.. function:: sin(x)
Compute sine of ``x``, where ``x`` is in radians
.. function:: cos(x)
Compute cosine of ``x``, where ``x`` is in radians
.. function:: tan(x)
Compute tangent of ``x``, where ``x`` is in radians
.. function:: sind(x)
Compute sine of ``x``, where ``x`` is in degrees
.. function:: cosd(x)
Compute cosine of ``x``, where ``x`` is in degrees
.. function:: tand(x)
Compute tangent of ``x``, where ``x`` is in degrees
.. function:: sinpi(x)
Compute :math:`\sin(\pi x)` more accurately than ``sin(pi*x)``, especially for large ``x``.
.. function:: cospi(x)
Compute :math:`\cos(\pi x)` more accurately than ``cos(pi*x)``, especially for large ``x``.
.. function:: sinh(x)
Compute hyperbolic sine of ``x``
.. function:: cosh(x)
Compute hyperbolic cosine of ``x``
.. function:: tanh(x)
Compute hyperbolic tangent of ``x``
.. function:: asin(x)
Compute the inverse sine of ``x``, where the output is in radians
.. function:: acos(x)
Compute the inverse cosine of ``x``, where the output is in radians
.. function:: atan(x)
Compute the inverse tangent of ``x``, where the output is in radians
.. function:: atan2(y, x)
Compute the inverse tangent of ``y/x``, using the signs of both ``x`` and ``y`` to determine the quadrant of the return value.
.. function:: asind(x)
Compute the inverse sine of ``x``, where the output is in degrees
.. function:: acosd(x)
Compute the inverse cosine of ``x``, where the output is in degrees
.. function:: atand(x)
Compute the inverse tangent of ``x``, where the output is in degrees
.. function:: sec(x)
Compute the secant of ``x``, where ``x`` is in radians
.. function:: csc(x)
Compute the cosecant of ``x``, where ``x`` is in radians
.. function:: cot(x)
Compute the cotangent of ``x``, where ``x`` is in radians
.. function:: secd(x)
Compute the secant of ``x``, where ``x`` is in degrees
.. function:: cscd(x)
Compute the cosecant of ``x``, where ``x`` is in degrees
.. function:: cotd(x)
Compute the cotangent of ``x``, where ``x`` is in degrees
.. function:: asec(x)
Compute the inverse secant of ``x``, where the output is in radians
.. function:: acsc(x)
Compute the inverse cosecant of ``x``, where the output is in radians
.. function:: acot(x)
Compute the inverse cotangent of ``x``, where the output is in radians
.. function:: asecd(x)
Compute the inverse secant of ``x``, where the output is in degrees
.. function:: acscd(x)
Compute the inverse cosecant of ``x``, where the output is in degrees
.. function:: acotd(x)
Compute the inverse cotangent of ``x``, where the output is in degrees
.. function:: sech(x)
Compute the hyperbolic secant of ``x``
.. function:: csch(x)
Compute the hyperbolic cosecant of ``x``
.. function:: coth(x)
Compute the hyperbolic cotangent of ``x``
.. function:: asinh(x)
Compute the inverse hyperbolic sine of ``x``
.. function:: acosh(x)
Compute the inverse hyperbolic cosine of ``x``
.. function:: atanh(x)
Compute the inverse hyperbolic tangent of ``x``
.. function:: asech(x)
Compute the inverse hyperbolic secant of ``x``
.. function:: acsch(x)
Compute the inverse hyperbolic cosecant of ``x``
.. function:: acoth(x)
Compute the inverse hyperbolic cotangent of ``x``
.. function:: sinc(x)
Compute :math:`\sin(\pi x) / (\pi x)` if :math:`x \neq 0`, and :math:`1` if :math:`x = 0`.
.. function:: cosc(x)
Compute :math:`\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)` if :math:`x \neq 0`, and :math:`0`
if :math:`x = 0`. This is the derivative of ``sinc(x)``.
.. function:: deg2rad(x)
Convert ``x`` from degrees to radians
.. function:: rad2deg(x)
Convert ``x`` from radians to degrees
.. function:: hypot(x, y)
Compute the :math:`\sqrt{x^2+y^2}` avoiding overflow and underflow
.. function:: log(x)
Compute the natural logarithm of ``x``. Throws ``DomainError`` for negative ``Real`` arguments. Use complex negative arguments instead.
.. function:: log(b,x)
Compute the base ``b`` logarithm of ``x``. Throws ``DomainError`` for negative ``Real`` arguments.
.. function:: log2(x)
Compute the logarithm of ``x`` to base 2. Throws ``DomainError`` for negative ``Real`` arguments.
.. function:: log10(x)
Compute the logarithm of ``x`` to base 10. Throws ``DomainError`` for negative ``Real`` arguments.
.. function:: log1p(x)
Accurate natural logarithm of ``1+x``. Throws ``DomainError`` for ``Real`` arguments less than -1.
.. function:: frexp(val)
Return ``(x,exp)`` such that ``x`` has a magnitude in the interval ``[1/2, 1)`` or 0,
and val = :math:`x \times 2^{exp}`.
.. function:: exp(x)
Compute :math:`e^x`
.. function:: exp2(x)
Compute :math:`2^x`
.. function:: exp10(x)
Compute :math:`10^x`
.. function:: ldexp(x, n)
Compute :math:`x \times 2^n`
.. function:: modf(x)
Return a tuple (fpart,ipart) of the fractional and integral parts of a
number. Both parts have the same sign as the argument.
.. function:: expm1(x)
Accurately compute :math:`e^x-1`
.. function:: round(x, [digits, [base]])
``round(x)`` returns the nearest integral value of the same type as ``x`` to ``x``. ``round(x, digits)`` rounds to the specified number of digits after the decimal place, or before if negative, e.g., ``round(pi,2)`` is ``3.14``. ``round(x, digits, base)`` rounds using a different base, defaulting to 10, e.g., ``round(pi, 1, 8)`` is ``3.125``.
.. function:: ceil(x, [digits, [base]])
Returns the nearest integral value of the same type as ``x`` not less than ``x``. ``digits`` and ``base`` work as above.
.. function:: floor(x, [digits, [base]])
Returns the nearest integral value of the same type as ``x`` not greater than ``x``. ``digits`` and ``base`` work as above.
.. function:: trunc(x, [digits, [base]])
Returns the nearest integral value of the same type as ``x`` not greater in magnitude than ``x``. ``digits`` and ``base`` work as above.
.. function:: iround(x) -> Integer
Returns the nearest integer to ``x``.
.. function:: iceil(x) -> Integer
Returns the nearest integer not less than ``x``.
.. function:: ifloor(x) -> Integer
Returns the nearest integer not greater than ``x``.
.. function:: itrunc(x) -> Integer
Returns the nearest integer not greater in magnitude than ``x``.
.. function:: signif(x, digits, [base])
Rounds (in the sense of ``round``) ``x`` so that there are ``digits`` significant digits, under a base ``base`` representation, default 10. E.g., ``signif(123.456, 2)`` is ``120.0``, and ``signif(357.913, 4, 2)`` is ``352.0``.
.. function:: min(x, y, ...)
Return the minimum of the arguments. Operates elementwise over arrays.
.. function:: max(x, y, ...)
Return the maximum of the arguments. Operates elementwise over arrays.
.. function:: minmax(x, y)
Return ``(min(x,y), max(x,y))``.
See also: :func:`extrema` that returns ``(minimum(x), maximum(x))``
.. function:: clamp(x, lo, hi)
Return x if ``lo <= x <= hi``. If ``x < lo``, return ``lo``. If ``x > hi``, return ``hi``. Arguments are promoted to a common type. Operates elementwise over ``x`` if it is an array.
.. function:: abs(x)
Absolute value of ``x``
.. function:: abs2(x)
Squared absolute value of ``x``
.. function:: copysign(x, y)
Return ``x`` such that it has the same sign as ``y``
.. function:: sign(x)
Return ``+1`` if ``x`` is positive, ``0`` if ``x == 0``, and ``-1`` if ``x`` is negative.
.. function:: signbit(x)
Returns ``true`` if the value of the sign of ``x`` is negative, otherwise ``false``.
.. function:: flipsign(x, y)
Return ``x`` with its sign flipped if ``y`` is negative. For example ``abs(x) = flipsign(x,x)``.
.. function:: sqrt(x)
Return :math:`\sqrt{x}`. Throws ``DomainError`` for negative ``Real`` arguments. Use complex negative arguments instead.
The prefix operator ``√`` is equivalent to ``sqrt``.
.. function:: isqrt(n)
Integer square root: the largest integer ``m`` such that ``m*m <= n``.
.. function:: cbrt(x)
Return :math:`x^{1/3}`. The prefix operator ``∛`` is equivalent to ``cbrt``.
.. function:: erf(x)
Compute the error function of ``x``, defined by
:math:`\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt`
for arbitrary complex ``x``.
.. function:: erfc(x)
Compute the complementary error function of ``x``,
defined by :math:`1 - \operatorname{erf}(x)`.
.. function:: erfcx(x)
Compute the scaled complementary error function of ``x``,
defined by :math:`e^{x^2} \operatorname{erfc}(x)`. Note
also that :math:`\operatorname{erfcx}(-ix)` computes the
Faddeeva function :math:`w(x)`.
.. function:: erfi(x)
Compute the imaginary error function of ``x``,
defined by :math:`-i \operatorname{erf}(ix)`.
.. function:: dawson(x)
Compute the Dawson function (scaled imaginary error function) of ``x``,
defined by :math:`\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)`.
.. function:: erfinv(x)
Compute the inverse error function of a real ``x``,
defined by :math:`\operatorname{erf}(\operatorname{erfinv}(x)) = x`.
.. function:: erfcinv(x)
Compute the inverse error complementary function of a real ``x``,
defined by :math:`\operatorname{erfc}(\operatorname{erfcinv}(x)) = x`.
.. function:: real(z)
Return the real part of the complex number ``z``
.. function:: imag(z)
Return the imaginary part of the complex number ``z``
.. function:: reim(z)
Return both the real and imaginary parts of the complex number ``z``
.. function:: conj(z)
Compute the complex conjugate of a complex number ``z``
.. function:: angle(z)
Compute the phase angle of a complex number ``z``
.. function:: cis(z)
Return :math:`\exp(iz)`.
.. function:: binomial(n,k)
Number of ways to choose ``k`` out of ``n`` items
.. function:: factorial(n)
Factorial of n
.. function:: factorial(n,k)
Compute ``factorial(n)/factorial(k)``
.. function:: factor(n) -> Dict
Compute the prime factorization of an integer ``n``. Returns a dictionary. The keys of the dictionary correspond to the factors, and hence are of the same type as ``n``. The value associated with each key indicates the number of times the factor appears in the factorization.
**Example**: :math:`100=2*2*5*5`; then::
julia> factor(100)
[5=>2,2=>2]
.. function:: gcd(x,y)
Greatest common (positive) divisor (or zero if x and y are both zero).
.. function:: lcm(x,y)
Least common (non-negative) multiple.
.. function:: gcdx(x,y)
Greatest common (positive) divisor, also returning integer coefficients ``u`` and ``v`` that solve ``ux+vy == gcd(x,y)``
.. function:: ispow2(n) -> Bool
Test whether ``n`` is a power of two
.. function:: nextpow2(n)
The smallest power of two not less than ``n``. Returns 0 for ``n==0``, and returns
``-nextpow2(-n)`` for negative arguments.
.. function:: prevpow2(n)
The largest power of two not greater than ``n``. Returns 0 for ``n==0``, and returns
``-prevpow2(-n)`` for negative arguments.
.. function:: nextpow(a, x)
The smallest ``a^n`` not less than ``x``, where ``n`` is a non-negative integer.
``a`` must be greater than 1, and ``x`` must be greater than 0.
.. function:: prevpow(a, x)
The largest ``a^n`` not greater than ``x``, where ``n`` is a non-negative integer.
``a`` must be greater than 1, and ``x`` must not be less than 1.
.. function:: nextprod([k_1,k_2,...], n)
Next integer not less than ``n`` that can be written as :math:`\prod k_i^{p_i}` for integers :math:`p_1`, :math:`p_2`, etc.
.. function:: prevprod([k_1,k_2,...], n)
Previous integer not greater than ``n`` that can be written as :math:`\prod k_i^{p_i}` for integers :math:`p_1`, :math:`p_2`, etc.
.. function:: invmod(x,m)
Take the inverse of ``x`` modulo ``m``: ``y`` such that :math:`xy = 1 \pmod m`
.. function:: powermod(x, p, m)
Compute :math:`x^p \pmod m`
.. function:: gamma(x)
Compute the gamma function of ``x``
.. function:: lgamma(x)
Compute the logarithm of absolute value of ``gamma(x)``
.. function:: lfact(x)
Compute the logarithmic factorial of ``x``
.. function:: digamma(x)
Compute the digamma function of ``x`` (the logarithmic derivative of ``gamma(x)``)
.. function:: invdigamma(x)
Compute the inverse digamma function of ``x``.
.. function:: trigamma(x)
Compute the trigamma function of ``x`` (the logarithmic second derivative of ``gamma(x)``)
.. function:: polygamma(m, x)
Compute the polygamma function of order ``m`` of argument ``x`` (the ``(m+1)th`` derivative of the logarithm of ``gamma(x)``)
.. function:: airy(k,x)
kth derivative of the Airy function :math:`\operatorname{Ai}(x)`.
.. function:: airyai(x)
Airy function :math:`\operatorname{Ai}(x)`.
.. function:: airyprime(x)
Airy function derivative :math:`\operatorname{Ai}'(x)`.
.. function:: airyaiprime(x)
Airy function derivative :math:`\operatorname{Ai}'(x)`.
.. function:: airybi(x)
Airy function :math:`\operatorname{Bi}(x)`.
.. function:: airybiprime(x)
Airy function derivative :math:`\operatorname{Bi}'(x)`.
.. function:: airyx(k,x)
scaled kth derivative of the Airy function, return :math:`\operatorname{Ai}(x) e^{\frac{2}{3} x \sqrt{x}}` for ``k == 0 || k == 1``, and :math:`\operatorname{Ai}(x) e^{- \left| \operatorname{Re} \left( \frac{2}{3} x \sqrt{x} \right) \right|}` for ``k == 2 || k == 3``.
.. function:: besselj0(x)
Bessel function of the first kind of order 0, :math:`J_0(x)`.
.. function:: besselj1(x)
Bessel function of the first kind of order 1, :math:`J_1(x)`.
.. function:: besselj(nu, x)
Bessel function of the first kind of order ``nu``, :math:`J_\nu(x)`.
.. function:: besseljx(nu, x)
Scaled Bessel function of the first kind of order ``nu``, :math:`J_\nu(x) e^{- | \operatorname{Im}(x) |}`.
.. function:: bessely0(x)
Bessel function of the second kind of order 0, :math:`Y_0(x)`.
.. function:: bessely1(x)
Bessel function of the second kind of order 1, :math:`Y_1(x)`.
.. function:: bessely(nu, x)
Bessel function of the second kind of order ``nu``, :math:`Y_\nu(x)`.
.. function:: besselyx(nu, x)
Scaled Bessel function of the second kind of order ``nu``, :math:`Y_\nu(x) e^{- | \operatorname{Im}(x) |}`.
.. function:: hankelh1(nu, x)
Bessel function of the third kind of order ``nu``, :math:`H^{(1)}_\nu(x)`.
.. function:: hankelh1x(nu, x)
Scaled Bessel function of the third kind of order ``nu``, :math:`H^{(1)}_\nu(x) e^{-x i}`.
.. function:: hankelh2(nu, x)
Bessel function of the third kind of order ``nu``, :math:`H^{(2)}_\nu(x)`.
.. function:: hankelh2x(nu, x)
Scaled Bessel function of the third kind of order ``nu``, :math:`H^{(2)}_\nu(x) e^{x i}`.
.. function:: besselh(nu, k, x)
Bessel function of the third kind of order ``nu`` (Hankel function).
``k`` is either 1 or 2, selecting ``hankelh1`` or ``hankelh2``, respectively.
.. function:: besseli(nu, x)
Modified Bessel function of the first kind of order ``nu``, :math:`I_\nu(x)`.
.. function:: besselix(nu, x)
Scaled modified Bessel function of the first kind of order ``nu``, :math:`I_\nu(x) e^{- | \operatorname{Re}(x) |}`.
.. function:: besselk(nu, x)
Modified Bessel function of the second kind of order ``nu``, :math:`K_\nu(x)`.
.. function:: besselkx(nu, x)
Scaled modified Bessel function of the second kind of order ``nu``, :math:`K_\nu(x) e^x`.
.. function:: beta(x, y)
Euler integral of the first kind :math:`\operatorname{B}(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)`.
.. function:: lbeta(x, y)
Natural logarithm of the absolute value of the beta function :math:`\log(|\operatorname{B}(x,y)|)`.
.. function:: eta(x)
Dirichlet eta function :math:`\eta(s) = \sum^\infty_{n=1}(-)^{n-1}/n^{s}`.
.. function:: zeta(s)
Riemann zeta function :math:`\zeta(s)`.
.. function:: zeta(s, z)
Hurwitz zeta function :math:`\zeta(s, z)`. (This is equivalent to
the Riemann zeta function :math:`\zeta(s)` for the case of ``z=1``.)
.. function:: ndigits(n, b)
Compute the number of digits in number ``n`` written in base ``b``.
.. function:: widemul(x, y)
Multiply ``x`` and ``y``, giving the result as a larger type.
.. function:: @evalpoly(z, c...)
Evaluate the polynomial :math:`\sum_k c[k] z^{k-1}` for the
coefficients ``c[1]``, ``c[2]``, ...; that is, the coefficients are
given in ascending order by power of ``z``. This macro expands to
efficient inline code that uses either Horner's method or, for
complex ``z``, a more efficient Goertzel-like algorithm.
Data Formats
------------
.. function:: bin(n, [pad])
Convert an integer to a binary string, optionally specifying a number of digits to pad to.
.. function:: hex(n, [pad])
Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.
.. function:: dec(n, [pad])
Convert an integer to a decimal string, optionally specifying a number of digits to pad to.
.. function:: oct(n, [pad])
Convert an integer to an octal string, optionally specifying a number of digits to pad to.
.. function:: base(base, n, [pad])
Convert an integer to a string in the given base, optionally specifying a number of digits to pad to. The base can be specified as either an integer, or as a ``Uint8`` array of character values to use as digit symbols.
.. function:: digits(n, [base], [pad])
Returns an array of the digits of ``n`` in the given base, optionally padded with
zeros to a specified size. More significant digits are at higher indexes, such
that ``n == sum([digits[k]*base^(k-1) for k=1:length(digits)])``.
.. function:: bits(n)
A string giving the literal bit representation of a number.
.. function:: parseint([type], str, [base])
Parse a string as an integer in the given base (default 10), yielding a number of the specified type (default ``Int``).
.. function:: parsefloat([type], str)
Parse a string as a decimal floating point number, yielding a number of the specified type.
.. function:: big(x)
Convert a number to a maximum precision representation (typically ``BigInt`` or ``BigFloat``). See ``BigFloat`` for information about some pitfalls with floating-point numbers.
.. function:: bool(x)
Convert a number or numeric array to boolean
.. function:: int(x)
Convert a number or array to the default integer type on your platform. Alternatively, ``x`` can be a string, which is parsed as an integer.
.. function:: uint(x)
Convert a number or array to the default unsigned integer type on your platform. Alternatively, ``x`` can be a string, which is parsed as an unsigned integer.
.. function:: integer(x)
Convert a number or array to integer type. If ``x`` is already of integer type it is unchanged, otherwise it converts it to the default integer type on your platform.
.. function:: signed(x)
Convert a number to a signed integer
.. function:: unsigned(x) -> Unsigned
Convert a number to an unsigned integer
.. function:: int8(x)
Convert a number or array to ``Int8`` data type
.. function:: int16(x)
Convert a number or array to ``Int16`` data type
.. function:: int32(x)
Convert a number or array to ``Int32`` data type
.. function:: int64(x)
Convert a number or array to ``Int64`` data type
.. function:: int128(x)
Convert a number or array to ``Int128`` data type
.. function:: uint8(x)
Convert a number or array to ``Uint8`` data type
.. function:: uint16(x)
Convert a number or array to ``Uint16`` data type
.. function:: uint32(x)
Convert a number or array to ``Uint32`` data type
.. function:: uint64(x)
Convert a number or array to ``Uint64`` data type
.. function:: uint128(x)
Convert a number or array to ``Uint128`` data type
.. function:: float16(x)
Convert a number or array to ``Float16`` data type
.. function:: float32(x)
Convert a number or array to ``Float32`` data type
.. function:: float64(x)
Convert a number or array to ``Float64`` data type
.. function:: float32_isvalid(x, out::Vector{Float32}) -> Bool
Convert a number or array to ``Float32`` data type, returning true if successful. The result of the conversion is stored in ``out[1]``.
.. function:: float64_isvalid(x, out::Vector{Float64}) -> Bool
Convert a number or array to ``Float64`` data type, returning true if successful. The result of the conversion is stored in ``out[1]``.
.. function:: float(x)
Convert a number, array, or string to a ``FloatingPoint`` data type. For numeric data, the smallest suitable ``FloatingPoint`` type is used. Converts strings to ``Float64``.
This function is not recommended for arrays. It is better to use a more specific function such as ``float32`` or ``float64``.
.. function:: significand(x)
Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number or array.
For example, ``significand(15.2)/15.2 == 0.125``, and ``significand(15.2)*8 == 15.2``
.. function:: exponent(x) -> Int
Get the exponent of a normalized floating-point number.
.. function:: complex64(r, [i])
Convert to ``r + i*im`` represented as a ``Complex64`` data type. ``i`` defaults to zero.
.. function:: complex128(r, [i])
Convert to ``r + i*im`` represented as a ``Complex128`` data type. ``i`` defaults to zero.
.. function:: complex(r, [i])
Convert real numbers or arrays to complex. ``i`` defaults to zero.
.. function:: char(x)
Convert a number or array to ``Char`` data type
.. function:: bswap(n)
Byte-swap an integer
.. function:: num2hex(f)
Get a hexadecimal string of the binary representation of a floating point number
.. function:: hex2num(str)
Convert a hexadecimal string to the floating point number it represents
.. function:: hex2bytes(s::ASCIIString)
Convert an arbitrarily long hexadecimal string to its binary representation. Returns an Array{Uint8, 1}, i.e. an array of bytes.
.. function:: bytes2hex(bin_arr::Array{Uint8, 1})
Convert an array of bytes to its hexadecimal representation. All characters are in lower-case. Returns an ASCIIString.
Numbers
-------
.. function:: one(x)
Get the multiplicative identity element for the type of x (x can also specify the type itself). For matrices, returns an identity matrix of the appropriate size and type.
.. function:: zero(x)
Get the additive identity element for the type of x (x can also specify the type itself).
.. data:: pi
The constant pi
.. data:: im
The imaginary unit
.. data:: e
The constant e
.. data:: catalan
Catalan's constant
.. data:: Inf
Positive infinity of type Float64
.. data:: Inf32
Positive infinity of type Float32
.. data:: Inf16
Positive infinity of type Float16
.. data:: NaN
A not-a-number value of type Float64
.. data:: NaN32
A not-a-number value of type Float32
.. data:: NaN16
A not-a-number value of type Float16
.. function:: issubnormal(f) -> Bool
Test whether a floating point number is subnormal
.. function:: isfinite(f) -> Bool
Test whether a number is finite
.. function:: isinf(f) -> Bool
Test whether a number is infinite
.. function:: isnan(f) -> Bool
Test whether a floating point number is not a number (NaN)
.. function:: inf(f)
Returns positive infinity of the floating point type ``f`` or of the same floating point type as ``f``
.. function:: nan(f)
Returns NaN (not-a-number) of the floating point type ``f`` or of the same floating point type as ``f``
.. function:: nextfloat(f)
Get the next floating point number in lexicographic order
.. function:: prevfloat(f) -> FloatingPoint
Get the previous floating point number in lexicographic order
.. function:: isinteger(x) -> Bool
Test whether ``x`` or all its elements are numerically equal to some integer
.. function:: isreal(x) -> Bool
Test whether ``x`` or all its elements are numerically equal to some real number
.. function:: BigInt(x)
Create an arbitrary precision integer. ``x`` may be an ``Int`` (or anything that can be converted to an ``Int``) or a ``String``.
The usual mathematical operators are defined for this type, and results are promoted to a ``BigInt``.
.. function:: BigFloat(x)
Create an arbitrary precision floating point number. ``x`` may be
an ``Integer``, a ``Float64``, a ``String`` or a ``BigInt``. The
usual mathematical operators are defined for this type, and results
are promoted to a ``BigFloat``. Note that because floating-point
numbers are not exactly-representable in decimal notation,
``BigFloat(2.1)`` may not yield what you expect. You may prefer to
initialize constants using strings, e.g., ``BigFloat("2.1")``.
.. function:: get_rounding(T)
Get the current floating point rounding mode for type ``T``. Valid modes
are ``RoundNearest``, ``RoundToZero``, ``RoundUp``, ``RoundDown``, and
``RoundFromZero`` (``BigFloat`` only).
.. function:: set_rounding(T, mode)
Set the rounding mode of floating point type ``T``. Note that this may
affect other types, for instance changing the rounding mode of ``Float64``
will change the rounding mode of ``Float32``. See ``get_rounding`` for available modes
.. function:: with_rounding(f::Function, T, mode)
Change the rounding mode of floating point type ``T`` for the duration of ``f``. It is logically equivalent to::
old = get_rounding(T)
set_rounding(T, mode)
f()
set_rounding(T, old)
See ``get_rounding`` for available rounding modes.
Integers
~~~~~~~~
.. function:: count_ones(x::Integer) -> Integer
Number of ones in the binary representation of ``x``.
**Example**: ``count_ones(7) -> 3``
.. function:: count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of ``x``.
**Example**: ``count_zeros(int32(2 ^ 16 - 1)) -> 16``
.. function:: leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of ``x``.
**Example**: ``leading_zeros(int32(1)) -> 31``
.. function:: leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of ``x``.
**Example**: ``leading_ones(int32(2 ^ 32 - 2)) -> 31``
.. function:: trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of ``x``.
**Example**: ``trailing_zeros(2) -> 1``
.. function:: trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of ``x``.
**Example**: ``trailing_ones(3) -> 2``
.. function:: isprime(x::Integer) -> Bool
Returns ``true`` if ``x`` is prime, and ``false`` otherwise.
**Example**::
julia> isprime(3)
true
.. function:: primes(n)
Returns a collection of the prime numbers <= ``n``.
.. function:: isodd(x::Integer) -> Bool
Returns ``true`` if ``x`` is odd (that is, not divisible by 2), and ``false`` otherwise.
**Examples**::
julia> isodd(9)
true
julia> isodd(10)
false
.. function:: iseven(x::Integer) -> Bool
Returns ``true`` is ``x`` is even (that is, divisible by 2), and ``false`` otherwise.
**Examples**::
julia> iseven(10)
true
julia> iseven(9)
false
BigFloats
---------
The `BigFloat` type implements arbitrary-precision floating-point aritmetic using the `GNU MPFR library <http://www.mpfr.org/>`_.
.. function:: precision(num::FloatingPoint)
Get the precision of a floating point number, as defined by the effective number of bits in the mantissa.
.. function:: get_bigfloat_precision()
Get the precision (in bits) currently used for BigFloat arithmetic.
.. function:: set_bigfloat_precision(x::Int64)
Set the precision (in bits) to be used to BigFloat arithmetic.
.. function:: with_bigfloat_precision(f::Function,precision::Integer)
Change the BigFloat arithmetic precision (in bits) for the duration of ``f``. It is logically equivalent to::
old = get_bigfloat_precision()
set_bigfloat_precision(precision)
f()
set_bigfloat_precision(old)
Random Numbers
--------------
Random number generation in Julia uses the `Mersenne Twister library <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/#dSFMT>`_. Julia has a global RNG, which is used by default. Multiple RNGs can be plugged in using the ``AbstractRNG`` object, which can then be used to have multiple streams of random numbers. Currently, only ``MersenneTwister`` is supported.
.. function:: srand([rng], seed)
Seed the RNG with a ``seed``, which may be an unsigned integer or a vector of unsigned integers. ``seed`` can even be a filename, in which case the seed is read from a file. If the argument ``rng`` is not provided, the default global RNG is seeded.
.. function:: MersenneTwister([seed])
Create a ``MersenneTwister`` RNG object. Different RNG objects can have their own seeds, which may be useful for generating different streams of random numbers.
.. function:: rand() -> Float64
Generate a ``Float64`` random number uniformly in [0,1)
.. function:: rand!([rng], A)
Populate the array A with random number generated from the specified RNG.
.. function:: rand(rng::AbstractRNG, [dims...])
Generate a random ``Float64`` number or array of the size specified by dims, using the specified RNG object. Currently, ``MersenneTwister`` is the only available Random Number Generator (RNG), which may be seeded using srand.
.. function:: rand(dims or [dims...])
Generate a random ``Float64`` array of the size specified by dims
.. function:: rand(Int32|Uint32|Int64|Uint64|Int128|Uint128, [dims...])
Generate a random integer of the given type. Optionally, generate an array of random integers of the given type by specifying dims.
.. function:: rand(r, [dims...])
Generate a random integer in the range ``r`` (for example, ``1:n`` or ``0:2:10``). Optionally, generate a random integer array.
.. function:: randbool([dims...])
Generate a random boolean value. Optionally, generate an array of random boolean values.
.. function:: randbool!(A)
Fill an array with random boolean values. A may be an ``Array`` or a ``BitArray``.
.. function:: randn([rng], dims or [dims...])
Generate a normally-distributed random number with mean 0 and standard deviation 1. Optionally generate an array of normally-distributed random numbers.
.. function:: randn!([rng], A::Array{Float64,N})
Fill the array A with normally-distributed (mean 0, standard deviation 1) random numbers. Also see the rand function.
Arrays
------
Basic functions
~~~~~~~~~~~~~~~
.. function:: ndims(A) -> Integer
Returns the number of dimensions of A
.. function:: size(A)
Returns a tuple containing the dimensions of A
.. function:: iseltype(A,T)
Tests whether A or its elements are of type T
.. function:: length(A) -> Integer
Returns the number of elements in A
.. function:: countnz(A)
Counts the number of nonzero values in array A (dense or sparse). Note that this is not a constant-time operation. For sparse matrices, one should usually use ``nnz``, which returns the number of stored values.
.. function:: conj!(A)
Convert an array to its complex conjugate in-place
.. function:: stride(A, k)
Returns the distance in memory (in number of elements) between adjacent elements in dimension k
.. function:: strides(A)
Returns a tuple of the memory strides in each dimension
.. function:: ind2sub(dims, index) -> subscripts
Returns a tuple of subscripts into an array with dimensions ``dims``, corresponding to the linear index ``index``
**Example** ``i, j, ... = ind2sub(size(A), indmax(A))`` provides the indices of the maximum element
.. function:: sub2ind(dims, i, j, k...) -> index
The inverse of ``ind2sub``, returns the linear index corresponding to the provided subscripts
Constructors
~~~~~~~~~~~~
.. function:: Array(type, dims)
Construct an uninitialized dense array. ``dims`` may be a tuple or a series of integer arguments.
.. function:: getindex(type[, elements...])
Construct a 1-d array of the specified type. This is usually called with the syntax ``Type[]``. Element values can be specified using ``Type[a,b,c,...]``.
.. function:: cell(dims)
Construct an uninitialized cell array (heterogeneous array). ``dims`` can be either a tuple or a series of integer arguments.
.. function:: zeros(type, dims)
Create an array of all zeros of specified type. The type defaults to Float64 if not specified.
.. function:: zeros(A)
Create an array of all zeros with the same element type and shape as A.
.. function:: ones(type, dims)
Create an array of all ones of specified type. The type defaults to Float64 if not specified.
.. function:: ones(A)
Create an array of all ones with the same element type and shape as A.
.. function:: trues(dims)
Create a ``BitArray`` with all values set to true
.. function:: falses(dims)
Create a ``BitArray`` with all values set to false
.. function:: fill(x, dims)
Create an array filled with the value ``x``
.. function:: fill!(A, x)
Fill the array ``A`` with the value ``x``
.. function:: reshape(A, dims)
Create an array with the same data as the given array, but with different dimensions. An implementation for a particular type of array may choose whether the data is copied or shared.
.. function:: similar(array, element_type, dims)
Create an uninitialized array of the same type as the given array, but with the specified element type and dimensions. The second and third arguments are both optional. The ``dims`` argument may be a tuple or a series of integer arguments.
.. function:: reinterpret(type, A)
Change the type-interpretation of a block of memory. For example, ``reinterpret(Float32, uint32(7))`` interprets the 4 bytes corresponding to ``uint32(7)`` as a ``Float32``. For arrays, this constructs an array with the same binary data as the given array, but with the specified element type.
.. function:: eye(n)
n-by-n identity matrix
.. function:: eye(m, n)
m-by-n identity matrix
.. function:: eye(A)
Constructs an identity matrix of the same dimensions and type as ``A``.
.. function:: linspace(start, stop, n)
Construct a vector of ``n`` linearly-spaced elements from ``start`` to ``stop``.
See also: :func:`linrange` that constructs a range object.
.. function:: logspace(start, stop, n)
Construct a vector of ``n`` logarithmically-spaced numbers from ``10^start`` to ``10^stop``.
Mathematical operators and functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All mathematical operations and functions are supported for arrays
.. function:: broadcast(f, As...)
Broadcasts the arrays ``As`` to a common size by expanding singleton dimensions, and returns an array of the results ``f(as...)`` for each position.
.. function:: broadcast!(f, dest, As...)
Like ``broadcast``, but store the result of ``broadcast(f, As...)`` in the ``dest`` array.
Note that ``dest`` is only used to store the result, and does not supply arguments to
``f`` unless it is also listed in the ``As``, as in ``broadcast!(f, A, A, B)`` to perform
``A[:] = broadcast(f, A, B)``.
.. function:: bitbroadcast(f, As...)
Like ``broadcast``, but allocates a ``BitArray`` to store the result, rather then an ``Array``.
.. function:: broadcast_function(f)
Returns a function ``broadcast_f`` such that ``broadcast_function(f)(As...) === broadcast(f, As...)``. Most useful in the form ``const broadcast_f = broadcast_function(f)``.
.. function:: broadcast!_function(f)
Like ``broadcast_function``, but for ``broadcast!``.
Indexing, Assignment, and Concatenation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. function:: getindex(A, inds...)
Returns a subset of array ``A`` as specified by ``inds``, where each ``ind`` may be an ``Int``, a ``Range``, or a ``Vector``.
.. function:: sub(A, inds...)
Returns a SubArray, which stores the input ``A`` and ``inds`` rather than computing the result immediately. Calling ``getindex`` on a SubArray computes the indices on the fly.
.. function:: parent(A)
Returns the "parent array" of an array view type (e.g., SubArray), or the array itself if it is not a view
.. function:: parentindexes(A)
From an array view ``A``, returns the corresponding indexes in the parent
.. function:: slicedim(A, d, i)
Return all the data of ``A`` where the index for dimension ``d`` equals ``i``. Equivalent to ``A[:,:,...,i,:,:,...]`` where ``i`` is in position ``d``.
.. function:: slice(A, inds...)
Create a view of the given indexes of array ``A``, dropping dimensions indexed with
scalars.
.. function:: setindex!(A, X, inds...)
Store values from array ``X`` within some subset of ``A`` as specified by ``inds``.
.. function:: broadcast_getindex(A, inds...)
Broadcasts the ``inds`` arrays to a common size like ``broadcast``, and returns an array of the results ``A[ks...]``, where ``ks`` goes over the positions in the broadcast.
.. function:: broadcast_setindex!(A, X, inds...)
Broadcasts the ``X`` and ``inds`` arrays to a common size and stores the value from each position in ``X`` at the indices given by the same positions in ``inds``.
.. function:: cat(dim, A...)
Concatenate the input arrays along the specified dimension
.. function:: vcat(A...)
Concatenate along dimension 1
.. function:: hcat(A...)
Concatenate along dimension 2
.. function:: hvcat(rows::(Int...), values...)
Horizontal and vertical concatenation in one call. This function is called for
block matrix syntax. The first argument specifies the number of arguments to
concatenate in each block row.
For example, ``[a b;c d e]`` calls ``hvcat((2,3),a,b,c,d,e)``.
If the first argument is a single integer ``n``, then all block rows are assumed to have ``n`` block columns.
.. function:: flipdim(A, d)
Reverse ``A`` in dimension ``d``.
.. function:: flipud(A)
Equivalent to ``flipdim(A,1)``.
.. function:: fliplr(A)
Equivalent to ``flipdim(A,2)``.
.. function:: circshift(A,shifts)
Circularly shift the data in an array. The second argument is a vector giving the amount to shift in each dimension.
.. function:: find(A)
Return a vector of the linear indexes of the non-zeros in ``A``
(determined by ``A[i]!=0``). A common use of this is to convert a
boolean array to an array of indexes of the ``true``
elements.
.. function:: find(f,A)
Return a vector of the linear indexes of ``A`` where ``f`` returns true.
.. function:: findn(A)
Return a vector of indexes for each dimension giving the locations of the non-zeros in ``A`` (determined by ``A[i]!=0``).
.. function:: findnz(A)
Return a tuple ``(I, J, V)`` where ``I`` and ``J`` are the row and
column indexes of the non-zero values in matrix ``A``, and ``V`` is
a vector of the non-zero values.
.. function:: findfirst(A)
Return the index of the first non-zero value in ``A`` (determined by ``A[i]!=0``).
.. function:: findfirst(A,v)
Return the index of the first element equal to ``v`` in ``A``.
.. function:: findfirst(predicate, A)
Return the index of the first element of ``A`` for which ``predicate`` returns true.
.. function:: findnext(A, i)
Find the next index >= ``i`` of a non-zero element of ``A``, or ``0`` if not found.
.. function:: findnext(predicate, A, i)
Find the next index >= ``i`` of an element of ``A`` for which ``predicate`` returns true, or ``0`` if not found.
.. function:: findnext(A, v, i)
Find the next index >= ``i`` of an element of ``A`` equal to ``v`` (using ``==``),
or ``0`` if not found.
.. function:: permutedims(A,perm)
Permute the dimensions of array ``A``. ``perm`` is a vector specifying a permutation of length ``ndims(A)``. This is a generalization of transpose for multi-dimensional arrays. Transpose is equivalent to ``permutedims(A,[2,1])``.
.. function:: ipermutedims(A,perm)
Like :func:`permutedims`, except the inverse of the given permutation is applied.
.. function:: squeeze(A, dims)
Remove the dimensions specified by ``dims`` from array ``A``
.. function:: vec(Array) -> Vector
Vectorize an array using column-major convention.
.. function:: promote_shape(s1, s2)
Check two array shapes for compatibility, allowing trailing singleton dimensions,
and return whichever shape has more dimensions.
.. function:: checkbounds(array, indexes...)
Throw an error if the specified indexes are not in bounds for the given array.
.. function:: randsubseq(A, p) -> Vector
Return a vector consisting of a random subsequence of the given array ``A``,
where each element of ``A`` is included (in order) with independent
probability ``p``. (Complexity is linear in ``p*length(A)``, so this
function is efficient even if ``p`` is small and ``A`` is large.) Technically,
this process is known as "Bernoulli sampling" of ``A``.
.. function:: randsubseq!(S, A, p)
Like ``randsubseq``, but the results are stored in ``S`` (which is
resized as needed).
Array functions
~~~~~~~~~~~~~~~
.. function:: cumprod(A, [dim])
Cumulative product along a dimension.
.. function:: cumprod!(B, A, [dim])
Cumulative product of ``A`` along a dimension, storing the result in ``B``.
.. function:: cumsum(A, [dim])
Cumulative sum along a dimension.
.. function:: cumsum!(B, A, [dim])
Cumulative sum of ``A`` along a dimension, storing the result in ``B``.
.. function:: cumsum_kbn(A, [dim])
Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy.
.. function:: cummin(A, [dim])
Cumulative minimum along a dimension.
.. function:: cummax(A, [dim])
Cumulative maximum along a dimension.
.. function:: diff(A, [dim])
Finite difference operator of matrix or vector.
.. function:: gradient(F, [h])
Compute differences along vector ``F``, using ``h`` as the spacing between points.
The default spacing is one.
.. function:: rot180(A)
Rotate matrix ``A`` 180 degrees.
.. function:: rotl90(A)
Rotate matrix ``A`` left 90 degrees.
.. function:: rotr90(A)
Rotate matrix ``A`` right 90 degrees.
.. function:: reducedim(f, A, dims, initial)
Reduce 2-argument function ``f`` along dimensions of ``A``. ``dims`` is a
vector specifying the dimensions to reduce, and ``initial`` is the initial
value to use in the reductions.
The associativity of the reduction is implementation-dependent; if you
need a particular associativity, e.g. left-to-right, you should write
your own loop. See documentation for ``reduce``.
.. function:: mapslices(f, A, dims)
Transform the given dimensions of array ``A`` using function ``f``. ``f``
is called on each slice of ``A`` of the form ``A[...,:,...,:,...]``.
``dims`` is an integer vector specifying where the colons go in this
expression. The results are concatenated along the remaining dimensions.
For example, if ``dims`` is ``[1,2]`` and A is 4-dimensional, ``f`` is
called on ``A[:,:,i,j]`` for all ``i`` and ``j``.
.. function:: sum_kbn(A)
Returns the sum of all array elements, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy.
.. function:: cartesianmap(f, dims)
Given a ``dims`` tuple of integers ``(m, n, ...)``, call ``f`` on all combinations of
integers in the ranges ``1:m``, ``1:n``, etc.
**Example**::
julia> cartesianmap(println, (2,2))
11
21
12
22
BitArrays
~~~~~~~~~
.. function:: bitpack(A::AbstractArray{T,N}) -> BitArray
Converts a numeric array to a packed boolean array
.. function:: bitunpack(B::BitArray{N}) -> Array{Bool,N}
Converts a packed boolean array to an array of booleans
.. function:: flipbits!(B::BitArray{N}) -> BitArray{N}
Performs a bitwise not operation on B. See :ref:`~ operator <~>`.
.. function:: rol(B::BitArray{1},i::Integer) -> BitArray{1}
Left rotation operator.
.. function:: ror(B::BitArray{1},i::Integer) -> BitArray{1}
Right rotation operator.
Combinatorics
-------------
.. function:: nthperm(v, k)
Compute the kth lexicographic permutation of a vector.
.. function:: nthperm(p)
Return the ``k`` that generated permutation ``p``.
Note that ``nthperm(nthperm([1:n], k)) == k`` for ``1 <= k <= factorial(n)``.
.. function:: nthperm!(v, k)
In-place version of :func:`nthperm`.
.. function:: randperm(n)
Construct a random permutation of the given length.
.. function:: invperm(v)
Return the inverse permutation of v.
.. function:: isperm(v) -> Bool
Returns true if v is a valid permutation.
.. function:: permute!(v, p)
Permute vector ``v`` in-place, according to permutation ``p``. No
checking is done to verify that ``p`` is a permutation.
To return a new permutation, use ``v[p]``. Note that this is
generally faster than ``permute!(v,p)`` for large vectors.
.. function:: ipermute!(v, p)
Like permute!, but the inverse of the given permutation is applied.
.. function:: randcycle(n)
Construct a random cyclic permutation of the given length.
.. function:: shuffle(v)
Return a randomly permuted copy of ``v``.
.. function:: shuffle!(v)
In-place version of :func:`shuffle`.
.. function:: reverse(v [, start=1 [, stop=length(v) ]] )
Return a copy of ``v`` reversed from start to stop.
.. function:: reverse!(v [, start=1 [, stop=length(v) ]]) -> v
In-place version of :func:`reverse`.
.. function:: combinations(arr, n)
Generate all combinations of ``n`` elements from an indexable
object. Because the number of combinations can be very large, this
function returns an iterator object. Use
``collect(combinations(a,n))`` to get an array of all combinations.
.. function:: permutations(arr)
Generate all permutations of an indexable object. Because the
number of permutations can be very large, this function returns an
iterator object. Use ``collect(permutations(a,n))`` to get an array
of all permutations.
.. function:: partitions(n)
Generate all integer arrays that sum to ``n``. Because the number of
partitions can be very large, this function returns an iterator
object. Use ``collect(partitions(n))`` to get an array of all
partitions. The number of partitions to generete can be efficiently
computed using ``length(partitions(n))``.
.. function:: partitions(n, m)
Generate all arrays of ``m`` integers that sum to ``n``. Because
the number of partitions can be very large, this function returns an
iterator object. Use ``collect(partitions(n,m))`` to get an array of
all partitions. The number of partitions to generete can be efficiently
computed using ``length(partitions(n,m))``.
.. function:: partitions(array)
Generate all set partitions of the elements of an array,
represented as arrays of arrays. Because the number of partitions
can be very large, this function returns an iterator object. Use
``collect(partitions(array))`` to get an array of all partitions.
The number of partitions to generete can be efficiently
computed using ``length(partitions(array))``.
.. function:: partitions(array, m)
Generate all set partitions of the elements of an array into exactly m
subsets, represented as arrays of arrays. Because the number of
partitions can be very large, this function returns an iterator object.
Use ``collect(partitions(array,m))`` to get an array of all partitions.
The number of partitions into m subsets is equal to the Stirling number
of the second kind and can be efficiently computed using
``length(partitions(array,m))``.
Statistics
----------
.. function:: mean(v[, region])
Compute the mean of whole array ``v``, or optionally along the dimensions in ``region``.
Note: Julia does not ignore ``NaN`` values in the computation.
For applications requiring the handling of missing data, the ``DataArray``
package is recommended.
.. function:: mean!(r, v)
Compute the mean of ``v`` over the singleton dimensions of ``r``, and write results to ``r``.
.. function:: std(v[, region])
Compute the sample standard deviation of a vector or array ``v``, optionally along dimensions in ``region``. The algorithm returns an estimator of the generative distribution's standard deviation under the assumption that each entry of ``v`` is an IID drawn from that generative distribution. This computation is equivalent to calculating ``sqrt(sum((v - mean(v)).^2) / (length(v) - 1))``.
Note: Julia does not ignore ``NaN`` values in the computation.
For applications requiring the handling of missing data, the ``DataArray``
package is recommended.
.. function:: stdm(v, m)
Compute the sample standard deviation of a vector ``v`` with known mean ``m``.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: var(v[, region])
Compute the sample variance of a vector or array ``v``, optionally along dimensions in ``region``. The algorithm will return an estimator of the generative distribution's variance under the assumption that each entry of ``v`` is an IID drawn from that generative distribution. This computation is equivalent to calculating ``sum((v - mean(v)).^2) / (length(v) - 1)``.
Note: Julia does not ignore ``NaN`` values in the computation.
For applications requiring the handling of missing data, the ``DataArray``
package is recommended.
.. function:: varm(v, m)
Compute the sample variance of a vector ``v`` with known mean ``m``.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: median(v; checknan::Bool=true)
Compute the median of a vector ``v``. If keyword argument ``checknan`` is true
(the default), an error is raised for data containing NaN values.
Note: Julia does not ignore ``NaN`` values in the computation.
For applications requiring the handling of missing data, the ``DataArray``
package is recommended.
.. function:: median!(v; checknan::Bool=true)
Like ``median``, but may overwrite the input vector.
.. function:: hist(v[, n]) -> e, counts
Compute the histogram of ``v``, optionally using approximately ``n``
bins. The return values are a range ``e``, which correspond to the
edges of the bins, and ``counts`` containing the number of elements of
``v`` in each bin.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: hist(v, e) -> e, counts
Compute the histogram of ``v`` using a vector/range ``e`` as the edges for
the bins. The result will be a vector of length ``length(e) - 1``, such that the
element at location ``i`` satisfies ``sum(e[i] .< v .<= e[i+1])``.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: hist!(counts, v, e) -> e, counts
Compute the histogram of ``v``, using a vector/range ``e`` as the edges for the bins.
This function writes the resultant counts to a pre-allocated array ``counts``.
.. function:: hist2d(M, e1, e2) -> (edge1, edge2, counts)
Compute a "2d histogram" of a set of N points specified by N-by-2 matrix ``M``.
Arguments ``e1`` and ``e2`` are bins for each dimension, specified either as
integer bin counts or vectors of bin edges. The result is a tuple of
``edge1`` (the bin edges used in the first dimension), ``edge2`` (the bin edges
used in the second dimension), and ``counts``, a histogram matrix of size
``(length(edge1)-1, length(edge2)-1)``.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: hist2d!(counts, M, e1, e2) -> (e1, e2, counts)
Compute a "2d histogram" with respect to the bins delimited by the edges given
in ``e1`` and ``e2``. This function writes the results to a pre-allocated
array ``counts``.
.. function:: histrange(v, n)
Compute *nice* bin ranges for the edges of a histogram of ``v``, using
approximately ``n`` bins. The resulting step sizes will be 1, 2 or 5
multiplied by a power of 10.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: midpoints(e)
Compute the midpoints of the bins with edges ``e``. The result is a
vector/range of length ``length(e) - 1``.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: quantile(v, p)
Compute the quantiles of a vector ``v`` at a specified set of probability values ``p``.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: quantile(v, p)
Compute the quantile of a vector ``v`` at the probability ``p``.
Note: Julia does not ignore ``NaN`` values in the computation.
.. function:: quantile!(v, p)
Like ``quantile``, but overwrites the input vector.
.. function:: cov(v1[, v2][, vardim=1, corrected=true, mean=nothing])
Compute the Pearson covariance between the vector(s) in ``v1`` and ``v2``.
Here, ``v1`` and ``v2`` can be either vectors or matrices.
This function accepts three keyword arguments:
- ``vardim``: the dimension of variables. When ``vardim = 1``, variables
are considered in columns while observations in rows; when ``vardim = 2``,
variables are in rows while observations in columns. By default, it is
set to ``1``.
- ``corrected``: whether to apply Bessel's correction (divide by ``n-1``
instead of ``n``). By default, it is set to ``true``.
- ``mean``: allow users to supply mean values that are known. By default,
it is set to ``nothing``, which indicates that the mean(s) are unknown,
and the function will compute the mean. Users can use ``mean=0`` to
indicate that the input data are centered, and hence there's no need to
subtract the mean.
The size of the result depends on the size of ``v1`` and ``v2``. When both
``v1`` and ``v2`` are vectors, it returns the covariance between them as a
scalar. When either one is a matrix, it returns a covariance matrix of size
``(n1, n2)``, where ``n1`` and ``n2`` are the numbers of slices in ``v1`` and
``v2``, which depend on the setting of ``vardim``.
Note: ``v2`` can be omitted, which indicates ``v2 = v1``.
.. function:: cor(v1[, v2][, vardim=1, mean=nothing])
Compute the Pearson correlation between the vector(s) in ``v1`` and ``v2``.
Users can use the keyword argument ``vardim`` to specify the variable
dimension, and ``mean`` to supply pre-computed mean values.
Signal Processing
-----------------
Fast Fourier transform (FFT) functions in Julia are largely
implemented by calling functions from `FFTW
<http://www.fftw.org>`_. By default, Julia does not use multi-threaded
FFTW. Higher performance may be obtained by experimenting with
multi-threading. Use `FFTW.set_num_threads(np)` to use `np` threads.
.. function:: fft(A [, dims])
Performs a multidimensional FFT of the array ``A``. The optional ``dims``
argument specifies an iterable subset of dimensions (e.g. an integer,
range, tuple, or array) to transform along. Most efficient if the
size of ``A`` along the transformed dimensions is a product of small
primes; see :func:`nextprod`. See also :func:`plan_fft` for even
greater efficiency.
A one-dimensional FFT computes the one-dimensional discrete Fourier
transform (DFT) as defined by
.. math::
\operatorname{DFT}(A)[k] = \sum_{n=1}^{\operatorname{length}(A)}
\exp\left(-i\frac{2\pi (n-1)(k-1)}{\operatorname{length}(A)} \right)
A[n].
A multidimensional FFT simply performs this operation along each transformed
dimension of ``A``.
Higher performance is usually possible with multi-threading. Use
`FFTW.set_num_threads(np)` to use `np` threads, if you have `np`
processors.
.. function:: fft!(A [, dims])
Same as :func:`fft`, but operates in-place on ``A``,
which must be an array of complex floating-point numbers.
.. function:: ifft(A [, dims])
Multidimensional inverse FFT.
A one-dimensional inverse FFT computes
.. math::
\operatorname{IDFT}(A)[k] = \frac{1}{\operatorname{length}(A)}
\sum_{n=1}^{\operatorname{length}(A)} \exp\left(+i\frac{2\pi (n-1)(k-1)}
{\operatorname{length}(A)} \right) A[n].
A multidimensional inverse FFT simply performs this operation along each
transformed dimension of ``A``.
.. function:: ifft!(A [, dims])
Same as :func:`ifft`, but operates in-place on ``A``.
.. function:: bfft(A [, dims])
Similar to :func:`ifft`, but computes an unnormalized inverse (backward)
transform, which must be divided by the product of the sizes of the
transformed dimensions in order to obtain the inverse. (This is slightly
more efficient than :func:`ifft` because it omits a scaling step, which in
some applications can be combined with other computational steps elsewhere.)
.. math::
\operatorname{BDFT}(A)[k] = \operatorname{length}(A) \operatorname{IDFT}(A)[k]
.. function:: bfft!(A [, dims])
Same as :func:`bfft`, but operates in-place on ``A``.
.. function:: plan_fft(A [, dims [, flags [, timelimit]]])
Pre-plan an optimized FFT along given dimensions (``dims``) of arrays
matching the shape and type of ``A``. (The first two arguments have
the same meaning as for :func:`fft`.) Returns a function ``plan(A)``
that computes ``fft(A, dims)`` quickly.
The ``flags`` argument is a bitwise-or of FFTW planner flags, defaulting
to ``FFTW.ESTIMATE``. e.g. passing ``FFTW.MEASURE`` or ``FFTW.PATIENT``
will instead spend several seconds (or more) benchmarking different
possible FFT algorithms and picking the fastest one; see the FFTW manual
for more information on planner flags. The optional ``timelimit`` argument
specifies a rough upper bound on the allowed planning time, in seconds.
Passing ``FFTW.MEASURE`` or ``FFTW.PATIENT`` may cause the input array ``A``
to be overwritten with zeros during plan creation.
:func:`plan_fft!` is the same as :func:`plan_fft` but creates a plan
that operates in-place on its argument (which must be an array of
complex floating-point numbers). :func:`plan_ifft` and so on
are similar but produce plans that perform the equivalent of
the inverse transforms :func:`ifft` and so on.
.. function:: plan_ifft(A [, dims [, flags [, timelimit]]])
Same as :func:`plan_fft`, but produces a plan that performs inverse transforms
:func:`ifft`.
.. function:: plan_bfft(A [, dims [, flags [, timelimit]]])
Same as :func:`plan_fft`, but produces a plan that performs an unnormalized
backwards transform :func:`bfft`.
.. function:: plan_fft!(A [, dims [, flags [, timelimit]]])
Same as :func:`plan_fft`, but operates in-place on ``A``.
.. function:: plan_ifft!(A [, dims [, flags [, timelimit]]])
Same as :func:`plan_ifft`, but operates in-place on ``A``.
.. function:: plan_bfft!(A [, dims [, flags [, timelimit]]])
Same as :func:`plan_bfft`, but operates in-place on ``A``.
.. function:: rfft(A [, dims])
Multidimensional FFT of a real array A, exploiting the fact that
the transform has conjugate symmetry in order to save roughly half
the computational time and storage costs compared with :func:`fft`.
If ``A`` has size ``(n_1, ..., n_d)``, the result has size
``(floor(n_1/2)+1, ..., n_d)``.
The optional ``dims`` argument specifies an iterable subset of one or
more dimensions of ``A`` to transform, similar to :func:`fft`. Instead
of (roughly) halving the first dimension of ``A`` in the result, the
``dims[1]`` dimension is (roughly) halved in the same way.
.. function:: irfft(A, d [, dims])
Inverse of :func:`rfft`: for a complex array ``A``, gives the
corresponding real array whose FFT yields ``A`` in the first half.
As for :func:`rfft`, ``dims`` is an optional subset of dimensions
to transform, defaulting to ``1:ndims(A)``.
``d`` is the length of the transformed real array along the ``dims[1]``
dimension, which must satisfy ``d == floor(size(A,dims[1])/2)+1``.
(This parameter cannot be inferred from ``size(A)`` due to the
possibility of rounding by the ``floor`` function here.)
.. function:: brfft(A, d [, dims])
Similar to :func:`irfft` but computes an unnormalized inverse transform
(similar to :func:`bfft`), which must be divided by the product
of the sizes of the transformed dimensions (of the real output array)
in order to obtain the inverse transform.
.. function:: plan_rfft(A [, dims [, flags [, timelimit]]])
Pre-plan an optimized real-input FFT, similar to :func:`plan_fft`
except for :func:`rfft` instead of :func:`fft`. The first two
arguments, and the size of the transformed result, are the same as
for :func:`rfft`.
.. function:: plan_brfft(A, d [, dims [, flags [, timelimit]]])
Pre-plan an optimized real-input unnormalized transform, similar to
:func:`plan_rfft` except for :func:`brfft` instead of :func:`rfft`.
The first two arguments and the size of the transformed result, are
the same as for :func:`brfft`.
.. function:: plan_irfft(A, d [, dims [, flags [, timelimit]]])
Pre-plan an optimized inverse real-input FFT, similar to :func:`plan_rfft`
except for :func:`irfft` and :func:`brfft`, respectively. The first
three arguments have the same meaning as for :func:`irfft`.
.. function:: dct(A [, dims])
Performs a multidimensional type-II discrete cosine transform (DCT)
of the array ``A``, using the unitary normalization of the DCT.
The optional ``dims`` argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. Most efficient if the size of ``A`` along the transformed
dimensions is a product of small primes; see :func:`nextprod`. See
also :func:`plan_dct` for even greater efficiency.
.. function:: dct!(A [, dims])
Same as :func:`dct!`, except that it operates in-place
on ``A``, which must be an array of real or complex floating-point
values.
.. function:: idct(A [, dims])
Computes the multidimensional inverse discrete cosine transform (DCT)
of the array ``A`` (technically, a type-III DCT with the unitary
normalization).
The optional ``dims`` argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. Most efficient if the size of ``A`` along the transformed
dimensions is a product of small primes; see :func:`nextprod`. See
also :func:`plan_idct` for even greater efficiency.
.. function:: idct!(A [, dims])
Same as :func:`idct!`, but operates in-place on ``A``.
.. function:: plan_dct(A [, dims [, flags [, timelimit]]])
Pre-plan an optimized discrete cosine transform (DCT), similar to
:func:`plan_fft` except producing a function that computes :func:`dct`.
The first two arguments have the same meaning as for :func:`dct`.
.. function:: plan_dct!(A [, dims [, flags [, timelimit]]])
Same as :func:`plan_dct`, but operates in-place on ``A``.
.. function:: plan_idct(A [, dims [, flags [, timelimit]]])
Pre-plan an optimized inverse discrete cosine transform (DCT), similar to
:func:`plan_fft` except producing a function that computes :func:`idct`.
The first two arguments have the same meaning as for :func:`idct`.
.. function:: plan_idct!(A [, dims [, flags [, timelimit]]])
Same as :func:`plan_idct`, but operates in-place on ``A``.
.. function:: fftshift(x)
Swap the first and second halves of each dimension of ``x``.
.. function:: fftshift(x,dim)
Swap the first and second halves of the given dimension of array ``x``.
.. function:: ifftshift(x, [dim])
Undoes the effect of ``fftshift``.
.. function:: filt(b, a, x, [si])
Apply filter described by vectors ``a`` and ``b`` to vector ``x``, with an
optional initial filter state vector ``si`` (defaults to zeros).
.. function:: filt!(out, b, a, x, [si])
Same as :func:`filt` but writes the result into the ``out`` argument,
which may alias the input ``x`` to modify it in-place.
.. function:: deconv(b,a)
Construct vector ``c`` such that ``b = conv(a,c) + r``. Equivalent to polynomial division.
.. function:: conv(u,v)
Convolution of two vectors. Uses FFT algorithm.
.. function:: conv2(u,v,A)
2-D convolution of the matrix ``A`` with the 2-D separable kernel generated by
the vectors ``u`` and ``v``. Uses 2-D FFT algorithm
.. function:: conv2(B,A)
2-D convolution of the matrix ``B`` with the matrix ``A``. Uses 2-D FFT algorithm
.. function:: xcorr(u,v)
Compute the cross-correlation of two vectors.
The following functions are defined within the ``Base.FFTW`` module.
.. currentmodule:: Base.FFTW
.. function:: r2r(A, kind [, dims])
Performs a multidimensional real-input/real-output (r2r) transform
of type ``kind`` of the array ``A``, as defined in the FFTW manual.
``kind`` specifies either a discrete cosine transform of various types
(``FFTW.REDFT00``, ``FFTW.REDFT01``, ``FFTW.REDFT10``, or
``FFTW.REDFT11``), a discrete sine transform of various types
(``FFTW.RODFT00``, ``FFTW.RODFT01``, ``FFTW.RODFT10``, or
``FFTW.RODFT11``), a real-input DFT with halfcomplex-format output
(``FFTW.R2HC`` and its inverse ``FFTW.HC2R``), or a discrete
Hartley transform (``FFTW.DHT``). The ``kind`` argument may be
an array or tuple in order to specify different transform types
along the different dimensions of ``A``; ``kind[end]`` is used
for any unspecified dimensions. See the FFTW manual for precise
definitions of these transform types, at http://www.fftw.org/doc.
The optional ``dims`` argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. ``kind[i]`` is then the transform type for ``dims[i]``,
with ``kind[end]`` being used for ``i > length(kind)``.
See also :func:`plan_r2r` to pre-plan optimized r2r transforms.
.. function:: r2r!(A, kind [, dims])
Same as :func:`r2r`, but operates in-place on ``A``, which must be
an array of real or complex floating-point numbers.
.. function:: plan_r2r(A, kind [, dims [, flags [, timelimit]]])
Pre-plan an optimized r2r transform, similar to :func:`Base.plan_fft`
except that the transforms (and the first three arguments)
correspond to :func:`r2r` and :func:`r2r!`, respectively.
.. function:: plan_r2r!(A, kind [, dims [, flags [, timelimit]]])
Similar to :func:`Base.plan_fft`, but corresponds to :func:`r2r!`.
.. currentmodule:: Base
Numerical Integration
---------------------
Although several external packages are available for numeric integration
and solution of ordinary differential equations, we also provide
some built-in integration support in Julia.
.. function:: quadgk(f, a,b,c...; reltol=sqrt(eps), abstol=0, maxevals=10^7, order=7, norm=vecnorm)
Numerically integrate the function ``f(x)`` from ``a`` to ``b``,
and optionally over additional intervals ``b`` to ``c`` and so on.
Keyword options include a relative error tolerance ``reltol`` (defaults
to ``sqrt(eps)`` in the precision of the endpoints), an absolute error
tolerance ``abstol`` (defaults to 0), a maximum number of function
evaluations ``maxevals`` (defaults to ``10^7``), and the ``order``
of the integration rule (defaults to 7).
Returns a pair ``(I,E)`` of the estimated integral ``I`` and an
estimated upper bound on the absolute error ``E``. If ``maxevals``
is not exceeded then ``E <= max(abstol, reltol*norm(I))`` will hold.
(Note that it is useful to specify a positive ``abstol`` in cases where
``norm(I)`` may be zero.)
The endpoints ``a`` etcetera can also be complex (in which case the
integral is performed over straight-line segments in the complex
plane). If the endpoints are ``BigFloat``, then the integration
will be performed in ``BigFloat`` precision as well (note: it is
advisable to increase the integration ``order`` in rough proportion
to the precision, for smooth integrands). More generally, the
precision is set by the precision of the integration endpoints
(promoted to floating-point types).
The integrand ``f(x)`` can return any numeric scalar, vector, or matrix
type, or in fact any type supporting ``+``, ``-``, multiplication
by real values, and a ``norm`` (i.e., any normed vector space).
Alternatively, a different norm can be specified by passing a `norm`-like
function as the `norm` keyword argument (which defaults to `vecnorm`).
The algorithm is an adaptive Gauss-Kronrod integration technique:
the integral in each interval is estimated using a Kronrod rule
(``2*order+1`` points) and the error is estimated using an embedded
Gauss rule (``order`` points). The interval with the largest
error is then subdivided into two intervals and the process is repeated
until the desired error tolerance is achieved.
These quadrature rules work best for smooth functions within each
interval, so if your function has a known discontinuity or other
singularity, it is best to subdivide your interval to put the
singularity at an endpoint. For example, if ``f`` has a discontinuity
at ``x=0.7`` and you want to integrate from 0 to 1, you should use
``quadgk(f, 0,0.7,1)`` to subdivide the interval at the point of
discontinuity. The integrand is never evaluated exactly at the endpoints
of the intervals, so it is possible to integrate functions that diverge
at the endpoints as long as the singularity is integrable (for example,
a ``log(x)`` or ``1/sqrt(x)`` singularity).
For real-valued endpoints, the starting and/or ending points may be
infinite. (A coordinate transformation is performed internally to
map the infinite interval to a finite one.)
Parallel Computing
------------------
.. function:: addprocs(n; cman::ClusterManager=LocalManager()) -> List of process identifiers
``addprocs(4)`` will add 4 processes on the local machine. This can be used to take
advantage of multiple cores.
Keyword argument ``cman`` can be used to provide a custom cluster manager to start workers.
For example Beowulf clusters are supported via a custom cluster manager implemented
in package ``ClusterManagers``.
See the documentation for package ``ClusterManagers`` for more information on how to
write a custom cluster manager.
.. function:: addprocs(machines; tunnel=false, dir=JULIA_HOME, sshflags::Cmd=``) -> List of process identifiers
Add processes on remote machines via SSH.
Requires julia to be installed in the same location on each node, or to be available via a shared file system.
``machines`` is a vector of host definitions of the form ``[user@]host[:port] [bind_addr]``. ``user`` defaults
to current user, ``port`` to the standard ssh port. Optionally, in case of multi-homed hosts, ``bind_addr``
may be used to explicitly specify an interface.
Keyword arguments:
``tunnel`` : if ``true`` then SSH tunneling will be used to connect to the worker.
``dir`` : specifies the location of the julia binaries on the worker nodes.
``sshflags`` : specifies additional ssh options, e.g. :literal:`sshflags=\`-i /home/foo/bar.pem\`` .
.. function:: nprocs()
Get the number of available processes.
.. function:: nworkers()
Get the number of available worker processes. This is one less than nprocs(). Equal to nprocs() if nprocs() == 1.
.. function:: procs()
Returns a list of all process identifiers.
.. function:: workers()
Returns a list of all worker process identifiers.
.. function:: rmprocs(pids...)
Removes the specified workers.
.. function:: interrupt([pids...])
Interrupt the current executing task on the specified workers. This is
equivalent to pressing Ctrl-C on the local machine. If no arguments are given,
all workers are interrupted.
.. function:: myid()
Get the id of the current process.
.. function:: pmap(f, lsts...; err_retry=true, err_stop=false)
Transform collections ``lsts`` by applying ``f`` to each element in parallel.
If ``nprocs() > 1``, the calling process will be dedicated to assigning tasks.
All other available processes will be used as parallel workers.
If ``err_retry`` is true, it retries a failed application of ``f`` on a different worker.
If ``err_stop`` is true, it takes precedence over the value of ``err_retry`` and ``pmap`` stops execution on the first error.
.. function:: remotecall(id, func, args...)
Call a function asynchronously on the given arguments on the specified process. Returns a ``RemoteRef``.
.. function:: wait([x])
Block the current task until some event occurs, depending on the type
of the argument:
* ``RemoteRef``: Wait for a value to become available for the specified remote reference.
* ``Condition``: Wait for ``notify`` on a condition.
* ``Process``: Wait for a process or process chain to exit. The ``exitcode`` field of a process can be used to determine success or failure.
* ``Task``: Wait for a ``Task`` to finish, returning its result value.
* ``RawFD``: Wait for changes on a file descriptor (see `poll_fd` for keyword arguments and return code)
If no argument is passed, the task blocks for an undefined period. If the task's
state is set to ``:waiting``, it can only be restarted by an explicit call to
``schedule`` or ``yieldto``. If the task's state is ``:runnable``, it might be
restarted unpredictably.
Often ``wait`` is called within a ``while`` loop to ensure a waited-for condition
is met before proceeding.
.. function:: fetch(RemoteRef)
Wait for and get the value of a remote reference.
.. function:: remotecall_wait(id, func, args...)
Perform ``wait(remotecall(...))`` in one message.
.. function:: remotecall_fetch(id, func, args...)
Perform ``fetch(remotecall(...))`` in one message.
.. function:: put!(RemoteRef, value)
Store a value to a remote reference. Implements "shared queue of length 1" semantics: if a value is already present, blocks until the value is removed with ``take!``. Returns its first argument.
.. function:: take!(RemoteRef)
Fetch the value of a remote reference, removing it so that the reference is empty again.
.. function:: isready(r::RemoteRef)
Determine whether a ``RemoteRef`` has a value stored to it. Note that this function
can cause race conditions, since by the time you receive its result it may
no longer be true. It is recommended that this function only be used on a
``RemoteRef`` that is assigned once.
If the argument ``RemoteRef`` is owned by a different node, this call will block to
wait for the answer. It is recommended to wait for ``r`` in a separate task instead,
or to use a local ``RemoteRef`` as a proxy::
rr = RemoteRef()
@async put!(rr, remotecall_fetch(p, long_computation))
isready(rr) # will not block
.. function:: RemoteRef()
Make an uninitialized remote reference on the local machine.
.. function:: RemoteRef(n)
Make an uninitialized remote reference on process ``n``.
.. function:: timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)
Waits till ``testcb`` returns ``true`` or for ``secs``` seconds, whichever is earlier.
``testcb`` is polled every ``pollint`` seconds.
.. function:: @spawn
Execute an expression on an automatically-chosen process, returning a
``RemoteRef`` to the result.
.. function:: @spawnat
Accepts two arguments, ``p`` and an expression, and runs the expression
asynchronously on process ``p``, returning a ``RemoteRef`` to the result.
.. function:: @fetch
Equivalent to ``fetch(@spawn expr)``.
.. function:: @fetchfrom
Equivalent to ``fetch(@spawnat p expr)``.
.. function:: @async
Schedule an expression to run on the local machine, also adding it to the
set of items that the nearest enclosing ``@sync`` waits for.
.. function:: @sync
Wait until all dynamically-enclosed uses of ``@async``, ``@spawn``,
``@spawnat`` and ``@parallel`` are complete.
.. function:: @parallel
A parallel for loop of the form ::
@parallel [reducer] for var = range
body
end
The specified range is partitioned and locally executed across all workers.
In case an optional reducer function is specified, @parallel performs local
reductions on each worker with a final reduction on the calling process.
Note that without a reducer function, @parallel executes asynchronously,
i.e. it spawns independent tasks on all available workers and returns
immediately without waiting for completion. To wait for completion, prefix
the call with ``@sync``, like ::
@sync @parallel for var = range
body
end
Distributed Arrays
------------------
.. function:: DArray(init, dims, [procs, dist])
Construct a distributed array. The parameter ``init`` is a function that accepts a tuple of index ranges.
This function should allocate a local chunk of the distributed array and initialize it for the specified indices.
``dims`` is the overall size of the distributed array. ``procs`` optionally specifies a vector of process IDs to use.
If unspecified, the array is distributed over all worker processes only. Typically, when runnning in distributed mode,
i.e., ``nprocs() > 1``, this would mean that no chunk of the distributed array exists on the process hosting the
interactive julia prompt.
``dist`` is an integer vector specifying how many chunks the distributed array should be divided into in each dimension.
For example, the ``dfill`` function that creates a distributed array and fills it with a value ``v`` is implemented as:
``dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)``
.. function:: dzeros(dims, ...)
Construct a distributed array of zeros. Trailing arguments are the same as those accepted by :func:`DArray`.
.. function:: dones(dims, ...)
Construct a distributed array of ones. Trailing arguments are the same as those accepted by :func:`DArray`.
.. function:: dfill(x, dims, ...)
Construct a distributed array filled with value ``x``. Trailing arguments are the same as those accepted by :func:`DArray`.
.. function:: drand(dims, ...)
Construct a distributed uniform random array. Trailing arguments are the same as those accepted by :func:`DArray`.
.. function:: drandn(dims, ...)
Construct a distributed normal random array. Trailing arguments are the same as those accepted by :func:`DArray`.
.. function:: distribute(a)
Convert a local array to distributed.
.. function:: localpart(d)
Get the local piece of a distributed array. Returns an empty array if no local part exists on the calling process.
.. function:: localindexes(d)
A tuple describing the indexes owned by the local process. Returns a tuple with empty ranges
if no local part exists on the calling process.
.. function:: procs(d)
Get the vector of processes storing pieces of ``d``.
Shared Arrays (Experimental, UNIX-only feature)
-----------------------------------------------
.. function:: SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])
Construct a SharedArray of a bitstype ``T`` and size ``dims`` across the processes
specified by ``pids`` - all of which have to be on the same host.
If ``pids`` is left unspecified, the shared array will be mapped across all workers
on the current host.
If an ``init`` function of the type ``initfn(S::SharedArray)`` is specified,
it is called on all the participating workers.
.. function:: procs(S::SharedArray)
Get the vector of processes that have mapped the shared array
.. function:: sdata(S::SharedArray)
Returns the actual ``Array`` object backing ``S``
.. function:: indexpids(S::SharedArray)
Returns the index of the current worker into the ``pids`` vector, i.e., the list of workers mapping
the SharedArray
System
------
.. function:: run(command)
Run a command object, constructed with backticks. Throws an error if anything goes wrong, including the process exiting with a non-zero status.
.. function:: spawn(command)
Run a command object asynchronously, returning the resulting ``Process`` object.
.. data:: DevNull
Used in a stream redirect to discard all data written to it. Essentially equivalent to /dev/null on Unix or NUL on Windows.
Usage: ``run(`cat test.txt` |> DevNull)``
.. function:: success(command)
Run a command object, constructed with backticks, and tell whether it was successful (exited with a code of 0). An exception is raised if the process cannot be started.
.. function:: process_running(p::Process)
Determine whether a process is currently running.
.. function:: process_exited(p::Process)
Determine whether a process has exited.
.. function:: kill(p::Process, signum=SIGTERM)
Send a signal to a process. The default is to terminate the process.
.. function:: open(command, mode::String="r", stdio=DevNull)
Start running ``command`` asynchronously, and return a tuple
``(stream,process)``. If ``mode`` is ``"r"``, then ``stream``
reads from the process's standard output and ``stdio`` optionally
specifies the process's standard input stream. If ``mode`` is
``"w"``, then ``stream`` writes to the process's standard input
and ``stdio`` optionally specifies the process's standard output
stream.
.. function:: open(f::Function, command, mode::String="r", stdio=DevNull)
Similar to ``open(command, mode, stdio)``, but calls ``f(stream)``
on the resulting read or write stream, then closes the stream
and waits for the process to complete. Returns the value returned
by ``f``.
.. function:: readandwrite(command)
Starts running a command asynchronously, and returns a tuple (stdout,stdin,process) of the output stream and input stream of the process, and the process object itself.
.. function:: ignorestatus(command)
Mark a command object so that running it will not throw an error if the
result code is non-zero.
.. function:: detach(command)
Mark a command object so that it will be run in a new process group,
allowing it to outlive the julia process, and not have Ctrl-C interrupts
passed to it.
.. function:: setenv(command, env; dir=working_dir)
Set environment variables to use when running the given command. ``env`` is either
a dictionary mapping strings to strings, or an array of strings of the form
``"var=val"``.
The ``dir`` keyword argument can be used to specify a working directory for the
command.
.. function:: |>(command, command)
|>(command, filename)
|>(filename, command)
Redirect operator. Used for piping the output of a process into another (first form) or to redirect the standard output/input of a command to/from a file (second and third forms).
**Examples**:
* ``run(`ls` |> `grep xyz`)``
* ``run(`ls` |> "out.txt")``
* ``run("out.txt" |> `grep xyz`)``
.. function:: >>(command, filename)
Redirect standard output of a process, appending to the destination file.
.. function:: .>(command, filename)
Redirect the standard error stream of a process.
.. function:: gethostname() -> String
Get the local machine's host name.
.. function:: getipaddr() -> String
Get the IP address of the local machine, as a string of the form "x.x.x.x".
.. function:: pwd() -> String
Get the current working directory.
.. function:: cd(dir::String)
Set the current working directory.
.. function:: cd(f, [dir])
Temporarily changes the current working directory (HOME if not specified) and applies function f before returning.
.. function:: mkdir(path, [mode])
Make a new directory with name ``path`` and permissions ``mode``.
``mode`` defaults to 0o777, modified by the current file creation mask.
.. function:: mkpath(path, [mode])
Create all directories in the given ``path``, with permissions ``mode``.
``mode`` defaults to 0o777, modified by the current file creation mask.
.. function:: symlink(target, link)
Creates a symbolic link to ``target`` with the name ``link``.
.. note::
This function raises an error under operating systems that do not support
soft symbolic links, such as Windows XP.
.. function:: getpid() -> Int32
Get julia's process ID.
.. function:: time([t::TmStruct])
Get the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution. When passed a ``TmStruct``, converts it to a number of seconds since the epoch.
.. function:: time_ns()
Get the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.
.. function:: strftime([format], time)
Convert time, given as a number of seconds since the epoch or a ``TmStruct``, to a formatted string using the given format. Supported formats are the same as those in the standard C library.
.. function:: strptime([format], timestr)
Parse a formatted time string into a ``TmStruct`` giving the seconds, minute, hour, date, etc. Supported formats are the same as those in the standard C library. On some platforms, timezones will not be parsed correctly. If the result of this function will be passed to ``time`` to convert it to seconds since the epoch, the ``isdst`` field should be filled in manually. Setting it to ``-1`` will tell the C library to use the current system settings to determine the timezone.
.. function:: TmStruct([seconds])
Convert a number of seconds since the epoch to broken-down format, with fields ``sec``, ``min``, ``hour``, ``mday``, ``month``, ``year``, ``wday``, ``yday``, and ``isdst``.
.. function:: tic()
Set a timer to be read by the next call to :func:`toc` or :func:`toq`. The macro call ``@time expr`` can also be used to time evaluation.
.. function:: toc()
Print and return the time elapsed since the last :func:`tic`.
.. function:: toq()
Return, but do not print, the time elapsed since the last :func:`tic`.
.. function:: @time
A macro to execute an expression, printing the time it took to execute and the total number of bytes its execution caused to be allocated, before returning the value of the expression.
.. function:: @elapsed
A macro to evaluate an expression, discarding the resulting value, instead returning the number of seconds it took to execute as a floating-point number.
.. function:: @allocated
A macro to evaluate an expression, discarding the resulting value, instead returning the total number of bytes allocated during evaluation of the expression.
.. function:: EnvHash() -> EnvHash
A singleton of this type provides a hash table interface to environment variables.
.. data:: ENV
Reference to the singleton ``EnvHash``, providing a dictionary interface to system environment variables.
.. function:: @unix
Given ``@unix? a : b``, do ``a`` on Unix systems (including Linux and OS X) and ``b`` elsewhere. See documentation
for Handling Platform Variations in the Calling C and Fortran Code section of the manual.
.. function:: @osx
Given ``@osx? a : b``, do ``a`` on OS X and ``b`` elsewhere. See documentation for Handling Platform Variations
in the Calling C and Fortran Code section of the manual.
.. function:: @linux
Given ``@linux? a : b``, do ``a`` on Linux and ``b`` elsewhere. See documentation for Handling Platform Variations
in the Calling C and Fortran Code section of the manual.
.. function:: @windows
Given ``@windows? a : b``, do ``a`` on Windows and ``b`` elsewhere. See documentation for Handling Platform Variations
in the Calling C and Fortran Code section of the manual.
C Interface
-----------
.. function:: ccall((symbol, library) or fptr, RetType, (ArgType1, ...), ArgVar1, ...)
Call function in C-exported shared library, specified by ``(function name, library)`` tuple, where each component is a String or :Symbol. Alternatively,
ccall may be used to call a function pointer returned by dlsym, but note that this usage is generally discouraged to facilitate future static compilation.
Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression.
.. function:: cglobal((symbol, library) or ptr [, Type=Void])
Obtain a pointer to a global variable in a C-exported shared library, specified exactly as in ``ccall``. Returns a ``Ptr{Type}``, defaulting to ``Ptr{Void}`` if no Type argument is supplied. The values can be read or written by ``unsafe_load`` or ``unsafe_store!``, respectively.
.. function:: cfunction(fun::Function, RetType::Type, (ArgTypes...))
Generate C-callable function pointer from Julia function. Type annotation of the return value in the
callback function is a must for situations where Julia cannot infer the return type automatically.
For example::
function foo()
# body
retval::Float64
end
bar = cfunction(foo, Float64, ())
.. function:: dlopen(libfile::String [, flags::Integer])
Load a shared library, returning an opaque handle.
The optional flags argument is a bitwise-or of zero or more of
RTLD_LOCAL, RTLD_GLOBAL, RTLD_LAZY, RTLD_NOW, RTLD_NODELETE,
RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST. These are converted to
the corresponding flags of the POSIX (and/or GNU libc and/or MacOS)
dlopen command, if possible, or are ignored if the specified
functionality is not available on the current platform. The
default is RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL. An important usage
of these flags, on POSIX platforms, is to specify
RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL in order for the library's
symbols to be available for usage in other shared libraries, in
situations where there are dependencies between shared libraries.
.. function:: dlopen_e(libfile::String [, flags::Integer])
Similar to ``dlopen``, except returns a NULL pointer instead of raising errors.
.. data:: RTLD_DEEPBIND
Enum constant for dlopen. See your platform man page for details, if applicable.
.. data:: RTLD_FIRST
Enum constant for dlopen. See your platform man page for details, if applicable.
.. data:: RTLD_GLOBAL
Enum constant for dlopen. See your platform man page for details, if applicable.
.. data:: RTLD_LAZY
Enum constant for dlopen. See your platform man page for details, if applicable.
.. data:: RTLD_LOCAL
Enum constant for dlopen. See your platform man page for details, if applicable.
.. data:: RTLD_NODELETE
Enum constant for dlopen. See your platform man page for details, if applicable.
.. data:: RTLD_NOLOAD
Enum constant for dlopen. See your platform man page for details, if applicable.
.. data:: RTLD_NOW
Enum constant for dlopen. See your platform man page for details, if applicable.
.. function:: dlsym(handle, sym)
Look up a symbol from a shared library handle, return callable function pointer on success.
.. function:: dlsym_e(handle, sym)
Look up a symbol from a shared library handle, silently return NULL pointer on lookup failure.
.. function:: dlclose(handle)
Close shared library referenced by handle.
.. function:: find_library(names, locations)
Searches for the first library in ``names`` in the paths in the ``locations`` list, ``DL_LOAD_PATH``, or system
library paths (in that order) which can successfully be dlopen'd. On success, the return value will be one of
the names (potentially prefixed by one of the paths in locations). This string can be assigned to a ``global const``
and used as the library name in future ``ccall``'s. On failure, it returns the empty string.
.. data:: DL_LOAD_PATH
When calling ``dlopen``, the paths in this list will be searched first, in order, before searching the
system locations for a valid library handle.
.. function:: c_malloc(size::Integer) -> Ptr{Void}
Call ``malloc`` from the C standard library.
.. function:: c_calloc(num::Integer, size::Integer) -> Ptr{Void}
Call ``calloc`` from the C standard library.
.. function:: c_realloc(addr::Ptr, size::Integer) -> Ptr{Void}
Call ``realloc`` from the C standard library.
.. function:: c_free(addr::Ptr)
Call ``free`` from the C standard library.
.. function:: unsafe_load(p::Ptr{T},i::Integer)
Load a value of type ``T`` from the address of the ith element (1-indexed)
starting at ``p``. This is equivalent to the C expression ``p[i-1]``.
.. function:: unsafe_store!(p::Ptr{T},x,i::Integer)
Store a value of type ``T`` to the address of the ith element (1-indexed)
starting at ``p``. This is equivalent to the C expression ``p[i-1] = x``.
.. function:: unsafe_copy!(dest::Ptr{T}, src::Ptr{T}, N)
Copy ``N`` elements from a source pointer to a destination, with no checking. The
size of an element is determined by the type of the pointers.
.. function:: unsafe_copy!(dest::Array, do, src::Array, so, N)
Copy ``N`` elements from a source array to a destination, starting at offset ``so``
in the source and ``do`` in the destination (1-indexed).
.. function:: copy!(dest, src)
Copy all elements from collection ``src`` to array ``dest``. Returns ``dest``.
.. function:: copy!(dest, do, src, so, N)
Copy ``N`` elements from collection ``src`` starting at offset ``so``, to
array ``dest`` starting at offset ``do``. Returns ``dest``.
.. function:: pointer(a[, index])
Get the native address of an array or string element. Be careful to
ensure that a julia reference to ``a`` exists as long as this
pointer will be used.
.. function:: pointer(type, int)
Convert an integer to a pointer of the specified element type.
.. function:: pointer_to_array(p, dims[, own])
Wrap a native pointer as a Julia Array object. The pointer element type determines
the array element type. ``own`` optionally specifies whether Julia should take
ownership of the memory, calling ``free`` on the pointer when the array is no
longer referenced.
.. function:: pointer_from_objref(obj)
Get the memory address of a Julia object as a ``Ptr``. The existence of the resulting
``Ptr`` will not protect the object from garbage collection, so you must ensure
that the object remains referenced for the whole time that the ``Ptr`` will be used.
.. function:: unsafe_pointer_to_objref(p::Ptr)
Convert a ``Ptr`` to an object reference. Assumes the pointer refers to a
valid heap-allocated Julia object. If this is not the case, undefined behavior
results, hence this function is considered "unsafe" and should be used with care.
.. function:: disable_sigint(f::Function)
Disable Ctrl-C handler during execution of a function, for calling
external code that is not interrupt safe. Intended to be called using ``do``
block syntax as follows::
disable_sigint() do
# interrupt-unsafe code
...
end
.. function:: reenable_sigint(f::Function)
Re-enable Ctrl-C handler during execution of a function. Temporarily
reverses the effect of ``disable_sigint``.
.. function:: errno([code])
Get the value of the C library's ``errno``. If an argument is specified, it is
used to set the value of ``errno``.
The value of ``errno`` is only valid immediately after a ``ccall`` to a C
library routine that sets it. Specifically, you cannot call ``errno`` at the next
prompt in a REPL, because lots of code is executed between prompts.
.. function:: systemerror(sysfunc, iftrue)
Raises a ``SystemError`` for ``errno`` with the descriptive string ``sysfunc`` if ``bool`` is true
.. function:: strerror(n)
Convert a system call error code to a descriptive string
.. data:: Cchar
Equivalent to the native ``char`` c-type
.. data:: Cuchar
Equivalent to the native ``unsigned char`` c-type (Uint8)
.. data:: Cshort
Equivalent to the native ``signed short`` c-type (Int16)
.. data:: Cushort
Equivalent to the native ``unsigned short`` c-type (Uint16)
.. data:: Cint
Equivalent to the native ``signed int`` c-type (Int32)
.. data:: Cuint
Equivalent to the native ``unsigned int`` c-type (Uint32)
.. data:: Clong
Equivalent to the native ``signed long`` c-type
.. data:: Culong
Equivalent to the native ``unsigned long`` c-type
.. data:: Clonglong
Equivalent to the native ``signed long long`` c-type (Int64)
.. data:: Culonglong
Equivalent to the native ``unsigned long long`` c-type (Uint64)
.. data:: Csize_t
Equivalent to the native ``size_t`` c-type (Uint)
.. data:: Cssize_t
Equivalent to the native ``ssize_t`` c-type
.. data:: Cptrdiff_t
Equivalent to the native ``ptrdiff_t`` c-type (Int)
.. data:: Coff_t
Equivalent to the native ``off_t`` c-type
.. data:: Cwchar_t
Equivalent to the native ``wchar_t`` c-type (Int32)
.. data:: Cfloat
Equivalent to the native ``float`` c-type (Float32)
.. data:: Cdouble
Equivalent to the native ``double`` c-type (Float64)
Errors
------
.. function:: error(message::String)
Raise an error with the given message
.. function:: throw(e)
Throw an object as an exception
.. function:: rethrow([e])
Throw an object without changing the current exception backtrace.
The default argument is the current exception (if called within a
``catch`` block).
.. function:: backtrace()
Get a backtrace object for the current program point.
.. function:: catch_backtrace()
Get the backtrace of the current exception, for use within ``catch``
blocks.
.. function:: assert(cond, [text])
Raise an error if ``cond`` is false. Also available as the macro ``@assert expr``.
.. function:: @assert
Raise an error if ``cond`` is false. Preferred syntax for writings assertions.
.. data:: ArgumentError
The parameters given to a function call are not valid.
.. data:: BoundsError
An indexing operation into an array tried to access an out-of-bounds element.
.. data:: EOFError
No more data was available to read from a file or stream.
.. data:: ErrorException
Generic error type. The error message, in the `.msg` field, may provide more specific details.
.. data:: KeyError
An indexing operation into an ``Associative`` (``Dict``) or ``Set`` like object tried to access or delete a non-existent element.
.. data:: LoadError
An error occurred while `including`, `requiring`, or `using` a file. The error specifics should be available in the `.error` field.
.. data:: MethodError
A method with the required type signature does not exist in the given generic function.
.. data:: ParseError
The expression passed to the `parse` function could not be interpreted as a valid Julia expression.
.. data:: ProcessExitedException
After a client Julia process has exited, further attempts to reference the dead child will throw this exception.
.. data:: SystemError
A system call failed with an error code (in the ``errno`` global variable).
.. data:: TypeError
A type assertion failure, or calling an intrinsic function with an incorrect argument type.
Tasks
-----
.. function:: Task(func)
Create a ``Task`` (i.e. thread, or coroutine) to execute the given function (which must be callable with no arguments). The task exits when this function returns.
.. function:: yieldto(task, args...)
Switch to the given task. The first time a task is switched to, the task's function is called with no arguments. On subsequent switches, ``args`` are returned from the task's last call to ``yieldto``. This is a low-level call that only switches tasks, not considering states or scheduling in any way.
.. function:: current_task()
Get the currently running Task.
.. function:: istaskdone(task) -> Bool
Tell whether a task has exited.
.. function:: consume(task, values...)
Receive the next value passed to ``produce`` by the specified task.
Additional arguments may be passed, to be returned from the last ``produce`` call
in the producer.
.. function:: produce(value)
Send the given value to the last ``consume`` call, switching to the consumer task.
If the next ``consume`` call passes any values, they are returned by ``produce``.
.. function:: yield()
Switch to the scheduler to allow another scheduled task to run. A task that calls this function is still runnable, and will be restarted immediately if there are no other runnable tasks.
.. function:: task_local_storage(symbol)
Look up the value of a symbol in the current task's task-local storage.
.. function:: task_local_storage(symbol, value)
Assign a value to a symbol in the current task's task-local storage.
.. function:: task_local_storage(body, symbol, value)
Call the function ``body`` with a modified task-local storage, in which
``value`` is assigned to ``symbol``; the previous value of ``symbol``, or
lack thereof, is restored afterwards. Useful for emulating dynamic scoping.
.. function:: Condition()
Create an edge-triggered event source that tasks can wait for. Tasks
that call ``wait`` on a ``Condition`` are suspended and queued.
Tasks are woken up when ``notify`` is later called on the ``Condition``.
Edge triggering means that only tasks waiting at the time ``notify`` is
called can be woken up. For level-triggered notifications, you must
keep extra state to keep track of whether a notification has happened.
The ``RemoteRef`` type does this, and so can be used for level-triggered
events.
.. function:: notify(condition, val=nothing; all=true, error=false)
Wake up tasks waiting for a condition, passing them ``val``.
If ``all`` is true (the default), all waiting tasks are woken, otherwise
only one is. If ``error`` is true, the passed value is raised as an
exception in the woken tasks.
.. function:: schedule(t::Task, [val]; error=false)
Add a task to the scheduler's queue. This causes the task to run constantly
when the system is otherwise idle, unless the task performs a blocking
operation such as ``wait``.
If a second argument is provided, it will be passed to the task (via the
return value of ``yieldto``) when it runs again. If ``error`` is true,
the value is raised as an exception in the woken task.
.. function:: @schedule
Wrap an expression in a Task and add it to the scheduler's queue.
.. function:: @task
Wrap an expression in a Task executing it, and return the Task. This
only creates a task, and does not run it.
.. function:: sleep(seconds)
Block the current task for a specified number of seconds. The minimum sleep
time is 1 millisecond or input of ``0.001``.
Events
------
.. function:: Timer(f::Function)
Create a timer to call the given callback function. The callback
is passed one argument, the timer object itself. The timer can be
started and stopped with ``start_timer`` and ``stop_timer``.
.. function:: start_timer(t::Timer, delay, repeat)
Start invoking the callback for a ``Timer`` after the specified initial
delay, and then repeating with the given interval. Times are in seconds.
If ``repeat`` is ``0``, the timer is only triggered once.
.. function:: stop_timer(t::Timer)
Stop invoking the callback for a timer.
Reflection
----------
.. function:: module_name(m::Module) -> Symbol
Get the name of a module as a symbol.
.. function:: module_parent(m::Module) -> Module
Get a module's enclosing module. ``Main`` is its own parent.
.. function:: current_module() -> Module
Get the *dynamically* current module, which is the module code is currently being
read from. In general, this is not the same as the module containing the call to
this function.
.. function:: fullname(m::Module)
Get the fully-qualified name of a module as a tuple of symbols. For example,
``fullname(Base.Pkg)`` gives ``(:Base,:Pkg)``, and ``fullname(Main)`` gives ``()``.
.. function:: names(x::Module[, all=false[, imported=false]])
Get an array of the names exported by a module, with optionally more module
globals according to the additional parameters.
.. function:: names(x::DataType)
Get an array of the fields of a data type.
.. function:: isconst([m::Module], s::Symbol) -> Bool
Determine whether a global is declared ``const`` in a given module.
The default module argument is ``current_module()``.
.. function:: isgeneric(f::Function) -> Bool
Determine whether a function is generic.
.. function:: function_name(f::Function) -> Symbol
Get the name of a generic function as a symbol, or ``:anonymous``.
.. function:: function_module(f::Function, types) -> Module
Determine the module containing a given definition of a generic function.
.. function:: functionloc(f::Function, types)
Returns a tuple ``(filename,line)`` giving the location of a method definition.
.. function:: functionlocs(f::Function, types)
Returns an array of the results of ``functionloc`` for all matching definitions.
Internals
---------
.. function:: gc()
Perform garbage collection. This should not generally be used.
.. function:: gc_disable()
Disable garbage collection. This should be used only with extreme
caution, as it can cause memory use to grow without bound.
.. function:: gc_enable()
Re-enable garbage collection after calling ``gc_disable``.
.. function:: macroexpand(x)
Takes the expression x and returns an equivalent expression with all macros removed (expanded).
.. function:: expand(x)
Takes the expression x and returns an equivalent expression in lowered form
.. function:: code_lowered(f, types)
Returns an array of lowered ASTs for the methods matching the given generic function and type signature.
.. function:: @code_lowered
Evaluates the arguments to the function call, determines their types, and calls the ``code_lowered`` function on the resulting expression
.. function:: code_typed(f, types)
Returns an array of lowered and type-inferred ASTs for the methods matching the given generic function and type signature.
.. function:: @code_typed
Evaluates the arguments to the function call, determines their types, and calls the ``code_typed`` function on the resulting expression
.. function:: code_llvm(f, types)
Prints the LLVM bitcodes generated for running the method matching the given generic function and type signature to STDOUT.
.. function:: @code_llvm
Evaluates the arguments to the function call, determines their types, and calls the ``code_llvm`` function on the resulting expression
.. function:: code_native(f, types)
Prints the native assembly instructions generated for running the method matching the given generic function and type signature to STDOUT.
.. function:: @code_native
Evaluates the arguments to the function call, determines their types, and calls the ``code_native`` function on the resulting expression
.. function:: precompile(f,args::(Any...,))
Compile the given function `f` for the argument tuple (of types) `args`, but do not execute it.
|