File: arpack.jl

package info (click to toggle)
julia 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 17,868 kB
  • ctags: 13,696
  • sloc: ansic: 102,603; lisp: 86,819; sh: 12,179; cpp: 8,793; makefile: 3,069; ruby: 1,594; python: 936; pascal: 697; xml: 532; java: 510; f90: 403; asm: 102; perl: 77; sql: 6
file content (130 lines) | stat: -rw-r--r-- 4,572 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
begin
    srand(1234)
    local n,a,asym,b,bsym,d,v
    n = 10
    areal  = sprandn(n,n,0.4)
    breal  = sprandn(n,n,0.4)
    acmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4))
    bcmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4))

    testtol = 1e-6

    for elty in (Float64, Complex128)
        if elty == Complex64 || elty == Complex128
            a = acmplx
            b = bcmplx
        else
            a = areal
            b = breal
        end
        a     = convert(SparseMatrixCSC{elty}, a)
        asym  = a' + a                  # symmetric indefinite
        apd   = a'*a                    # symmetric positive-definite

        b     = convert(SparseMatrixCSC{elty}, b)
        bsym  = b' + b
        bpd   = b'*b

    	(d,v) = eigs(a, nev=3)
    	@test_approx_eq a*v[:,2] d[2]*v[:,2]
        @test norm(v) > testtol # eigenvectors cannot be null vectors
        # (d,v) = eigs(a, b, nev=3, tol=1e-8) # not handled yet
        # @test_approx_eq_eps a*v[:,2] d[2]*b*v[:,2] testtol
        # @test norm(v) > testtol # eigenvectors cannot be null vectors
    
    	(d,v) = eigs(asym, nev=3)
    	@test_approx_eq asym*v[:,1] d[1]*v[:,1]
        @test_approx_eq eigs(asym; nev=1, sigma=d[3])[1][1] d[3]
        @test norm(v) > testtol # eigenvectors cannot be null vectors
    
    	(d,v) = eigs(apd, nev=3)
    	@test_approx_eq apd*v[:,3] d[3]*v[:,3]
        @test_approx_eq eigs(apd; nev=1, sigma=d[3])[1][1] d[3]
    	
        (d,v) = eigs(apd, bpd, nev=3, tol=1e-8)
    	@test_approx_eq_eps apd*v[:,2] d[2]*bpd*v[:,2] testtol
        @test norm(v) > testtol # eigenvectors cannot be null vectors
    
        # test (shift-and-)invert mode
        (d,v) = eigs(apd, nev=3, sigma=0)
        @test_approx_eq apd*v[:,3] d[3]*v[:,3]
        @test norm(v) > testtol # eigenvectors cannot be null vectors
        
        (d,v) = eigs(apd, bpd, nev=3, sigma=0, tol=1e-8)
        @test_approx_eq_eps apd*v[:,1] d[1]*bpd*v[:,1] testtol
        @test norm(v) > testtol # eigenvectors cannot be null vectors

    end
end

# Problematic example from #6965
A6965 = [
         1.0   1.0   1.0   1.0   1.0   1.0   1.0  1.0
        -1.0   2.0   0.0   0.0   0.0   0.0   0.0  1.0
        -1.0   0.0   3.0   0.0   0.0   0.0   0.0  1.0
        -1.0   0.0   0.0   4.0   0.0   0.0   0.0  1.0
        -1.0   0.0   0.0   0.0   5.0   0.0   0.0  1.0
        -1.0   0.0   0.0   0.0   0.0   6.0   0.0  1.0
        -1.0   0.0   0.0   0.0   0.0   0.0   7.0  1.0
        -1.0  -1.0  -1.0  -1.0  -1.0  -1.0  -1.0  8.0
       ];
       
d, = eigs(A6965,which=:SM,nev=2,ncv=4,tol=eps())
@test_approx_eq d[1] 2.5346936860350002
@test_approx_eq real(d[2]) 2.6159972444834976
@test_approx_eq abs(imag(d[2])) 1.2917858749046127

# Requires ARPACK 3.2 or a patched 3.1.5
#T6965 = [ 0.9  0.05  0.05
#          0.8  0.1   0.1 
#          0.7  0.1   0.2 ]
#d,v,nconv = eigs(T6965,nev=1,which=:LM)
#@test_approx_eq_eps T6965*v d[1]*v 1e-6

# Example from Quantum Information Theory
import Base: size, issym, ishermitian

type CPM{T<:Base.LinAlg.BlasFloat}<:AbstractMatrix{T} # completely positive map
	kraus::Array{T,3} # kraus operator representation
end

size(Phi::CPM)=(size(Phi.kraus,1)^2,size(Phi.kraus,3)^2)
issym(Phi::CPM)=false
ishermitian(Phi::CPM)=false

function *{T<:Base.LinAlg.BlasFloat}(Phi::CPM{T},rho::Vector{T})
	rho=reshape(rho,(size(Phi.kraus,3),size(Phi.kraus,3)))
	rho2=zeros(T,(size(Phi.kraus,1),size(Phi.kraus,1)))
	for s=1:size(Phi.kraus,2)
		As=slice(Phi.kraus,:,s,:)
		rho2+=As*rho*As'
	end
	return reshape(rho2,(size(Phi.kraus,1)^2,))
end
# Generate random isometry
(Q,R)=qr(randn(100,50))
Q=reshape(Q,(50,2,50))
# Construct trace-preserving completely positive map from this
Phi=CPM(Q)
(d,v,nconv,numiter,numop,resid) = eigs(Phi,nev=1,which=:LM)
# Properties: largest eigenvalue should be 1, largest eigenvector, when reshaped as matrix
# should be a Hermitian positive definite matrix (up to an arbitrary phase)

@test_approx_eq d[1] 1. # largest eigenvalue should be 1.
v=reshape(v,(50,50)) # reshape to matrix
v/=trace(v) # factor out arbitrary phase
@test isapprox(vecnorm(imag(v)),0.) # it should be real
v=real(v)
# @test isapprox(vecnorm(v-v')/2,0.) # it should be Hermitian
# Since this fails sometimes (numerical precision error),this test is commented out
v=(v+v')/2
@test isposdef(v)

# Repeat with starting vector
(d2,v2,nconv2,numiter2,numop2,resid2) = eigs(Phi,nev=1,which=:LM,v0=reshape(v,(2500,)))
v2=reshape(v2,(50,50))
v2/=trace(v2)
@test numiter2<numiter
@test_approx_eq v v2

@test_approx_eq eigs(speye(50), nev=10)[1] ones(10) #Issue 4246