1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
# frexp,ldexp,significand,exponent
@test frexp(12.8) == (0.8,4)
@test ldexp(0.8,4) == 12.8
@test significand(12.8) == 1.6
@test exponent(12.8) == 3
# degree-based trig functions
for T = (Float32,Float64)
for x = -400:40:400
@test_approx_eq_eps sind(convert(T,x))::T convert(T,sin(pi/180*x)) eps(deg2rad(convert(T,x)))
@test_approx_eq_eps cosd(convert(T,x))::T convert(T,cos(pi/180*x)) eps(deg2rad(convert(T,x)))
end
for x = 0.0:180:720
@test sind(convert(T,x)) === zero(T)
@test sind(-convert(T,x)) === -zero(T)
end
for x = -3:0.3:3
@test_approx_eq_eps sinpi(convert(T,x))::T convert(T,sin(pi*x)) eps(pi*convert(T,x))
@test_approx_eq_eps cospi(convert(T,x))::T convert(T,cos(pi*x)) eps(pi*convert(T,x))
end
for x = 0.0:1.0:4.0
@test sinpi(convert(T,x)) === zero(T)
@test sinpi(-convert(T,x)) === -zero(T)
end
end
# check type stability
for T = (Float32,Float64,BigFloat)
for f = (sind,cosd,sinpi,cospi)
@test Base.return_types(f,(T,)) == [T]
end
end
# error functions
@test_approx_eq erf(1) 0.84270079294971486934
@test_approx_eq erfc(1) 0.15729920705028513066
@test_approx_eq erfcx(1) 0.42758357615580700442
@test_approx_eq erfi(1) 1.6504257587975428760
@test_approx_eq erfinv(0.84270079294971486934) 1
@test_approx_eq erfcinv(0.15729920705028513066) 1
@test_approx_eq dawson(1) 0.53807950691276841914
# TODO: complex versions only supported on 64-bit for now
@unix_only if WORD_SIZE==64
@test_approx_eq erf(1+2im) -0.53664356577856503399-5.0491437034470346695im
@test_approx_eq erfc(1+2im) 1.5366435657785650340+5.0491437034470346695im
@test_approx_eq erfcx(1+2im) 0.14023958136627794370-0.22221344017989910261im
@test_approx_eq erfi(1+2im) -0.011259006028815025076+1.0036063427256517509im
@test_approx_eq dawson(1+2im) -13.388927316482919244-11.828715103889593303im
end
for x in logspace(-200, -0.01)
@test_approx_eq_eps erf(erfinv(x)) x 1e-12*x
@test_approx_eq_eps erf(erfinv(-x)) -x 1e-12*x
@test_approx_eq_eps erfc(erfcinv(2*x)) 2*x 1e-12*x
if x > 1e-20
xf = float32(x)
@test_approx_eq_eps erf(erfinv(xf)) xf 1e-5*xf
@test_approx_eq_eps erf(erfinv(-xf)) -xf 1e-5*xf
@test_approx_eq_eps erfc(erfcinv(2xf)) 2xf 1e-5*xf
end
end
# airy
@test_approx_eq airy(1.8) 0.0470362168668458052247
@test_approx_eq airyprime(1.8) -0.0685247801186109345638
@test_approx_eq airybi(1.8) 2.595869356743906290060
@test_approx_eq airybiprime(1.8) 2.98554005084659907283
@test_throws Base.Math.AmosException airy(200im)
@test_throws Base.Math.AmosException airybi(200)
z = 1.8 + 1.0im
@test_approx_eq airyx(0, z) airy(0, z) * exp(2/3 * z * sqrt(z))
@test_approx_eq airyx(1, z) airy(1, z) * exp(2/3 * z * sqrt(z))
@test_approx_eq airyx(2, z) airy(2, z) * exp(-abs(real(2/3 * z * sqrt(z))))
@test_approx_eq airyx(3, z) airy(3, z) * exp(-abs(real(2/3 * z * sqrt(z))))
# besselh
true_h133 = 0.30906272225525164362 - 0.53854161610503161800im
@test_approx_eq besselh(3,1,3) true_h133
@test_approx_eq besselh(-3,1,3) -true_h133
@test_approx_eq besselh(3,2,3) conj(true_h133)
@test_approx_eq besselh(-3,2,3) -conj(true_h133)
@test_throws Base.Math.AmosException besselh(1,0)
# besseli
true_i33 = 0.95975362949600785698
@test_approx_eq besseli(3,3) true_i33
@test_approx_eq besseli(-3,3) true_i33
@test_approx_eq besseli(3,-3) -true_i33
@test_approx_eq besseli(-3,-3) -true_i33
@test_throws Base.Math.AmosException besseli(1,1000)
# besselj
@test besselj(0,0) == 1
for i = 1:5
@test besselj(i,0) == 0
@test besselj(-i,0) == 0
end
j33 = besselj(3,3.)
@test besselj(3,3) == j33
@test besselj(-3,-3) == j33
@test besselj(-3,3) == -j33
@test besselj(3,-3) == -j33
j43 = besselj(4,3.)
@test besselj(4,3) == j43
@test besselj(-4,-3) == j43
@test besselj(-4,3) == j43
@test besselj(4,-3) == j43
@test_approx_eq j33 0.30906272225525164362
@test_approx_eq j43 0.13203418392461221033
@test_throws DomainError besselj(0.1, -0.4)
@test_approx_eq besselj(0.1, complex(-0.4)) 0.820421842809028916 + 0.266571215948350899im
@test_approx_eq besselj(3.2, 1.3+0.6im) 0.01135309305831220201 + 0.03927719044393515275im
@test_approx_eq besselj(1, 3im) 3.953370217402609396im
@test_throws Base.Math.AmosException besselj(20,1000im)
# besselk
true_k33 = 0.12217037575718356792
@test_approx_eq besselk(3,3) true_k33
@test_approx_eq besselk(-3,3) true_k33
true_k3m3 = -0.1221703757571835679 - 3.0151549516807985776im
@test_throws DomainError besselk(3,-3)
@test_approx_eq besselk(3,complex(-3)) true_k3m3
@test_approx_eq besselk(-3,complex(-3)) true_k3m3
@test_throws Base.Math.AmosException besselk(200,0.01)
# issue #6564
@test besselk(1.0,0.0) == Inf
# bessely
y33 = bessely(3,3.)
@test bessely(3,3) == y33
@test_approx_eq bessely(-3,3) -y33
@test_approx_eq y33 -0.53854161610503161800
@test_throws DomainError bessely(3,-3)
@test_approx_eq bessely(3,complex(-3)) 0.53854161610503161800 - 0.61812544451050328724im
@test_throws Base.Math.AmosException bessely(200.5,0.1)
# issue #6653
for f in (besselj,bessely,besseli,besselk,hankelh1,hankelh2)
@test_approx_eq f(0,1) f(0,complex128(1))
@test_approx_eq f(0,1) f(0,complex64(1))
end
# scaled bessel[ijky] and hankelh[12]
for x in (1.0, 0.0, -1.0), y in (1.0, 0.0, -1.0), nu in (1.0, 0.0, -1.0)
z = complex128(x + y * im)
z == zero(z) || @test_approx_eq hankelh1x(nu, z) hankelh1(nu, z) * exp(-z * im)
z == zero(z) || @test_approx_eq hankelh2x(nu, z) hankelh2(nu, z) * exp(z * im)
(nu < 0 && z == zero(z)) || @test_approx_eq besselix(nu, z) besseli(nu, z) * exp(-abs(real(z)))
(nu < 0 && z == zero(z)) || @test_approx_eq besseljx(nu, z) besselj(nu, z) * exp(-abs(imag(z)))
z == zero(z) || @test_approx_eq besselkx(nu, z) besselk(nu, z) * exp(z)
z == zero(z) || @test_approx_eq besselyx(nu, z) bessely(nu, z) * exp(-abs(imag(z)))
end
@test_throws Base.Math.AmosException hankelh1x(1, 0)
@test_throws Base.Math.AmosException hankelh2x(1, 0)
@test_throws Base.Math.AmosException besselix(-1, 0)
@test_throws Base.Math.AmosException besseljx(-1, 0)
@test besselkx(1, 0) == Inf
@test_throws Base.Math.AmosException besselyx(1, 0)
# beta, lbeta
@test_approx_eq beta(3/2,7/2) 5π/128
@test_approx_eq beta(3,5) 1/105
@test_approx_eq lbeta(5,4) log(beta(5,4))
@test_approx_eq beta(5,4) beta(4,5)
@test_approx_eq beta(-1/2, 3) -16/3
@test_approx_eq lbeta(-1/2, 3) log(16/3)
# gamma, lgamma (complex argument)
@test gamma(1:25) == gamma(Float64[1:25])
@test_approx_eq gamma(1/2) sqrt(π)
@test_approx_eq gamma(-1/2) -2sqrt(π)
@test_approx_eq lgamma(-1/2) log(abs(gamma(-1/2)))
@test_approx_eq lgamma(1.4+3.7im) -3.7094025330996841898 + 2.4568090502768651184im
@test_approx_eq lgamma(1.4+3.7im) log(gamma(1.4+3.7im))
# digamma
for elty in (Float32, Float64)
@test_approx_eq digamma(convert(elty, 9)) convert(elty, 2.140641477955609996536345)
@test_approx_eq digamma(convert(elty, 2.5)) convert(elty, 0.7031566406452431872257)
@test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041107679516822)
@test_approx_eq digamma(convert(elty, 7e-4)) convert(elty, -1429.147493371120205005198)
@test_approx_eq digamma(convert(elty, 7e-5)) convert(elty, -14286.29138623969227538398)
@test_approx_eq digamma(convert(elty, 7e-6)) convert(elty, -142857.7200612932791081972)
@test_approx_eq digamma(convert(elty, 2e-6)) convert(elty, -500000.5772123750382073831)
@test_approx_eq digamma(convert(elty, 1e-6)) convert(elty, -1000000.577214019968668068)
@test_approx_eq digamma(convert(elty, 7e-7)) convert(elty, -1428572.005785942019703646)
@test_approx_eq digamma(convert(elty, -0.5)) convert(elty, .03648997397857652055902367)
@test_approx_eq digamma(convert(elty, -1.1)) convert(elty, 10.15416395914385769902271)
@test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041108)
@test_approx_eq digamma(convert(elty, 1/2)) convert(elty, -γ - log(4))
@test_approx_eq digamma(convert(elty, 1)) convert(elty, -γ)
@test_approx_eq digamma(convert(elty, 2)) convert(elty, 1 - γ)
@test_approx_eq digamma(convert(elty, 3)) convert(elty, 3/2 - γ)
@test_approx_eq digamma(convert(elty, 4)) convert(elty, 11/6 - γ)
@test_approx_eq digamma(convert(elty, 5)) convert(elty, 25/12 - γ)
@test_approx_eq digamma(convert(elty, 10)) convert(elty, 7129/2520 - γ)
end
# trigamma
for elty in (Float32, Float64)
@test_approx_eq trigamma(convert(elty, 0.1)) convert(elty, 101.433299150792758817)
@test_approx_eq trigamma(convert(elty, 1/2)) convert(elty, π^2/2)
@test_approx_eq trigamma(convert(elty, 1)) convert(elty, π^2/6)
@test_approx_eq trigamma(convert(elty, 2)) convert(elty, π^2/6 - 1)
@test_approx_eq trigamma(convert(elty, 3)) convert(elty, π^2/6 - 5/4)
@test_approx_eq trigamma(convert(elty, 4)) convert(elty, π^2/6 - 49/36)
@test_approx_eq trigamma(convert(elty, 5)) convert(elty, π^2/6 - 205/144)
@test_approx_eq trigamma(convert(elty, 10)) convert(elty, π^2/6 - 9778141/6350400)
end
# invdigamma
for elty in (Float32, Float64)
for val in [0.001, 0.01, 0.1, 1.0, 10.0]
@test abs(invdigamma(digamma(convert(elty, val))) - convert(elty, val)) < 1e-8
end
end
@test_approx_eq polygamma(20, 7.) -4.644616027240543262561198814998587152547
# eta, zeta
@test_approx_eq eta(1) log(2)
@test_approx_eq eta(2) pi^2/12
@test_approx_eq zeta(0) -0.5
@test_approx_eq zeta(2) pi^2/6
@test_approx_eq zeta(4) pi^4/90
# quadgk
@test_approx_eq quadgk(cos, 0,0.7,1)[1] sin(1)
@test_approx_eq quadgk(x -> exp(im*x), 0,0.7,1)[1] (exp(1im)-1)/im
@test_approx_eq quadgk(x -> exp(im*x), 0,1im)[1] -1im*expm1(-1)
@test_approx_eq_eps quadgk(cos, 0,BigFloat(1),order=40)[1] sin(BigFloat(1)) 1000*eps(BigFloat)
@test_approx_eq quadgk(x -> exp(-x), 0,0.7,Inf)[1] 1.0
@test_approx_eq quadgk(x -> exp(x), -Inf,0)[1] 1.0
@test_approx_eq quadgk(x -> exp(-x^2), -Inf,Inf)[1] sqrt(pi)
@test_approx_eq quadgk(x -> [exp(-x), exp(-2x)], 0, Inf)[1] [1,0.5]
@test_approx_eq quadgk(cos, 0,0.7,1, norm=abs)[1] sin(1)
# Ensure subnormal flags functions don't segfault
@test any(ccall("jl_zero_subnormals", Uint8, (Uint8,), 1) .== [0x00 0x01])
@test any(ccall("jl_zero_subnormals", Uint8, (Uint8,), 0) .== [0x00 0x01])
# isqrt (issue #4884)
@test isqrt(9223372030926249000) == 3037000498
@test isqrt(typemax(Int128)) == int128("13043817825332782212")
@test isqrt(int128(typemax(Int64))^2-1) == 9223372036854775806
@test isqrt(0) == 0
for i = 1:1000
n = rand(Uint128)
s = isqrt(n)
@test s*s <= n
@test (s+1)*(s+1) > n
n = rand(Uint64)
s = isqrt(n)
@test s*s <= n
@test (s+1)*(s+1) > n
end
# useful test functions for relative error
err(z, x) = abs(z - x) / abs(x)
errc(z, x) = max(err(real(z),real(x)), err(imag(z),imag(x)))
for x in -10.2:0.3456:50
@test 1e-12 > err(digamma(x+0im), digamma(x))
end
# digamma, trigamma, polygamma & zeta test cases (compared to Wolfram Alpha)
@test 1e-13 > err(digamma(7+0im), 1.872784335098467139393487909917597568957840664060076401194232)
@test 1e-13 > errc(digamma(7im), 1.94761433458434866917623737015561385331974500663251349960124 + 1.642224898223468048051567761191050945700191089100087841536im)
@test 1e-13 > errc(digamma(-3.2+0.1im), 4.65022505497781398615943030397508454861261537905047116427511+2.32676364843128349629415011622322040021960602904363963042380im)
@test 1e-13 > err(trigamma(8+0im), 0.133137014694031425134546685920401606452509991909746283540546)
@test 1e-13 > errc(trigamma(8im), -0.0078125000000000000029194973110119898029284994355721719150 - 0.12467345030312762782439017882063360876391046513966063947im)
@test 1e-13 > errc(trigamma(-3.2+0.1im), 15.2073506449733631753218003030676132587307964766963426965699+15.7081038855113567966903832015076316497656334265029416039199im)
@test 1e-13 > err(polygamma(2, 8.1+0im), -0.01723882695611191078960494454602091934457319791968308929600)
@test 1e-13 > errc(polygamma(30, 8.1+2im), -2722.8895150799704384107961215752996280795801958784600407589+6935.8508929338093162407666304759101854270641674671634631058im)
@test 1e-13 > errc(polygamma(3, 2.1+1im), 0.00083328137020421819513475400319288216246978855356531898998-0.27776110819632285785222411186352713789967528250214937861im)
@test 1e-11 > err(polygamma(3, -4.2 + 2im),-0.0037752884324358856340054736472407163991189965406070325067-0.018937868838708874282432870292420046797798431078848805822im)
@test 1e-13 > err(polygamma(13, 5.2 - 2im), 0.08087519202975913804697004241042171828113370070289754772448-0.2300264043021038366901951197725318713469156789541415899307im)
@test 1e-11 > err(polygamma(123, -47.2 + 0im), 5.7111648667225422758966364116222590509254011308116701029e291)
@test 1e-13 > errc(zeta(4.1+0.3im, -3.2+0.1im), -461.95403678374488506025596495576748255121001107881278765917+926.02552636148651929560277856510991293536052745360005500774im)
@test 1e-13 > errc(zeta(4.1+0.3im, 3.2+0.1im), 0.0121197525131633219465301571139288562254218365173899270675-0.00687228692565614267981577154948499247518236888933925740902im)
@test 1e-13 > errc(zeta(4.1, 3.2+0.1im),0.0137637451187986846516125754047084829556100290057521276517-0.00152194599531628234517456529686769063828217532350810111482im)
@test 1e-12 > errc(zeta(1.0001, -4.5e2+3.2im), 9993.89099199843392251301993718413132850540848778561412270571-3.13257480938495907945892330398176989805350557816701044268548im)
@test_throws DomainError zeta(3.1,-4.2)
@test 1e-13 > errc(zeta(3.1,-4.2+0im), -138.06320182025311080661516120845508778572835942189570145952+45.586579397698817209431034568162819207622092308850063038062im)
@test 1e-15 > errc(zeta(3.1+0im,-4.2), zeta(3.1,-4.2+0im))
@test 1e-13 > errc(zeta(3.1,4.2), 0.029938344862645948405021260567725078588893266227472565010234)
@test 1e-13 > err(zeta(27, 3.1), 5.413318813037879056337862215066960774064332961282599376e-14)
@test 1e-13 > err(zeta(27, 2), 7.4507117898354294919810041706041194547190318825658299932e-9)
@test 1e-12 > err(zeta(27, -105.3), -1.311372652244914148556295810515903234635727465138859603e14)
@test polygamma(4, -3.1+Inf*im) == polygamma(4, 3.1+Inf*im) == 0
@test polygamma(4, -0.0) == Inf == -polygamma(4, +0.0)
@test zeta(4, +0.0) == Inf == zeta(4, -0.0)
@test zeta(5, +0.0) == Inf == -zeta(5, -0.0)
@test isa([digamma(x) for x in [1.0]], Vector{Float64})
@test isa([trigamma(x) for x in [1.0]], Vector{Float64})
@test isa([polygamma(3,x) for x in [1.0]], Vector{Float64})
@test 1e-13 > errc(zeta(2 + 1im, -1.1), zeta(2 + 1im, -1.1+0im))
@test 1e-13 > errc(zeta(2 + 1im, -1.1), -1525.8095173321060982383023516086563741006869909580583246557 + 1719.4753293650912305811325486980742946107143330321249869576im)
@test @evalpoly(2,3,4,5,6) == 3+2*(4+2*(5+2*6)) == @evalpoly(2+0im,3,4,5,6)
@test 1e-14 > err(eta(1+1e-9), 0.693147180719814213126976796937244130533478392539154928250926)
@test 1e-14 > err(eta(1+5e-3), 0.693945708117842473436705502427198307157819636785324430166786)
@test 1e-13 > err(eta(1+7.1e-3), 0.694280602623782381522315484518617968911346216413679911124758)
@test 1e-13 > err(eta(1+8.1e-3), 0.694439974969407464789106040237272613286958025383030083792151)
@test 1e-13 > err(eta(1 - 2.1e-3 + 2e-3 * im), 0.69281144248566007063525513903467244218447562492555491581+0.00032001240133205689782368277733081683574922990400416791019im)
@test 1e-13 > err(eta(1 + 5e-3 + 5e-3 * im), 0.69394652468453741050544512825906295778565788963009705146+0.00079771059614865948716292388790427833787298296229354721960im)
@test 1e-12 > errc(zeta(1e-3+1e-3im), -0.5009189365276307665899456585255302329444338284981610162-0.0009209468912269622649423786878087494828441941303691216750im)
@test 1e-13 > errc(zeta(1e-4 + 2e-4im), -0.5000918637469642920007659467492165281457662206388959645-0.0001838278317660822408234942825686513084009527096442173056im)
# Issue #7169: (TODO: better accuracy should be possible?)
@test 1e-9 > errc(zeta(0 + 99.69im), 4.67192766128949471267133846066040655597942700322077493021802+3.89448062985266025394674304029984849370377607524207984092848im)
@test 1e-12 > errc(zeta(3 + 99.69im), 1.09996958148566565003471336713642736202442134876588828500-0.00948220959478852115901654819402390826992494044787958181148im)
@test 1e-9 > errc(zeta(-3 + 99.69im), 10332.6267578711852982128675093428012860119184786399673520976+13212.8641740351391796168658602382583730208014957452167440726im)
@test 1e-13 > errc(zeta(2 + 99.69im, 1.3), 0.41617652544777996034143623540420694985469543821307918291931-0.74199610821536326325073784018327392143031681111201859489991im)
for z in (1.234, 1.234 + 5.678im, [1.234, 5.678])
@test_approx_eq cis(z) exp(im*z)
end
|