1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
# Benchmark implementing the board logic for the game of go and
# exercising it by playing random games. Derived from
# http://www.lysator.liu.se/~gunnar/gtp/brown-1.0.tar.gz
import Base.getindex
const EMPTY = 0
const WHITE = 1
const BLACK = 2
# Function to find the opposite color.
other_color(color::Int) = WHITE + BLACK - color
# Used in the final_status[] array.
const DEAD = 0
const ALIVE = 1
const SEKI = 2
const WHITE_TERRITORY = 3
const BLACK_TERRITORY = 4
const UNKNOWN = 5
type XorRand
state::Uint32
end
function xor_srand(rand::XorRand, seed::Uint32)
rand.state = seed
end
function xor_randn(rand::XorRand, n::Uint32)
rand.state $= rand.state << 13
rand.state $= rand.state >> 17
rand.state $= rand.state << 5
rand.state % n
end
xor_randn(rand::XorRand, n::Int) = convert(Int, xor_randn(rand, convert(Uint32, n)))
# Offsets for the four directly adjacent neighbors. Used for looping.
const deltai = (-1, 1, 0, 0)
const deltaj = (0, 0, -1, 1)
neighbor(i::Int, j::Int, k::Int) = (i + deltai[k], j + deltaj[k])
type Board
size::Int
komi::Float64
# Board represented by a 1D array. The first board_size*board_size
# elements are used. Vertices are indexed row by row, starting with 0
# in the upper left corner.
board::Matrix{Int}
# Stones are linked together in a circular list for each string.
next_stone::Matrix{Int}
# Storage for final status computations.
final_status::Matrix{Int}
# Point which would be an illegal ko recapture.
ko_i::Int
ko_j::Int
# xor-shift random number generator.
rand::XorRand
function Board(n::Int)
init(new(), n, convert(Uint32, 2463534242))
end
end
function init(board::Board, n::Int, seed::Uint32)
board.size = n
board.komi = 0.0
board.board = zeros(Int, n, n)
board.next_stone = zeros(Int, n, n)
board.final_status = zeros(Int, n, n)
board.ko_i = 0
board.ko_j = 0
board.rand = XorRand(seed)
board
end
getindex(board::Board, pos::Int) = board.board[pos]
getindex(board::Board, i::Int, j::Int) = board.board[i, j]
# Functions to convert between 1D and 2D coordinates. The 2D coordinate
# (i, j) points to row i and column j, starting with (1,1) in the
# upper left corner.
POS(board::Board, i::Int, j::Int) = (j - 1) * board.size + i
IJ(board::Board, pos::Int) = (1 + mod((pos - 1), board.size), 1 + fld(pos - 1, board.size))
function set_komi(board::Board, komi::Float64)
board.komi = komi
end
function set_random_seed(board::Board, seed::Uint32)
xor_srand(board.rand, seed)
end
function clear(board::Board)
board.board[:] = EMPTY
end
is_pass_move(i::Int, j::Int) = i == 0 && j == 0
function on_board(board::Board, i::Int, j::Int)
i >= 1 && i <= board.size && j >= 1 && j <= board.size
end
function legal_move(board::Board, i::Int, j::Int, color::Int)
other = other_color(color)
# Pass is always legal.
if is_pass_move(i, j)
return true
end
# Already occupied.
if board[i, j] != EMPTY
return false
end
# Illegal ko recapture. It is not illegal to fill the ko so we must
# check the color of at least one neighbor.
if i == board.ko_i && j == board.ko_j && ((on_board(board, i - 1, j) && board[i - 1, j] == other) || (on_board(board, i + 1, j) && board[i + 1, j] == other))
return false
end
true
end
# Does the string at (i, j) have any more liberty than the one at (libi, libj)?
function has_additional_liberty(board::Board, i::Int, j::Int, libi::Int, libj::Int)
start = POS(board, i, j)
pos = start
while true
(ai, aj) = IJ(board, pos)
for k = 1:4
(bi, bj) = neighbor(ai, aj, k)
if on_board(board, bi, bj) && board[bi, bj] == EMPTY && (bi != libi || bj != libj)
return true
end
end
pos = board.next_stone[pos]
if pos == start
break
end
end
false
end
# Does (ai, aj) provide a liberty for a stone at (i, j)?
function provides_liberty(board::Board, ai::Int, aj::Int, i::Int, j::Int, color::Int)
# A vertex off the board does not provide a liberty.
if !on_board(board, ai, aj)
return false
end
# An empty vertex IS a liberty.
if board[ai, aj] == EMPTY
return true
end
# A friendly string provides a liberty to (i, j) if it currently
# has more liberties than the one at (i, j).
if board[ai, aj] == color
return has_additional_liberty(board, ai, aj, i, j)
end
# An unfriendly string provides a liberty if and only if it is
# captured, i.e. if it currently only has the liberty at (i, j).
!has_additional_liberty(board, ai, aj, i, j)
end
# Is a move at ij suicide for color?
function suicide(board::Board, i::Int, j::Int, color::Int)
for k = 1:4
if provides_liberty(board, neighbor(i, j, k)..., i, j, color)
return false
end
end
true
end
# Remove a string from the board array. There is no need to modify
# the next_stone array since this only matters where there are
# stones present and the entire string is removed.
function remove_string(board::Board, i::Int, j::Int)
start = POS(board, i, j)
pos = start
removed = 0
while true
board.board[pos] = EMPTY
removed += 1
pos = board.next_stone[pos]
if pos == start
break
end
end
removed
end
# Do two vertices belong to the same string? It is required that both
# pos1 and pos2 point to vertices with stones.
function same_string(board::Board, pos1::Int, pos2::Int)
pos = pos1
while true
if pos == pos2
return true
end
pos = board.next_stone[pos]
if pos == pos1
break
end
end
false
end
# Play at (i, j) for color. No legality check is done here. We need
# to properly update the board array, the next_stone array, and the
# ko point.
function play_move(board::Board, i::Int, j::Int, color::Int)
pos = POS(board, i, j)
captured_stones = 0
# Reset the ko point.
board.ko_i = 0
board.ko_j = 0
# Nothing more happens if the move was a pass.
if is_pass_move(i, j)
return
end
# If the move is a suicide we only need to remove the adjacent
# friendly stones.
if suicide(board, i, j, color)
for k = 1:4
(ai, aj) = neighbor(i, j, k)
if on_board(board, ai, aj) && board[ai, aj] == color
remove_string(board, ai, aj)
end
end
return
end
# Not suicide. Remove captured opponent strings.
for k = 1:4
(ai, aj) = neighbor(i, j, k)
if on_board(board, ai, aj) && board[ai, aj] == other_color(color) && !has_additional_liberty(board, ai, aj, i, j)
captured_stones += remove_string(board, ai, aj)
end
end
# Put down the new stone. Initially build a single stone string by
# setting next_stone[pos] pointing to itself.
board.board[pos] = color
board.next_stone[pos] = pos
# If we have friendly neighbor strings we need to link the strings
# together.
for k = 1:4
(ai, aj) = neighbor(i, j, k)
pos2 = POS(board, ai, aj)
# Make sure that the stones are not already linked together. This
# may happen if the same string neighbors the new stone in more
# than one direction.
if on_board(board, ai, aj) && board[pos2] == color && !same_string(board, pos, pos2)
# The strings are linked together simply by swapping the the
# next_stone pointers.
(board.next_stone[pos], board.next_stone[pos2]) = (board.next_stone[pos2], board.next_stone[pos])
end
end
# If we have captured exactly one stone and the new string is a
# single stone it may have been a ko capture.
if captured_stones == 1 && board.next_stone[pos] == pos
# Check whether the new string has exactly one liberty. If so it
# would be an illegal ko capture to play there immediately. We
# know that there must be a liberty immediately adjacent to the
# new stone since we captured one stone.
for k = 1:4
(ai, aj) = neighbor(i, j, k)
if on_board(board, ai, aj) && board[ai, aj] == EMPTY
if !has_additional_liberty(board, i, j, ai, aj)
board.ko_i = ai
board.ko_j = aj
end
break
end
end
end
end
# Generate a move.
function generate_move(board::Board, color::Int)
moves = zeros(Int, 2, board.size * board.size)
num_moves = 0
for ai = 1:board.size, aj = 1:board.size
# Consider moving at (ai, aj) if it is legal and not suicide.
if legal_move(board, ai, aj, color) && !suicide(board, ai, aj, color)
# Further require the move not to be suicide for the opponent...
if !suicide(board, ai, aj, other_color(color))
num_moves += 1
moves[:,num_moves] = [ai, aj]
else
# ...however, if the move captures at least one stone,
# consider it anyway.
for k = 1:4
(bi, bj) = neighbor(ai, aj, k)
if on_board(board, bi, bj) && board[bi, bj] == other_color(color)
num_moves += 1
moves[:,num_moves] = [ai, aj]
break
end
end
end
end
end
# Choose one of the considered moves randomly with uniform
# distribution. (Strictly speaking the moves with smaller 1D
# coordinates tend to have a very slightly higher probability to be
# chosen, but for all practical purposes we get a uniform
# distribution.)
if num_moves > 0
move = moves[:,1 + xor_randn(board.rand, num_moves)]
return (move[1], move[2])
else
# But pass if no move was considered.
return (0, 0)
end
end
# Set a final status value for an entire string.
function set_final_status_string(board::Board, pos::Int, status::Int)
start = pos
while true
board.final_status[pos] = status
pos = board.next_stone[pos]
if pos == start
break
end
end
end
# Compute final status. This function is only valid to call in a
# position where generate_move() would return pass for at least one
# color.
#
# Due to the nature of the move generation algorithm, the final
# status of stones can be determined by a very simple algorithm:
#
# 1. Stones with two or more liberties are alive with territory.
# 2. Stones in atari are dead.
#
# Moreover alive stones are unconditionally alive even if the
# opponent is allowed an arbitrary number of consecutive moves.
# Similarly dead stones cannot be brought alive even by an arbitrary
# number of consecutive moves.
#
# Seki is not an option. The move generation algorithm would never
# leave a seki on the board.
#
# Comment: This algorithm doesn't work properly if the game ends with
# an unfilled ko. If three passes are required for game end,
# that will not happen.
#
function compute_final_status(board::Board)
board.final_status[:] = UNKNOWN
for i = 1:board.size, j = 1:board.size
if board[i, j] == EMPTY
for k = 1:4
(ai, aj) = neighbor(i, j, k)
if !on_board(board, ai, aj)
continue
end
# When the game is finished, we know for sure that (ai, aj)
# contains a stone. The move generation algorithm would
# never leave two adjacent empty vertices. Check the number
# of liberties to decide its status, unless it's known
# already.
#
# If we should be called in a non-final position, just make
# sure we don't call set_final_status_string() on an empty
# vertex.
pos = POS(board, ai, aj)
if board.final_status[ai, aj] == UNKNOWN
if board[ai, aj] != EMPTY
if has_additional_liberty(board, ai, aj, i, j)
set_final_status_string(board, pos, ALIVE)
else
set_final_status_string(board, pos, DEAD)
end
end
end
# Set the final status of the pos vertex to either black
# or white territory.
if board.final_status[i, j] == UNKNOWN
if (board.final_status[ai, aj] == ALIVE) $ (board[ai, aj] == WHITE)
board.final_status[i, j] = BLACK_TERRITORY
else
board.final_status[i, j] = WHITE_TERRITORY
end
end
end
end
end
end
get_final_status(board::Board, i::Int, j::Int) = board.final_status[i, j]
function compute_score(board::Board)
score = board.komi
compute_final_status(board)
for i = 1:board.size, j = 1:board.size
status = get_final_status(board, i, j)
if status == BLACK_TERRITORY
score -= 1.0
elseif status == WHITE_TERRITORY
score += 1.0
elseif (status == ALIVE) $ (board[i, j] == WHITE)
score -= 1.0
else
score += 1.0
end
end
score
end
function benchmark(num_games_per_point::Int)
random_seed = convert(Uint32, 1)
board_size = 9
komi = 0.5
board = Board(board_size)
set_komi(board, komi)
set_random_seed(board, random_seed)
for i = 1:board.size, j = 1:board.size
white_wins = 0
black_wins = 0
for k = 1:num_games_per_point
passes = 0
num_moves = 1
color = WHITE
clear(board)
play_move(board, i, j, BLACK)
while passes < 3 && num_moves < 600
(movei, movej) = generate_move(board, color)
play_move(board, movei, movej, color)
if is_pass_move(movei, movej)
passes += 1
else
passes = 0
end
num_moves += 1
color = other_color(color)
end
if passes == 3
if compute_score(board) > 0
white_wins += 1
else
black_wins += 1
end
end
end
# @printf("%d %d %f\n", i - 1, j - 1, black_wins / (black_wins + white_wins))
end
end
function main(args)
n = 10
if length(args) > 0
n = parseint(args[1])
end
@time benchmark(n)
end
|