1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
// $(CC) -O3 -finline-functions -fomit-frame-pointer -DNDEBUG -fno-strict-aliasing --param max-inline-insns-single=1800 -Wmissing-prototypes -Wall -std=c99 -msse2 -DHAVE_SSE2 -DDSFMT_MEXP=19937 ziggurat.c -o ziggurat
/* gauss.c - gaussian random numbers, using the Ziggurat method
*
* Copyright (C) 2005 Jochen Voss.
*
* For details see the following article.
*
* George Marsaglia, Wai Wan Tsang
* The Ziggurat Method for Generating Random Variables
* Journal of Statistical Software, vol. 5 (2000), no. 8
* http://www.jstatsoft.org/v05/i08/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: gauss.c 6739 2005-11-12 02:47:20Z voss $
*/
#include <math.h>
#include <assert.h>
#include <sys/time.h>
#define DSFMT_MEXP 19937
#include "../../deps/random/dsfmt-2.2/dSFMT.c"
/* position of right-most step */
#define PARAM_R 3.44428647676
/* tabulated values for the heigt of the Ziggurat levels */
static const double ytab[128] = {
1, 0.963598623011, 0.936280813353, 0.913041104253,
0.892278506696, 0.873239356919, 0.855496407634, 0.838778928349,
0.822902083699, 0.807732738234, 0.793171045519, 0.779139726505,
0.765577436082, 0.752434456248, 0.739669787677, 0.727249120285,
0.715143377413, 0.703327646455, 0.691780377035, 0.68048276891,
0.669418297233, 0.65857233912, 0.647931876189, 0.637485254896,
0.62722199145, 0.617132611532, 0.607208517467, 0.597441877296,
0.587825531465, 0.578352913803, 0.569017984198, 0.559815170911,
0.550739320877, 0.541785656682, 0.532949739145, 0.524227434628,
0.515614886373, 0.507108489253, 0.498704867478, 0.490400854812,
0.482193476986, 0.47407993601, 0.466057596125, 0.458123971214,
0.450276713467, 0.442513603171, 0.434832539473, 0.427231532022,
0.419708693379, 0.41226223212, 0.404890446548, 0.397591718955,
0.390364510382, 0.383207355816, 0.376118859788, 0.369097692334,
0.362142585282, 0.355252328834, 0.348425768415, 0.341661801776,
0.334959376311, 0.328317486588, 0.321735172063, 0.31521151497,
0.308745638367, 0.302336704338, 0.29598391232, 0.289686497571,
0.283443729739, 0.27725491156, 0.271119377649, 0.265036493387,
0.259005653912, 0.253026283183, 0.247097833139, 0.241219782932,
0.235391638239, 0.229612930649, 0.223883217122, 0.218202079518,
0.212569124201, 0.206983981709, 0.201446306496, 0.195955776745,
0.190512094256, 0.185114984406, 0.179764196185, 0.174459502324,
0.169200699492, 0.1639876086, 0.158820075195, 0.153697969964,
0.148621189348, 0.143589656295, 0.138603321143, 0.133662162669,
0.128766189309, 0.123915440582, 0.119109988745, 0.114349940703,
0.10963544023, 0.104966670533, 0.100343857232, 0.0957672718266,
0.0912372357329, 0.0867541250127, 0.082318375932, 0.0779304915295,
0.0735910494266, 0.0693007111742, 0.065060233529, 0.0608704821745,
0.056732448584, 0.05264727098, 0.0486162607163, 0.0446409359769,
0.0407230655415, 0.0368647267386, 0.0330683839378, 0.0293369977411,
0.0256741818288, 0.0220844372634, 0.0185735200577, 0.0151490552854,
0.0118216532614, 0.00860719483079, 0.00553245272614, 0.00265435214565
};
/* tabulated values for 2^24 times x[i]/x[i+1],
* used to accept for U*x[i+1]<=x[i] without any floating point operations */
static const unsigned long ktab[128] = {
0, 12590644, 14272653, 14988939,
15384584, 15635009, 15807561, 15933577,
16029594, 16105155, 16166147, 16216399,
16258508, 16294295, 16325078, 16351831,
16375291, 16396026, 16414479, 16431002,
16445880, 16459343, 16471578, 16482744,
16492970, 16502368, 16511031, 16519039,
16526459, 16533352, 16539769, 16545755,
16551348, 16556584, 16561493, 16566101,
16570433, 16574511, 16578353, 16581977,
16585398, 16588629, 16591685, 16594575,
16597311, 16599901, 16602354, 16604679,
16606881, 16608968, 16610945, 16612818,
16614592, 16616272, 16617861, 16619363,
16620782, 16622121, 16623383, 16624570,
16625685, 16626730, 16627708, 16628619,
16629465, 16630248, 16630969, 16631628,
16632228, 16632768, 16633248, 16633671,
16634034, 16634340, 16634586, 16634774,
16634903, 16634972, 16634980, 16634926,
16634810, 16634628, 16634381, 16634066,
16633680, 16633222, 16632688, 16632075,
16631380, 16630598, 16629726, 16628757,
16627686, 16626507, 16625212, 16623794,
16622243, 16620548, 16618698, 16616679,
16614476, 16612071, 16609444, 16606571,
16603425, 16599973, 16596178, 16591995,
16587369, 16582237, 16576520, 16570120,
16562917, 16554758, 16545450, 16534739,
16522287, 16507638, 16490152, 16468907,
16442518, 16408804, 16364095, 16301683,
16207738, 16047994, 15704248, 15472926
};
/* tabulated values of 2^{-24}*x[i] */
static const double wtab[128] = {
1.62318314817e-08, 2.16291505214e-08, 2.54246305087e-08, 2.84579525938e-08,
3.10340022482e-08, 3.33011726243e-08, 3.53439060345e-08, 3.72152672658e-08,
3.8950989572e-08, 4.05763964764e-08, 4.21101548915e-08, 4.35664624904e-08,
4.49563968336e-08, 4.62887864029e-08, 4.75707945735e-08, 4.88083237257e-08,
5.00063025384e-08, 5.11688950428e-08, 5.22996558616e-08, 5.34016475624e-08,
5.44775307871e-08, 5.55296344581e-08, 5.65600111659e-08, 5.75704813695e-08,
5.85626690412e-08, 5.95380306862e-08, 6.04978791776e-08, 6.14434034901e-08,
6.23756851626e-08, 6.32957121259e-08, 6.42043903937e-08, 6.51025540077e-08,
6.59909735447e-08, 6.68703634341e-08, 6.77413882848e-08, 6.8604668381e-08,
6.94607844804e-08, 7.03102820203e-08, 7.11536748229e-08, 7.1991448372e-08,
7.2824062723e-08, 7.36519550992e-08, 7.44755422158e-08, 7.52952223703e-08,
7.61113773308e-08, 7.69243740467e-08, 7.77345662086e-08, 7.85422956743e-08,
7.93478937793e-08, 8.01516825471e-08, 8.09539758128e-08, 8.17550802699e-08,
8.25552964535e-08, 8.33549196661e-08, 8.41542408569e-08, 8.49535474601e-08,
8.57531242006e-08, 8.65532538723e-08, 8.73542180955e-08, 8.8156298059e-08,
8.89597752521e-08, 8.97649321908e-08, 9.05720531451e-08, 9.138142487e-08,
9.21933373471e-08, 9.30080845407e-08, 9.38259651738e-08, 9.46472835298e-08,
9.54723502847e-08, 9.63014833769e-08, 9.71350089201e-08, 9.79732621669e-08,
9.88165885297e-08, 9.96653446693e-08, 1.00519899658e-07, 1.0138063623e-07,
1.02247952126e-07, 1.03122261554e-07, 1.04003996769e-07, 1.04893609795e-07,
1.05791574313e-07, 1.06698387725e-07, 1.07614573423e-07, 1.08540683296e-07,
1.09477300508e-07, 1.1042504257e-07, 1.11384564771e-07, 1.12356564007e-07,
1.13341783071e-07, 1.14341015475e-07, 1.15355110887e-07, 1.16384981291e-07,
1.17431607977e-07, 1.18496049514e-07, 1.19579450872e-07, 1.20683053909e-07,
1.21808209468e-07, 1.2295639141e-07, 1.24129212952e-07, 1.25328445797e-07,
1.26556042658e-07, 1.27814163916e-07, 1.29105209375e-07, 1.30431856341e-07,
1.31797105598e-07, 1.3320433736e-07, 1.34657379914e-07, 1.36160594606e-07,
1.37718982103e-07, 1.39338316679e-07, 1.41025317971e-07, 1.42787873535e-07,
1.44635331499e-07, 1.4657889173e-07, 1.48632138436e-07, 1.50811780719e-07,
1.53138707402e-07, 1.55639532047e-07, 1.58348931426e-07, 1.61313325908e-07,
1.64596952856e-07, 1.68292495203e-07, 1.72541128694e-07, 1.77574279496e-07,
1.83813550477e-07, 1.92166040885e-07, 2.05295471952e-07, 2.22600839893e-07
};
double randn_zig()
{
unsigned long U, sign, i, j;
double x, y;
while (1) {
U = dsfmt_gv_genrand_uint32();
i = U & 0x0000007F; /* 7 bit to choose the step */
sign = U & 0x00000080; /* 1 bit for the sign */
j = U>>8; /* 24 bit for the x-value */
x = j*wtab[i];
if (j < ktab[i]) break;
if (i<127) {
double y0, y1;
y0 = ytab[i];
y1 = ytab[i+1];
y = y1+(y0-y1)*dsfmt_gv_genrand_close_open();
} else {
x = PARAM_R - log(1.0-dsfmt_gv_genrand_close_open())/PARAM_R;
y = exp(-PARAM_R*(x-0.5*PARAM_R))*dsfmt_gv_genrand_close_open();
}
if (y < exp(-0.5*x*x)) break;
}
return sign ? x : -x;
}
double clock_now()
{
struct timeval now;
gettimeofday(&now, NULL);
return (double)now.tv_sec + (double)now.tv_usec/1.0e6;
}
void print_perf(const char *name, double t) {
printf("c,%s,%.6f\n", name, t*1000);
}
int main() {
double t;
// Initialize RNG
dsfmt_gv_init_gen_rand(0);
int n = 1000000;
double *a = malloc(n*sizeof(double));
t = clock_now();
for (int i=0; i<n; ++i) {
a[i] = randn_zig();
}
t = clock_now()-t;
print_perf("randn_zig", t);
return 0;
}
|