1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
# check sparse matrix construction
@test isequal(full(sparse(complex(ones(5,5),ones(5,5)))), complex(ones(5,5),ones(5,5)))
# check matrix operations
se33 = speye(3)
do33 = ones(3)
@test isequal(se33 * se33, se33)
# check sparse binary op
@test all(full(se33 + convert(SparseMatrixCSC{Float32,Int32}, se33)) == 2*eye(3))
@test all(full(se33 * convert(SparseMatrixCSC{Float32,Int32}, se33)) == eye(3))
# check horiz concatenation
@test all([se33 se33] == sparse([1, 2, 3, 1, 2, 3], [1, 2, 3, 4, 5, 6], ones(6)))
# check vert concatenation
@test all([se33; se33] == sparse([1, 4, 2, 5, 3, 6], [1, 1, 2, 2, 3, 3], ones(6)))
# check h+v concatenation
se44 = speye(4)
sz42 = spzeros(4, 2)
sz41 = spzeros(4, 1)
sz34 = spzeros(3, 4)
se77 = speye(7)
@test all([se44 sz42 sz41; sz34 se33] == se77)
# check blkdiag concatenation
@test all(blkdiag(se33, se33) == sparse([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], ones(6)))
# check concatenation promotion
sz41_f32 = spzeros(Float32, 4, 1)
se33_i32 = speye(Int32, 3, 3)
@test all([se44 sz42 sz41_f32; sz34 se33_i32] == se77)
# check mixed sparse-dense concatenation
sz33 = spzeros(3, 3)
de33 = eye(3)
@test all([se33 de33; sz33 se33] == full([se33 se33; sz33 se33 ]))
# check splicing + concatenation on
# random instances, with nested vcat
# also side-checks sparse ref
for i = 1 : 10
a = sprand(5, 4, 0.5)
@test all([a[1:2,1:2] a[1:2,3:4]; a[3:5,1] [a[3:4,2:4]; a[5,2:4]]] == a)
end
# sparse ref
a116 = reshape(1:16, 4, 4)
s116 = sparse(a116)
p = [4, 1, 2, 3, 2]
@test full(s116[p,:]) == a116[p,:]
@test full(s116[:,p]) == a116[:,p]
@test full(s116[p,p]) == a116[p,p]
# sparse assign
p = [4, 1, 3]
a116[p, p] = -1
s116[p, p] = -1
@test a116 == s116
p = [2, 1, 4]
a116[p, p] = reshape(1:9, 3, 3)
s116[p, p] = reshape(1:9, 3, 3)
@test a116 == s116
# matrix-vector multiplication (non-square)
for i = 1:5
a = sprand(10, 5, 0.5)
b = rand(5)
@test maximum(abs(a*b - full(a)*b)) < 100*eps()
end
# complex matrix-vector multiplication and left-division
for i = 1:5
a = speye(5) + 0.1*sprandn(5, 5, 0.2)
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + 0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2)
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + tril(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + tril(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = spdiagm(randn(5)) + im*spdiagm(randn(5))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
end
# matrix multiplication and kron
for i = 1:5
a = sprand(10, 5, 0.7)
b = sprand(5, 10, 0.3)
@test maximum(abs(a*b - full(a)*full(b))) < 100*eps()
@test full(kron(a,b)) == kron(full(a), full(b))
end
# reductions
@test sum(se33)[1] == 3.0
@test sum(se33, 1) == [1.0 1.0 1.0]
@test sum(se33, 2) == [1.0 1.0 1.0]'
@test prod(se33)[1] == 0.0
@test prod(se33, 1) == [0.0 0.0 0.0]
@test prod(se33, 2) == [0.0 0.0 0.0]'
# spdiagm
@test full(spdiagm((ones(2), ones(2)), (0, -1), 3, 3)) ==
[1.0 0.0 0.0; 1.0 1.0 0.0; 0.0 1.0 0.0]
# elimination tree
## upper triangle of the pattern test matrix from Figure 4.2 of
## "Direct Methods for Sparse Linear Systems" by Tim Davis, SIAM, 2006
rowval = int32([1,2,2,3,4,5,1,4,6,1,7,2,5,8,6,9,3,4,6,8,10,3,5,7,8,10,11])
colval = int32([1,2,3,3,4,5,6,6,6,7,7,8,8,8,9,9,10,10,10,10,10,11,11,11,11,11,11])
A = sparse(rowval, colval, ones(length(rowval)))
P,post = Base.LinAlg.etree(A, true)
@test P == int32([6,3,8,6,8,7,9,10,10,11,0])
@test post == int32([2,3,5,8,1,4,6,7,9,10,11])
# issue #4986, reinterpret
sfe22 = speye(Float64, 2)
mfe22 = eye(Float64, 2)
@test reinterpret(Int64, sfe22) == reinterpret(Int64, mfe22)
# issue #5190
@test_throws DimensionMismatch sparsevec([3,5,7],[0.1,0.0,3.2],4)
# issue #5169
@test nnz(sparse([1,1],[1,2],[0.0,-0.0])) == 0
# issue #5386
K,J,V = findnz(SparseMatrixCSC(2,1,[1,3],[1,2],[1.0,0.0]))
@test length(K) == length(J) == length(V) == 1
# https://groups.google.com/d/msg/julia-users/Yq4dh8NOWBQ/GU57L90FZ3EJ
A = speye(Bool, 5)
@test find(A) == find(x -> x == true, A) == find(full(A))
# issue #5437
@test nnz(sparse([1,2,3],[1,2,3],[0.0,1.0,2.0])) == 2
# issue #5824
@test sprand(4,5,0.5).^0 == sparse(ones(4,5))
# issue #5985
@test sprandbool(4, 5, 0.0) == sparse(zeros(Bool, 4, 5))
@test sprandbool(4, 5, 1.00) == sparse(ones(Bool, 4, 5))
sprb45nnzs = zeros(5)
for i=1:5
sprb45 = sprandbool(4, 5, 0.5)
@test length(sprb45) == 20
sprb45nnzs[i] = sum(sprb45)[1]
end
@test 4 <= mean(sprb45nnzs) <= 16
# issue #5853, sparse diff
for i=1:2, a={[1 2 3], [1 2 3]', eye(3)}
@test all(diff(sparse(a),i) == diff(a,i))
end
# test for "access to undefined error" types that initially allocate elements as #undef
@test all(sparse(1:2, 1:2, Number[1,2])^2 == sparse(1:2, 1:2, [1,4]))
sd1 = diff(sparse([1,1,1], [1,2,3], Number[1,2,3]), 1)
# issue #6036
P = spzeros(Float64, 3, 3)
for i = 1:3
P[i,i] = i
end
@test minimum(P) === 0.0
@test maximum(P) === 3.0
@test minimum(-P) === -3.0
@test maximum(-P) === 0.0
@test maximum(P, (1,)) == [1.0 2.0 3.0]
@test maximum(P, (2,)) == reshape([1.0,2.0,3.0],3,1)
@test maximum(P, (1,2)) == reshape([3.0],1,1)
@test maximum(sparse(-ones(3,3))) == -1
@test minimum(sparse(ones(3,3))) == 1
# Unary functions
a = sprand(5,15, 0.5)
afull = full(a)
for op in (:sin, :cos, :tan, :iceil, :ifloor, :ceil, :floor, :abs, :abs2)
@eval begin
@test ($op)(afull) == full($(op)(a))
end
end
# getindex tests
ni = 23
nj = 32
a116 = reshape(1:(ni*nj), ni, nj)
s116 = sparse(a116)
ad116 = diagm(diag(a116))
sd116 = sparse(ad116)
for (aa116, ss116) in [(a116, s116), (ad116, sd116)]
ij=11; i=3; j=2
@test ss116[ij] == aa116[ij]
@test ss116[(i,j)] == aa116[i,j]
@test ss116[i,j] == aa116[i,j]
@test ss116[i-1,j] == aa116[i-1,j]
ss116[i,j] = 0
@test ss116[i,j] == 0
ss116 = sparse(aa116)
# range indexing
@test full(ss116[i,:]) == aa116[i,:]
@test full(ss116[:,j]) == aa116[:,j]'' # sparse matrices/vectors always have ndims==2:
@test full(ss116[i,1:2:end]) == aa116[i,1:2:end]
@test full(ss116[1:2:end,j]) == aa116[1:2:end,j]''
@test full(ss116[i,end:-2:1]) == aa116[i,end:-2:1]
@test full(ss116[end:-2:1,j]) == aa116[end:-2:1,j]''
# float-range indexing is not supported
# sorted vector indexing
@test full(ss116[i,[3:2:end-3]]) == aa116[i,[3:2:end-3]]
@test full(ss116[[3:2:end-3],j]) == aa116[[3:2:end-3],j]''
@test full(ss116[i,[end-3:-2:1]]) == aa116[i,[end-3:-2:1]]
@test full(ss116[[end-3:-2:1],j]) == aa116[[end-3:-2:1],j]''
# unsorted vector indexing with repetition
p = [4, 1, 2, 3, 2, 6]
@test full(ss116[p,:]) == aa116[p,:]
@test full(ss116[:,p]) == aa116[:,p]
@test full(ss116[p,p]) == aa116[p,p]
# bool indexing
li = randbool(size(aa116,1))
lj = randbool(size(aa116,2))
@test full(ss116[li,j]) == aa116[li,j]''
@test full(ss116[li,:]) == aa116[li,:]
@test full(ss116[i,lj]) == aa116[i,lj]
@test full(ss116[:,lj]) == aa116[:,lj]
@test full(ss116[li,lj]) == aa116[li,lj]
end
# workaround issue #7197: comment out let-block
#let S = SparseMatrixCSC(3, 3, Uint8[1,1,1,1], Uint8[], Int64[])
S1290 = SparseMatrixCSC(3, 3, Uint8[1,1,1,1], Uint8[], Int64[])
S1290[1,1] = 1
S1290[5] = 2
S1290[end] = 3
@test S1290[end] == (S1290[1] + S1290[2,2])
@test 6 == sum(diag(S1290))
@test (full(S1290)[[3,1],1])'' == full(S1290[[3,1],1])
# end
# setindex tests
let a = spzeros(Int, 10, 10)
@test countnz(a) == 0
a[1,:] = 1
@test countnz(a) == 10
@test a[1,:] == sparse(ones(Int,1,10))
a[:,2] = 2
@test countnz(a) == 19
@test a[:,2] == 2*sparse(ones(Int,10,1))
a[1,:] = 1:10
@test a[1,:] == sparse([1:10]')
a[:,2] = 1:10
@test a[:,2] == sparse([1:10])
end
let A = spzeros(Int, 10, 20)
A[1:5,1:10] = 10
A[1:5,1:10] = 10
@test countnz(A) == 50
@test A[1:5,1:10] == 10 * ones(Int, 5, 10)
A[6:10,11:20] = 0
@test countnz(A) == 50
A[6:10,11:20] = 20
@test countnz(A) == 100
@test A[6:10,11:20] == 20 * ones(Int, 5, 10)
A[4:8,8:16] = 15
@test countnz(A) == 121
@test A[4:8,8:16] == 15 * ones(Int, 5, 9)
end
let ASZ = 1000, TSZ = 800
A = sprand(ASZ, 2*ASZ, 0.0001)
B = copy(A)
nA = countnz(A)
x = A[1:TSZ, 1:(2*TSZ)]
nx = countnz(x)
A[1:TSZ, 1:(2*TSZ)] = 0
nB = countnz(A)
@test nB == (nA - nx)
A[1:TSZ, 1:(2*TSZ)] = x
@test countnz(A) == nA
@test A == B
A[1:TSZ, 1:(2*TSZ)] = 10
@test countnz(A) == nB + 2*TSZ*TSZ
A[1:TSZ, 1:(2*TSZ)] = x
@test countnz(A) == nA
@test A == B
end
let A = speye(Int, 5), I=[1:10], X=reshape([trues(10), falses(15)],5,5)
@test A[I] == A[X] == reshape([1,0,0,0,0,0,1,0,0,0], 10, 1)
A[I] = [1:10]
@test A[I] == A[X] == reshape([1:10], 10, 1)
end
let S = sprand(50, 30, 0.5, x->int(rand(x)*100)), I = sprandbool(50, 30, 0.2)
FS = full(S)
FI = full(I)
@test sparse(FS[FI]) == S[I] == S[FI]
@test sum(S[FI]) + sum(S[!FI]) == sum(S)
sumS1 = sum(S)
sumFI = sum(S[FI])
S[FI] = 0
@test sum(S[FI]) == 0
sumS2 = sum(S)
@test (sum(S) + sumFI) == sumS1
S[FI] = 10
@test sum(S) == sumS2 + 10*sum(FI)
S[FI] = 0
@test sum(S) == sumS2
S[FI] = [1:sum(FI)]
@test sum(S) == sumS2 + sum(1:sum(FI))
end
let S = sprand(50, 30, 0.5, x->int(rand(x)*100))
N = length(S) >> 2
I = randperm(N) .* 4
J = randperm(N)
sumS1 = sum(S)
sumS2 = sum(S[I])
S[I] = 0
@test sum(S) == (sumS1 - sumS2)
S[I] = J
@test sum(S) == (sumS1 - sumS2 + sum(J))
end
#Issue 7507
@test (i7507=sparsevec(Dict{Int64, Float64}(), 10))==spzeros(10,1)
#Issue 7650
let S = spzeros(3, 3)
@test size(reshape(S, 9, 1)) == (9,1)
end
let X = eye(5), M = rand(5,4), C = spzeros(3,3)
SX = sparse(X); SM = sparse(M)
VX = vec(X); VSX = vec(SX)
VM = vec(M); VSM1 = vec(SM); VSM2 = sparsevec(M)
VC = vec(C)
@test reshape(VX, (25,1)) == VSX
@test reshape(VM, (20,1)) == VSM1 == VSM2
@test size(VC) == (9,1)
@test nnz(VC) == 0
@test nnz(VSX) == 5
end
#Issue 7677
let A = sprand(5,5,0.5,(n)->rand(Float64,n)), ACPY = copy(A)
B = reshape(A,25,1)
@test A == ACPY
C = reinterpret(Int64, A, (25, 1))
@test A == ACPY
D = reinterpret(Int64, B)
@test C == D
end
# issue #8225
@test_throws BoundsError sparse([0],[-1],[1.0],2,2)
|