File: array.jl

package info (click to toggle)
julia 0.4.7-6
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 22,128 kB
  • ctags: 15,440
  • sloc: lisp: 146,606; ansic: 96,638; sh: 12,615; cpp: 11,846; makefile: 3,431; python: 1,005; pascal: 856; xml: 585; f90: 415; java: 343; asm: 86; perl: 77
file content (1001 lines) | stat: -rw-r--r-- 26,820 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
# This file is a part of Julia. License is MIT: http://julialang.org/license

## array.jl: Dense arrays

typealias Vector{T} Array{T,1}
typealias Matrix{T} Array{T,2}
typealias VecOrMat{T} Union{Vector{T}, Matrix{T}}

typealias DenseVector{T} DenseArray{T,1}
typealias DenseMatrix{T} DenseArray{T,2}
typealias DenseVecOrMat{T} Union{DenseVector{T}, DenseMatrix{T}}

call{T}(::Type{Vector{T}}, m::Integer) = Array{T}(m)
call{T}(::Type{Vector{T}}) = Array{T}(0)
call(::Type{Vector}, m::Integer) = Array{Any}(m)
call(::Type{Vector}) = Array{Any}(0)

call{T}(::Type{Matrix{T}}, m::Integer, n::Integer) = Array{T}(m, n)
call{T}(::Type{Matrix{T}}) = Array{T}(0, 0)
call(::Type{Matrix}, m::Integer, n::Integer) = Array{Any}(m, n)
call(::Type{Matrix}) = Array{Any}(0, 0)

## Basic functions ##

# convert Arrays to pointer arrays for ccall
function call{P<:Ptr,T<:Ptr}(::Type{Ref{P}}, a::Array{T}) # Ref{P<:Ptr}(a::Array{T<:Ptr})
    return RefArray(a) # effectively a no-op
end
function call{P<:Ptr,T}(::Type{Ref{P}}, a::Array{T}) # Ref{P<:Ptr}(a::Array)
    if (!isbits(T) && T <: eltype(P))
        # this Array already has the right memory layout for the requested Ref
        return RefArray(a,1,false) # root something, so that this function is type-stable
    else
        ptrs = Array(P, length(a)+1)
        roots = Array(Any, length(a))
        for i = 1:length(a)
            root = cconvert(P, a[i])
            ptrs[i] = unsafe_convert(P, root)::P
            roots[i] = root
        end
        ptrs[length(a)+1] = C_NULL
        return RefArray(ptrs,1,roots)
    end
end
cconvert{P<:Ptr,T<:Ptr}(::Union{Type{Ptr{P}},Type{Ref{P}}}, a::Array{T}) = a
cconvert{P<:Ptr}(::Union{Type{Ptr{P}},Type{Ref{P}}}, a::Array) = Ref{P}(a)

size(a::Array, d) = arraysize(a, d)
size(a::Vector) = (arraysize(a,1),)
size(a::Matrix) = (arraysize(a,1), arraysize(a,2))
size{_}(a::Array{_,3}) = (arraysize(a,1), arraysize(a,2), arraysize(a,3))
size{_}(a::Array{_,4}) = (arraysize(a,1), arraysize(a,2), arraysize(a,3), arraysize(a,4))
asize_from(a::Array, n) = n > ndims(a) ? () : (arraysize(a,n), asize_from(a, n+1)...)
size{_,N}(a::Array{_,N}) = asize_from(a, 1)::NTuple{N,Int}

length(a::Array) = arraylen(a)
elsize{T}(a::Array{T}) = isbits(T) ? sizeof(T) : sizeof(Ptr)
sizeof(a::Array) = elsize(a) * length(a)

strides{T}(a::Array{T,1}) = (1,)
strides{T}(a::Array{T,2}) = (1, size(a,1))
strides{T}(a::Array{T,3}) = (1, size(a,1), size(a,1)*size(a,2))

function isassigned{T}(a::Array{T}, i::Int...)
    ii = sub2ind(size(a), i...)
    1 <= ii <= length(a) || return false
    ccall(:jl_array_isassigned, Cint, (Any, UInt), a, ii-1) == 1
end

## copy ##

function unsafe_copy!{T}(dest::Ptr{T}, src::Ptr{T}, n)
    ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt),
          dest, src, n*sizeof(T))
    return dest
end

function unsafe_copy!{T}(dest::Array{T}, doffs, src::Array{T}, soffs, n)
    if isbits(T)
        unsafe_copy!(pointer(dest, doffs), pointer(src, soffs), n)
    else
        for i=0:n-1
            @inbounds arrayset(dest, src[i+soffs], i+doffs)
        end
    end
    return dest
end

function copy!{T}(dest::Array{T}, doffs::Integer, src::Array{T}, soffs::Integer, n::Integer)
    n == 0 && return dest
    if n < 0 || soffs < 1 || doffs < 1 || soffs+n-1 > length(src) || doffs+n-1 > length(dest)
        throw(BoundsError())
    end
    unsafe_copy!(dest, doffs, src, soffs, n)
end

copy!{T}(dest::Array{T}, src::Array{T}) = copy!(dest, 1, src, 1, length(src))

function copy(a::Array)
    b = similar(a)
    ccall(:memcpy, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt), b, a, sizeof(a))
    return b
end

function reinterpret{T,S}(::Type{T}, a::Array{S,1})
    nel = Int(div(length(a)*sizeof(S),sizeof(T)))
    # TODO: maybe check that remainder is zero?
    return reinterpret(T, a, (nel,))
end

function reinterpret{T,S}(::Type{T}, a::Array{S})
    if sizeof(S) != sizeof(T)
        throw(ArgumentError("result shape not specified"))
    end
    reinterpret(T, a, size(a))
end

function reinterpret{T,S,N}(::Type{T}, a::Array{S}, dims::NTuple{N,Int})
    if !isbits(T)
        throw(ArgumentError("cannot reinterpret Array{$(S)} to ::Type{Array{$(T)}}, type $(T) is not a bitstype"))
    end
    if !isbits(S)
        throw(ArgumentError("cannot reinterpret Array{$(S)} to ::Type{Array{$(T)}}, type $(S) is not a bitstype"))
    end
    nel = div(length(a)*sizeof(S),sizeof(T))
    if prod(dims) != nel
        throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(nel)"))
    end
    ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end

# reshaping to same # of dimensions
function reshape{T,N}(a::Array{T,N}, dims::NTuple{N,Int})
    if prod(dims) != length(a)
        throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
    end
    if dims == size(a)
        return a
    end
    ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end

# reshaping to different # of dimensions
function reshape{T,N}(a::Array{T}, dims::NTuple{N,Int})
    if prod(dims) != length(a)
        throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
    end
    ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end

## Constructors ##

similar(a::Array, T, dims::Dims)      = Array(T, dims)
similar{T}(a::Array{T,1})             = Array(T, size(a,1))
similar{T}(a::Array{T,2})             = Array(T, size(a,1), size(a,2))
similar{T}(a::Array{T,1}, dims::Dims) = Array(T, dims)
similar{T}(a::Array{T,1}, m::Int)     = Array(T, m)
similar{T}(a::Array{T,1}, S)          = Array(S, size(a,1))
similar{T}(a::Array{T,2}, dims::Dims) = Array(T, dims)
similar{T}(a::Array{T,2}, m::Int)     = Array(T, m)
similar{T}(a::Array{T,2}, S)          = Array(S, size(a,1), size(a,2))

# T[x...] constructs Array{T,1}
function getindex(T::Type, vals...)
    a = Array(T,length(vals))
    @inbounds for i = 1:length(vals)
        a[i] = vals[i]
    end
    return a
end

function getindex(::Type{Any}, vals::ANY...)
    a = Array(Any,length(vals))
    @inbounds for i = 1:length(vals)
        a[i] = vals[i]
    end
    return a
end

function fill!(a::Union{Array{UInt8}, Array{Int8}}, x::Integer)
    ccall(:memset, Ptr{Void}, (Ptr{Void}, Cint, Csize_t), a, x, length(a))
    return a
end

function fill!{T<:Union{Integer,AbstractFloat}}(a::Array{T}, x)
    # note: checking bit pattern
    xT = convert(T,x)
    if isbits(T) && nfields(T)==0 &&
        ((sizeof(T)==1 && reinterpret(UInt8, xT) == 0) ||
         (sizeof(T)==2 && reinterpret(UInt16, xT) == 0) ||
         (sizeof(T)==4 && reinterpret(UInt32, xT) == 0) ||
         (sizeof(T)==8 && reinterpret(UInt64, xT) == 0))
        ccall(:memset, Ptr{Void}, (Ptr{Void}, Cint, Csize_t),
              a, 0, length(a)*sizeof(T))
    else
        for i in eachindex(a)
            @inbounds a[i] = xT
        end
    end
    return a
end

fill(v, dims::Dims)       = fill!(Array(typeof(v), dims), v)
fill(v, dims::Integer...) = fill!(Array(typeof(v), dims...), v)

cell(dims::Integer...)   = Array(Any, dims...)
cell(dims::Tuple{Vararg{Integer}}) = Array(Any, convert(Tuple{Vararg{Int}}, dims))

for (fname, felt) in ((:zeros,:zero), (:ones,:one))
    @eval begin
        ($fname)(T::Type, dims...)       = fill!(Array(T, dims...), ($felt)(T))
        ($fname)(dims...)                = fill!(Array(Float64, dims...), ($felt)(Float64))
        ($fname){T}(A::AbstractArray{T}) = fill!(similar(A), ($felt)(T))
    end
end

function eye(T::Type, m::Integer, n::Integer)
    a = zeros(T,m,n)
    for i = 1:min(m,n)
        a[i,i] = one(T)
    end
    return a
end
eye(m::Integer, n::Integer) = eye(Float64, m, n)
eye(T::Type, n::Integer) = eye(T, n, n)
eye(n::Integer) = eye(Float64, n)
eye{T}(x::AbstractMatrix{T}) = eye(T, size(x, 1), size(x, 2))

function one{T}(x::AbstractMatrix{T})
    m,n = size(x)
    m==n || throw(DimensionMismatch("multiplicative identity defined only for square matrices"))
    eye(T, m)
end

## Conversions ##

convert{T,n}(::Type{Array{T}}, x::Array{T,n}) = x
convert{T,n}(::Type{Array{T,n}}, x::Array{T,n}) = x

convert{T,n,S}(::Type{Array{T}}, x::AbstractArray{S,n}) = convert(Array{T,n}, x)
convert{T,n,S}(::Type{Array{T,n}}, x::AbstractArray{S,n}) = copy!(Array(T, size(x)), x)

promote_rule{T,n,S}(::Type{Array{T,n}}, ::Type{Array{S,n}}) = Array{promote_type(T,S),n}

"""
    collect(element_type, collection)

Return an array of type `Array{element_type,1}` of all items in a collection.
"""
function collect{T}(::Type{T}, itr)
    if applicable(length, itr)
        # when length() isn't defined this branch might pollute the
        # type of the other.
        a = Array(T,length(itr)::Integer)
        i = 0
        for x in itr
            a[i+=1] = x
        end
    else
        a = Array(T,0)
        for x in itr
            push!(a,x)
        end
    end
    return a
end

"""
    collect(collection)

Return an array of all items in a collection. For associative collections, returns Pair{KeyType, ValType}.
"""
collect(itr) = collect(eltype(itr), itr)

## Iteration ##
start(A::Array) = 1
next(a::Array,i) = (a[i],i+1)
done(a::Array,i) = i == length(a)+1

## Indexing: getindex ##

# This is more complicated than it needs to be in order to get Win64 through bootstrap
getindex(A::Array, i1::Real) = arrayref(A, to_index(i1))
getindex(A::Array, i1::Real, i2::Real, I::Real...) = arrayref(A, to_index(i1), to_index(i2), to_indexes(I...)...)

unsafe_getindex(A::Array, i1::Real, I::Real...) = @inbounds return arrayref(A, to_index(i1), to_indexes(I...)...)

# Faster contiguous indexing using copy! for UnitRange and Colon
getindex(A::Array, I::UnitRange{Int}) = (checkbounds(A, I); unsafe_getindex(A, I))
function unsafe_getindex(A::Array, I::UnitRange{Int})
    lI = length(I)
    X = similar(A, lI)
    if lI > 0
        unsafe_copy!(X, 1, A, first(I), lI)
    end
    return X
end
getindex(A::Array, c::Colon) = unsafe_getindex(A, c)
function unsafe_getindex(A::Array, ::Colon)
    lI = length(A)
    X = similar(A, lI)
    if lI > 0
        unsafe_copy!(X, 1, A, 1, lI)
    end
    return X
end

# This is redundant with the abstract fallbacks, but needed for bootstrap
function getindex{T<:Real}(A::Array, I::Range{T})
    return [ A[to_index(i)] for i in I ]
end

## Indexing: setindex! ##
setindex!{T}(A::Array{T}, x, i1::Real) = arrayset(A, convert(T,x)::T, to_index(i1))
setindex!{T}(A::Array{T}, x, i1::Real, i2::Real, I::Real...) = arrayset(A, convert(T,x)::T, to_index(i1), to_index(i2), to_indexes(I...)...)

# Type inference is confused by `@inbounds return ...` and introduces a
# !ispointerfree local variable and a GC frame
unsafe_setindex!{T}(A::Array{T}, x, i1::Real, I::Real...) =
    (@inbounds arrayset(A, convert(T,x)::T, to_index(i1), to_indexes(I...)...); A)

# These are redundant with the abstract fallbacks but needed for bootstrap
function setindex!(A::Array, x, I::AbstractVector{Int})
    is(A, I) && (I = copy(I))
    for i in I
        A[i] = x
    end
    return A
end
function setindex!(A::Array, X::AbstractArray, I::AbstractVector{Int})
    setindex_shape_check(X, length(I))
    count = 1
    if is(X,A)
        X = copy(X)
        is(I,A) && (I = X::typeof(I))
    elseif is(I,A)
        I = copy(I)
    end
    for i in I
        A[i] = X[count]
        count += 1
    end
    return A
end

# Faster contiguous setindex! with copy!
setindex!{T}(A::Array{T}, X::Array{T}, I::UnitRange{Int}) = (checkbounds(A, I); unsafe_setindex!(A, X, I))
function unsafe_setindex!{T}(A::Array{T}, X::Array{T}, I::UnitRange{Int})
    lI = length(I)
    setindex_shape_check(X, lI)
    if lI > 0
        unsafe_copy!(A, first(I), X, 1, lI)
    end
    return A
end
setindex!{T}(A::Array{T}, X::Array{T}, c::Colon) = unsafe_setindex!(A, X, c)
function unsafe_setindex!{T}(A::Array{T}, X::Array{T}, ::Colon)
    lI = length(A)
    setindex_shape_check(X, lI)
    if lI > 0
        unsafe_copy!(A, 1, X, 1, lI)
    end
    return A
end

# efficiently grow an array

function _growat!(a::Vector, i::Integer, delta::Integer)
    n = length(a)
    if i < div(n,2)
        _growat_beg!(a, i, delta)
    else
        _growat_end!(a, i, delta)
    end
    return a
end

function _growat_beg!(a::Vector, i::Integer, delta::Integer)
    ccall(:jl_array_grow_beg, Void, (Any, UInt), a, delta)
    if i > 1
        ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
              pointer(a, 1), pointer(a, 1+delta), (i-1)*elsize(a))
    end
    return a
end

function _growat_end!(a::Vector, i::Integer, delta::Integer)
    ccall(:jl_array_grow_end, Void, (Any, UInt), a, delta)
    n = length(a)
    if n >= i+delta
        ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
              pointer(a, i+delta), pointer(a, i), (n-i-delta+1)*elsize(a))
    end
    return a
end

# efficiently delete part of an array

function _deleteat!(a::Vector, i::Integer, delta::Integer)
    n = length(a)
    last = i+delta-1
    if i-1 < n-last
        _deleteat_beg!(a, i, delta)
    else
        _deleteat_end!(a, i, delta)
    end
    return a
end

function _deleteat_beg!(a::Vector, i::Integer, delta::Integer)
    if i > 1
        ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
              pointer(a, 1+delta), pointer(a, 1), (i-1)*elsize(a))
    end
    ccall(:jl_array_del_beg, Void, (Any, UInt), a, delta)
    return a
end

function _deleteat_end!(a::Vector, i::Integer, delta::Integer)
    n = length(a)
    if n >= i+delta
        ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
              pointer(a, i), pointer(a, i+delta), (n-i-delta+1)*elsize(a))
    end
    ccall(:jl_array_del_end, Void, (Any, UInt), a, delta)
    return a
end

## Dequeue functionality ##

function push!{T}(a::Array{T,1}, item)
    # convert first so we don't grow the array if the assignment won't work
    itemT = convert(T, item)
    ccall(:jl_array_grow_end, Void, (Any, UInt), a, 1)
    a[end] = itemT
    return a
end

function push!(a::Array{Any,1}, item::ANY)
    ccall(:jl_array_grow_end, Void, (Any, UInt), a, 1)
    arrayset(a, item, length(a))
    return a
end

function append!{T}(a::Array{T,1}, items::AbstractVector)
    n = length(items)
    ccall(:jl_array_grow_end, Void, (Any, UInt), a, n)
    copy!(a, length(a)-n+1, items, 1, n)
    return a
end

function prepend!{T}(a::Array{T,1}, items::AbstractVector)
    n = length(items)
    ccall(:jl_array_grow_beg, Void, (Any, UInt), a, n)
    if a === items
        copy!(a, 1, items, n+1, n)
    else
        copy!(a, 1, items, 1, n)
    end
    return a
end

function resize!(a::Vector, nl::Integer)
    l = length(a)
    if nl > l
        ccall(:jl_array_grow_end, Void, (Any, UInt), a, nl-l)
    else
        if nl < 0
            throw(ArgumentError("new length must be ≥ 0"))
        end
        ccall(:jl_array_del_end, Void, (Any, UInt), a, l-nl)
    end
    return a
end

function sizehint!(a::Vector, sz::Integer)
    ccall(:jl_array_sizehint, Void, (Any, UInt), a, sz)
    a
end

function pop!(a::Vector)
    if isempty(a)
        throw(ArgumentError("array must be non-empty"))
    end
    item = a[end]
    ccall(:jl_array_del_end, Void, (Any, UInt), a, 1)
    return item
end

function unshift!{T}(a::Array{T,1}, item)
    item = convert(T, item)
    ccall(:jl_array_grow_beg, Void, (Any, UInt), a, 1)
    a[1] = item
    return a
end

function shift!(a::Vector)
    if isempty(a)
        throw(ArgumentError("array must be non-empty"))
    end
    item = a[1]
    ccall(:jl_array_del_beg, Void, (Any, UInt), a, 1)
    return item
end

function insert!{T}(a::Array{T,1}, i::Integer, item)
    if !(1 <= i <= length(a)+1)
        throw(BoundsError())
    end
    if i == length(a)+1
        return push!(a, item)
    end
    item = convert(T, item)
    _growat!(a, i, 1)
    a[i] = item
    return a
end

function deleteat!(a::Vector, i::Integer)
    if !(1 <= i <= length(a))
        throw(BoundsError())
    end
    return _deleteat!(a, i, 1)
end

function deleteat!{T<:Integer}(a::Vector, r::UnitRange{T})
    n = length(a)
    isempty(r) && return a
    f = first(r)
    l = last(r)
    if !(1 <= f && l <= n)
        throw(BoundsError())
    end
    return _deleteat!(a, f, length(r))
end

function deleteat!(a::Vector, inds)
    n = length(a)
    s = start(inds)
    done(inds, s) && return a
    (p, s) = next(inds, s)
    q = p+1
    while !done(inds, s)
        (i,s) = next(inds, s)
        if !(q <= i <= n)
            if i < q
                throw(ArgumentError("indices must be unique and sorted"))
            else
                throw(BoundsError())
            end
        end
        while q < i
            @inbounds a[p] = a[q]
            p += 1; q += 1
        end
        q = i+1
    end
    while q <= n
        @inbounds a[p] = a[q]
        p += 1; q += 1
    end
    ccall(:jl_array_del_end, Void, (Any, UInt), a, n-p+1)
    return a
end

const _default_splice = []

function splice!(a::Vector, i::Integer, ins=_default_splice)
    v = a[i]
    m = length(ins)
    if m == 0
        _deleteat!(a, i, 1)
    elseif m == 1
        a[i] = ins[1]
    else
        _growat!(a, i, m-1)
        k = 1
        for x in ins
            a[i+k-1] = x
            k += 1
        end
    end
    return v
end

function splice!{T<:Integer}(a::Vector, r::UnitRange{T}, ins=_default_splice)
    v = a[r]
    m = length(ins)
    if m == 0
        deleteat!(a, r)
        return v
    end

    n = length(a)
    f = first(r)
    l = last(r)
    d = length(r)

    if m < d
        delta = d - m
        if f-1 < n-l
            _deleteat_beg!(a, f, delta)
        else
            _deleteat_end!(a, l-delta+1, delta)
        end
    elseif m > d
        delta = m - d
        if f-1 < n-l
            _growat_beg!(a, f, delta)
        else
            _growat_end!(a, l+1, delta)
        end
    end

    k = 1
    for x in ins
        a[f+k-1] = x
        k += 1
    end
    return v
end

function empty!(a::Vector)
    ccall(:jl_array_del_end, Void, (Any, UInt), a, length(a))
    return a
end

# use memcmp for lexcmp on byte arrays
function lexcmp(a::Array{UInt8,1}, b::Array{UInt8,1})
    c = ccall(:memcmp, Int32, (Ptr{UInt8}, Ptr{UInt8}, UInt),
              a, b, min(length(a),length(b)))
    c < 0 ? -1 : c > 0 ? +1 : cmp(length(a),length(b))
end

# note: probably should be StridedVector or AbstractVector
function reverse(A::AbstractVector, s=1, n=length(A))
    B = similar(A)
    for i = 1:s-1
        B[i] = A[i]
    end
    for i = s:n
        B[i] = A[n+s-i]
    end
    for i = n+1:length(A)
        B[i] = A[i]
    end
    B
end
reverseind(a::AbstractVector, i::Integer) = length(a) + 1 - i

reverse(v::StridedVector) = (n=length(v); [ v[n-i+1] for i=1:n ])
reverse(v::StridedVector, s, n=length(v)) = reverse!(copy(v), s, n)
function reverse!(v::StridedVector, s=1, n=length(v))
    if n <= s  # empty case; ok
    elseif !(1 ≤ s ≤ endof(v))
        throw(BoundsError(v, s))
    elseif !(1 ≤ n ≤ endof(v))
        throw(BoundsError(v, n))
    end
    r = n
    @inbounds for i in s:div(s+n-1, 2)
        v[i], v[r] = v[r], v[i]
        r -= 1
    end
    v
end

function vcat{T}(arrays::Vector{T}...)
    n = 0
    for a in arrays
        n += length(a)
    end
    arr = Array(T, n)
    ptr = pointer(arr)
    offset = 0
    if isbits(T)
        elsz = sizeof(T)
    else
        elsz = div(WORD_SIZE,8)
    end
    for a in arrays
        nba = length(a)*elsz
        ccall(:memcpy, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt),
              ptr+offset, a, nba)
        offset += nba
    end
    return arr
end

function hcat{T}(V::Vector{T}...)
    height = length(V[1])
    for j = 2:length(V)
        if length(V[j]) != height
            throw(DimensionMismatch("vectors must have same lengths"))
        end
    end
    [ V[j][i]::T for i=1:length(V[1]), j=1:length(V) ]
end


## find ##

# returns the index of the next non-zero element, or 0 if all zeros
function findnext(A, start::Integer)
    for i = start:length(A)
        if A[i] != 0
            return i
        end
    end
    return 0
end
findfirst(A) = findnext(A, 1)

# returns the index of the next matching element
function findnext(A, v, start::Integer)
    for i = start:length(A)
        if A[i] == v
            return i
        end
    end
    return 0
end
findfirst(A, v) = findnext(A, v, 1)

# returns the index of the next element for which the function returns true
function findnext(testf::Function, A, start::Integer)
    for i = start:length(A)
        if testf(A[i])
            return i
        end
    end
    return 0
end
findfirst(testf::Function, A) = findnext(testf, A, 1)

# returns the index of the previous non-zero element, or 0 if all zeros
function findprev(A, start)
    for i = start:-1:1
        A[i] != 0 && return i
    end
    0
end
findlast(A) = findprev(A, length(A))

# returns the index of the matching element, or 0 if no matching
function findprev(A, v, start)
    for i = start:-1:1
        A[i] == v && return i
    end
    0
end
findlast(A, v) = findprev(A, v, length(A))

# returns the index of the previous element for which the function returns true, or zero if it never does
function findprev(testf::Function, A, start)
    for i = start:-1:1
        testf(A[i]) && return i
    end
    0
end
findlast(testf::Function, A) = findprev(testf, A, length(A))

function find(testf::Function, A::AbstractArray)
    # use a dynamic-length array to store the indexes, then copy to a non-padded
    # array for the return
    tmpI = Array(Int, 0)
    for i = 1:length(A)
        if testf(A[i])
            push!(tmpI, i)
        end
    end
    I = Array(Int, length(tmpI))
    copy!(I, tmpI)
    I
end

function find(A::StridedArray)
    nnzA = countnz(A)
    I = similar(A, Int, nnzA)
    count = 1
    for i=1:length(A)
        if A[i] != 0
            I[count] = i
            count += 1
        end
    end
    return I
end

find(x::Number) = x == 0 ? Array(Int,0) : [1]
find(testf::Function, x::Number) = !testf(x) ? Array(Int,0) : [1]

findn(A::AbstractVector) = find(A)

function findn(A::StridedMatrix)
    nnzA = countnz(A)
    I = similar(A, Int, nnzA)
    J = similar(A, Int, nnzA)
    count = 1
    for j=1:size(A,2), i=1:size(A,1)
        if A[i,j] != 0
            I[count] = i
            J[count] = j
            count += 1
        end
    end
    return (I, J)
end

function findnz{T}(A::AbstractMatrix{T})
    nnzA = countnz(A)
    I = zeros(Int, nnzA)
    J = zeros(Int, nnzA)
    NZs = Array(T, nnzA)
    count = 1
    if nnzA > 0
        for j=1:size(A,2), i=1:size(A,1)
            Aij = A[i,j]
            if Aij != 0
                I[count] = i
                J[count] = j
                NZs[count] = Aij
                count += 1
            end
        end
    end
    return (I, J, NZs)
end

function findmax(a)
    if isempty(a)
        throw(ArgumentError("collection must be non-empty"))
    end
    s = start(a)
    mi = i = 1
    m, s = next(a, s)
    while !done(a, s)
        ai, s = next(a, s)
        i += 1
        if ai > m || m!=m
            m = ai
            mi = i
        end
    end
    return (m, mi)
end

function findmin(a)
    if isempty(a)
        throw(ArgumentError("collection must be non-empty"))
    end
    s = start(a)
    mi = i = 1
    m, s = next(a, s)
    while !done(a, s)
        ai, s = next(a, s)
        i += 1
        if ai < m || m!=m
            m = ai
            mi = i
        end
    end
    return (m, mi)
end

indmax(a) = findmax(a)[2]
indmin(a) = findmin(a)[2]

# similar to Matlab's ismember
# returns a vector containing the highest index in b for each value in a that is a member of b
function indexin(a::AbstractArray, b::AbstractArray)
    bdict = Dict(zip(b, 1:length(b)))
    [get(bdict, i, 0) for i in a]
end

# findin (the index of intersection)
function findin(a, b::UnitRange)
    ind = Array(Int, 0)
    f = first(b)
    l = last(b)
    for i = 1:length(a)
        if f <= a[i] <= l
            push!(ind, i)
        end
    end
    ind
end

function findin(a, b)
    ind = Array(Int, 0)
    bset = Set(b)
    @inbounds for i = 1:length(a)
        a[i] in bset && push!(ind, i)
    end
    ind
end

# Copying subregions
function indcopy(sz::Dims, I::Vector)
    n = length(I)
    s = sz[n]
    for i = n+1:length(sz)
        s *= sz[i]
    end
    dst = eltype(I)[findin(I[i], i < n ? (1:sz[i]) : (1:s)) for i = 1:n]
    src = eltype(I)[I[i][findin(I[i], i < n ? (1:sz[i]) : (1:s))] for i = 1:n]
    dst, src
end

function indcopy(sz::Dims, I::Tuple{Vararg{RangeIndex}})
    n = length(I)
    s = sz[n]
    for i = n+1:length(sz)
        s *= sz[i]
    end
    dst::typeof(I) = ntuple(i-> findin(I[i], i < n ? (1:sz[i]) : (1:s)), n)::typeof(I)
    src::typeof(I) = ntuple(i-> I[i][findin(I[i], i < n ? (1:sz[i]) : (1:s))], n)::typeof(I)
    dst, src
end

## Filter ##

# given a function returning a boolean and an array, return matching elements
filter(f, As::AbstractArray) = As[map(f, As)::AbstractArray{Bool}]

function filter!(f, a::Vector)
    insrt = 1
    for curr = 1:length(a)
        if f(a[curr])
            a[insrt] = a[curr]
            insrt += 1
        end
    end
    deleteat!(a, insrt:length(a))
    return a
end

function filter(f, a::Vector)
    r = Array(eltype(a), 0)
    for i = 1:length(a)
        if f(a[i])
            push!(r, a[i])
        end
    end
    return r
end

# set-like operators for vectors
# These are moderately efficient, preserve order, and remove dupes.

function intersect(v1, vs...)
    ret = Array(eltype(v1),0)
    for v_elem in v1
        inall = true
        for i = 1:length(vs)
            if !in(v_elem, vs[i])
                inall=false; break
            end
        end
        if inall
            push!(ret, v_elem)
        end
    end
    ret
end

function union(vs...)
    ret = Array(promote_eltype(vs...),0)
    seen = Set()
    for v in vs
        for v_elem in v
            if !in(v_elem, seen)
                push!(ret, v_elem)
                push!(seen, v_elem)
            end
        end
    end
    ret
end
# setdiff only accepts two args
function setdiff(a, b)
    args_type = promote_type(eltype(a), eltype(b))
    bset = Set(b)
    ret = Array(args_type,0)
    seen = Set{eltype(a)}()
    for a_elem in a
        if !in(a_elem, seen) && !in(a_elem, bset)
            push!(ret, a_elem)
            push!(seen, a_elem)
        end
    end
    ret
end
# symdiff is associative, so a relatively clean
# way to implement this is by using setdiff and union, and
# recursing. Has the advantage of keeping order, too, but
# not as fast as other methods that make a single pass and
# store counts with a Dict.
symdiff(a) = a
symdiff(a, b) = union(setdiff(a,b), setdiff(b,a))
symdiff(a, b, rest...) = symdiff(a, symdiff(b, rest...))