1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## Basic functions ##
"""
AbstractArray{T,N}
Supertype for `N`-dimensional arrays (or array-like types) with elements of type `T`.
[`Array`](@ref) and other types are subtypes of this. See the manual section on the
[`AbstractArray` interface](@ref man-interface-array).
"""
AbstractArray
convert(::Type{T}, a::T) where {T<:AbstractArray} = a
convert(::Type{AbstractArray{T}}, a::AbstractArray) where {T} = AbstractArray{T}(a)
convert(::Type{AbstractArray{T,N}}, a::AbstractArray{<:Any,N}) where {T,N} = AbstractArray{T,N}(a)
"""
size(A::AbstractArray, [dim])
Return a tuple containing the dimensions of `A`. Optionally you can specify a
dimension to just get the length of that dimension.
Note that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref)
may be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices).
# Examples
```jldoctest
julia> A = fill(1, (2,3,4));
julia> size(A)
(2, 3, 4)
julia> size(A, 2)
3
```
"""
size(t::AbstractArray{T,N}, d) where {T,N} = d <= N ? size(t)[d] : 1
"""
axes(A, d)
Return the valid range of indices for array `A` along dimension `d`.
See also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices).
# Examples
```jldoctest
julia> A = fill(1, (5,6,7));
julia> axes(A, 2)
Base.OneTo(6)
```
"""
function axes(A::AbstractArray{T,N}, d) where {T,N}
@_inline_meta
d <= N ? axes(A)[d] : OneTo(1)
end
"""
axes(A)
Return the tuple of valid indices for array `A`.
# Examples
```jldoctest
julia> A = fill(1, (5,6,7));
julia> axes(A)
(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))
```
"""
function axes(A)
@_inline_meta
map(OneTo, size(A))
end
"""
has_offset_axes(A)
has_offset_axes(A, B, ...)
Return `true` if the indices of `A` start with something other than 1 along any axis.
If multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`.
"""
has_offset_axes(A) = _tuple_any(x->first(x)!=1, axes(A))
has_offset_axes(A...) = _tuple_any(has_offset_axes, A)
has_offset_axes(::Colon) = false
# Performance optimization: get rid of a branch on `d` in `axes(A, d)`
# for d=1. 1d arrays are heavily used, and the first dimension comes up
# in other applications.
axes1(A::AbstractArray{<:Any,0}) = OneTo(1)
axes1(A::AbstractArray) = (@_inline_meta; axes(A)[1])
axes1(iter) = OneTo(length(iter))
unsafe_indices(A) = axes(A)
unsafe_indices(r::AbstractRange) = (OneTo(unsafe_length(r)),) # Ranges use checked_sub for size
keys(a::AbstractArray) = CartesianIndices(axes(a))
keys(a::AbstractVector) = LinearIndices(a)
prevind(::AbstractArray, i::Integer) = Int(i)-1
nextind(::AbstractArray, i::Integer) = Int(i)+1
eltype(::Type{<:AbstractArray{E}}) where {E} = @isdefined(E) ? E : Any
elsize(A::AbstractArray) = elsize(typeof(A))
"""
ndims(A::AbstractArray) -> Integer
Return the number of dimensions of `A`.
# Examples
```jldoctest
julia> A = fill(1, (3,4,5));
julia> ndims(A)
3
```
"""
ndims(::AbstractArray{T,N}) where {T,N} = N
ndims(::Type{<:AbstractArray{T,N}}) where {T,N} = N
"""
length(collection) -> Integer
Return the number of elements in the collection.
Use [`lastindex`](@ref) to get the last valid index of an indexable collection.
# Examples
```jldoctest
julia> length(1:5)
5
julia> length([1, 2, 3, 4])
4
julia> length([1 2; 3 4])
4
```
"""
length
"""
length(A::AbstractArray)
Return the number of elements in the array, defaults to `prod(size(A))`.
# Examples
```jldoctest
julia> length([1, 2, 3, 4])
4
julia> length([1 2; 3 4])
4
```
"""
length(t::AbstractArray) = (@_inline_meta; prod(size(t)))
# `eachindex` is mostly an optimization of `keys`
eachindex(itrs...) = keys(itrs...)
# eachindex iterates over all indices. IndexCartesian definitions are later.
eachindex(A::AbstractVector) = (@_inline_meta(); axes1(A))
"""
eachindex(A...)
Create an iterable object for visiting each index of an `AbstractArray` `A` in an efficient
manner. For array types that have opted into fast linear indexing (like `Array`), this is
simply the range `1:length(A)`. For other array types, return a specialized Cartesian
range to efficiently index into the array with indices specified for every dimension. For
other iterables, including strings and dictionaries, return an iterator object
supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
If you supply more than one `AbstractArray` argument, `eachindex` will create an
iterable object that is fast for all arguments (a [`UnitRange`](@ref)
if all inputs have fast linear indexing, a [`CartesianIndices`](@ref)
otherwise).
If the arrays have different sizes and/or dimensionalities, `eachindex` will return an
iterable that spans the largest range along each dimension.
# Examples
```jldoctest
julia> A = [1 2; 3 4];
julia> for i in eachindex(A) # linear indexing
println(i)
end
1
2
3
4
julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing
println(i)
end
CartesianIndex(1, 1)
CartesianIndex(2, 1)
```
"""
eachindex(A::AbstractArray) = (@_inline_meta(); eachindex(IndexStyle(A), A))
function eachindex(A::AbstractArray, B::AbstractArray)
@_inline_meta
eachindex(IndexStyle(A,B), A, B)
end
function eachindex(A::AbstractArray, B::AbstractArray...)
@_inline_meta
eachindex(IndexStyle(A,B...), A, B...)
end
eachindex(::IndexLinear, A::AbstractArray) = (@_inline_meta; OneTo(length(A)))
eachindex(::IndexLinear, A::AbstractVector) = (@_inline_meta; axes1(A))
function eachindex(::IndexLinear, A::AbstractArray, B::AbstractArray...)
@_inline_meta
indsA = eachindex(IndexLinear(), A)
_all_match_first(X->eachindex(IndexLinear(), X), indsA, B...) ||
throw_eachindex_mismatch(IndexLinear(), A, B...)
indsA
end
function _all_match_first(f::F, inds, A, B...) where F<:Function
@_inline_meta
(inds == f(A)) & _all_match_first(f, inds, B...)
end
_all_match_first(f::F, inds) where F<:Function = true
# keys with an IndexStyle
keys(s::IndexStyle, A::AbstractArray, B::AbstractArray...) = eachindex(s, A, B...)
"""
lastindex(collection) -> Integer
lastindex(collection, d) -> Integer
Return the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`.
The syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and
`A[lastindex(A, 1), lastindex(A, 2)]`, respectively.
# Examples
```jldoctest
julia> lastindex([1,2,4])
3
julia> lastindex(rand(3,4,5), 2)
4
```
"""
lastindex(a::AbstractArray) = (@_inline_meta; last(eachindex(IndexLinear(), a)))
lastindex(a::AbstractArray, d) = (@_inline_meta; last(axes(a, d)))
"""
firstindex(collection) -> Integer
firstindex(collection, d) -> Integer
Return the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`.
# Examples
```jldoctest
julia> firstindex([1,2,4])
1
julia> firstindex(rand(3,4,5), 2)
1
```
"""
firstindex(a::AbstractArray) = (@_inline_meta; first(eachindex(IndexLinear(), a)))
firstindex(a::AbstractArray, d) = (@_inline_meta; first(axes(a, d)))
first(a::AbstractArray) = a[first(eachindex(a))]
"""
first(coll)
Get the first element of an iterable collection. Return the start point of an
[`AbstractRange`](@ref) even if it is empty.
# Examples
```jldoctest
julia> first(2:2:10)
2
julia> first([1; 2; 3; 4])
1
```
"""
function first(itr)
x = iterate(itr)
x === nothing && throw(ArgumentError("collection must be non-empty"))
x[1]
end
"""
last(coll)
Get the last element of an ordered collection, if it can be computed in O(1) time. This is
accomplished by calling [`lastindex`](@ref) to get the last index. Return the end
point of an [`AbstractRange`](@ref) even if it is empty.
# Examples
```jldoctest
julia> last(1:2:10)
9
julia> last([1; 2; 3; 4])
4
```
"""
last(a) = a[end]
"""
strides(A)
Return a tuple of the memory strides in each dimension.
# Examples
```jldoctest
julia> A = fill(1, (3,4,5));
julia> strides(A)
(1, 3, 12)
```
"""
function strides end
"""
stride(A, k::Integer)
Return the distance in memory (in number of elements) between adjacent elements in dimension `k`.
# Examples
```jldoctest
julia> A = fill(1, (3,4,5));
julia> stride(A,2)
3
julia> stride(A,3)
12
```
"""
stride(A::AbstractArray, k::Integer) = strides(A)[k]
@inline size_to_strides(s, d, sz...) = (s, size_to_strides(s * d, sz...)...)
size_to_strides(s, d) = (s,)
size_to_strides(s) = ()
function isassigned(a::AbstractArray, i::Integer...)
try
a[i...]
true
catch e
if isa(e, BoundsError) || isa(e, UndefRefError)
return false
else
rethrow(e)
end
end
end
# used to compute "end" for last index
function trailingsize(A, n)
s = 1
for i=n:ndims(A)
s *= size(A,i)
end
return s
end
function trailingsize(inds::Indices, n)
s = 1
for i=n:length(inds)
s *= unsafe_length(inds[i])
end
return s
end
# This version is type-stable even if inds is heterogeneous
function trailingsize(inds::Indices)
@_inline_meta
prod(map(unsafe_length, inds))
end
## Bounds checking ##
# The overall hierarchy is
# `checkbounds(A, I...)` ->
# `checkbounds(Bool, A, I...)` ->
# `checkbounds_indices(Bool, IA, I)`, which recursively calls
# `checkindex` for each dimension
#
# See the "boundscheck" devdocs for more information.
#
# Note this hierarchy has been designed to reduce the likelihood of
# method ambiguities. We try to make `checkbounds` the place to
# specialize on array type, and try to avoid specializations on index
# types; conversely, `checkindex` is intended to be specialized only
# on index type (especially, its last argument).
"""
checkbounds(Bool, A, I...)
Return `true` if the specified indices `I` are in bounds for the given
array `A`. Subtypes of `AbstractArray` should specialize this method
if they need to provide custom bounds checking behaviors; however, in
many cases one can rely on `A`'s indices and [`checkindex`](@ref).
See also [`checkindex`](@ref).
# Examples
```jldoctest
julia> A = rand(3, 3);
julia> checkbounds(Bool, A, 2)
true
julia> checkbounds(Bool, A, 3, 4)
false
julia> checkbounds(Bool, A, 1:3)
true
julia> checkbounds(Bool, A, 1:3, 2:4)
false
```
"""
function checkbounds(::Type{Bool}, A::AbstractArray, I...)
@_inline_meta
checkbounds_indices(Bool, axes(A), I)
end
# Linear indexing is explicitly allowed when there is only one (non-cartesian) index
function checkbounds(::Type{Bool}, A::AbstractArray, i)
@_inline_meta
checkindex(Bool, eachindex(IndexLinear(), A), i)
end
# As a special extension, allow using logical arrays that match the source array exactly
function checkbounds(::Type{Bool}, A::AbstractArray{<:Any,N}, I::AbstractArray{Bool,N}) where N
@_inline_meta
axes(A) == axes(I)
end
"""
checkbounds(A, I...)
Throw an error if the specified indices `I` are not in bounds for the given array `A`.
"""
function checkbounds(A::AbstractArray, I...)
@_inline_meta
checkbounds(Bool, A, I...) || throw_boundserror(A, I)
nothing
end
"""
checkbounds_indices(Bool, IA, I)
Return `true` if the "requested" indices in the tuple `I` fall within
the bounds of the "permitted" indices specified by the tuple
`IA`. This function recursively consumes elements of these tuples,
usually in a 1-for-1 fashion,
checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &
checkbounds_indices(Bool, IA, I)
Note that [`checkindex`](@ref) is being used to perform the actual
bounds-check for a single dimension of the array.
There are two important exceptions to the 1-1 rule: linear indexing and
CartesianIndex{N}, both of which may "consume" more than one element
of `IA`.
See also [`checkbounds`](@ref).
"""
function checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple)
@_inline_meta
checkindex(Bool, IA[1], I[1]) & checkbounds_indices(Bool, tail(IA), tail(I))
end
function checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple)
@_inline_meta
checkindex(Bool, OneTo(1), I[1]) & checkbounds_indices(Bool, (), tail(I))
end
checkbounds_indices(::Type{Bool}, IA::Tuple, ::Tuple{}) = (@_inline_meta; all(x->unsafe_length(x)==1, IA))
checkbounds_indices(::Type{Bool}, ::Tuple{}, ::Tuple{}) = true
throw_boundserror(A, I) = (@_noinline_meta; throw(BoundsError(A, I)))
# check along a single dimension
"""
checkindex(Bool, inds::AbstractUnitRange, index)
Return `true` if the given `index` is within the bounds of
`inds`. Custom types that would like to behave as indices for all
arrays can extend this method in order to provide a specialized bounds
checking implementation.
# Examples
```jldoctest
julia> checkindex(Bool, 1:20, 8)
true
julia> checkindex(Bool, 1:20, 21)
false
```
"""
checkindex(::Type{Bool}, inds::AbstractUnitRange, i) =
throw(ArgumentError("unable to check bounds for indices of type $(typeof(i))"))
checkindex(::Type{Bool}, inds::AbstractUnitRange, i::Real) = (first(inds) <= i) & (i <= last(inds))
checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Colon) = true
checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Slice) = true
function checkindex(::Type{Bool}, inds::AbstractUnitRange, r::AbstractRange)
@_propagate_inbounds_meta
isempty(r) | (checkindex(Bool, inds, first(r)) & checkindex(Bool, inds, last(r)))
end
checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractVector{Bool}) = indx == axes1(I)
checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractArray{Bool}) = false
function checkindex(::Type{Bool}, inds::AbstractUnitRange, I::AbstractArray)
@_inline_meta
b = true
for i in I
b &= checkindex(Bool, inds, i)
end
b
end
# See also specializations in multidimensional
## Constructors ##
# default arguments to similar()
"""
similar(array, [element_type=eltype(array)], [dims=size(array)])
Create an uninitialized mutable array with the given element type and size, based upon the
given source array. The second and third arguments are both optional, defaulting to the
given array's `eltype` and `size`. The dimensions may be specified either as a single tuple
argument or as a series of integer arguments.
Custom AbstractArray subtypes may choose which specific array type is best-suited to return
for the given element type and dimensionality. If they do not specialize this method, the
default is an `Array{element_type}(undef, dims...)`.
For example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are
neither mutable nor support 2 dimensions:
```julia-repl
julia> similar(1:10, 1, 4)
1×4 Array{Int64,2}:
4419743872 4374413872 4419743888 0
```
Conversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two
elements since `BitArray`s are both mutable and can support 1-dimensional arrays:
```julia-repl
julia> similar(trues(10,10), 2)
2-element BitArray{1}:
false
false
```
Since `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a
different element type it will create a regular `Array` instead:
```julia-repl
julia> similar(falses(10), Float64, 2, 4)
2×4 Array{Float64,2}:
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314
```
"""
similar(a::AbstractArray{T}) where {T} = similar(a, T)
similar(a::AbstractArray, ::Type{T}) where {T} = similar(a, T, to_shape(axes(a)))
similar(a::AbstractArray{T}, dims::Tuple) where {T} = similar(a, T, to_shape(dims))
similar(a::AbstractArray{T}, dims::DimOrInd...) where {T} = similar(a, T, to_shape(dims))
similar(a::AbstractArray, ::Type{T}, dims::DimOrInd...) where {T} = similar(a, T, to_shape(dims))
# Similar supports specifying dims as either Integers or AbstractUnitRanges or any mixed combination
# thereof. Ideally, we'd just convert Integers to OneTos and then call a canonical method with the axes,
# but we don't want to require all AbstractArray subtypes to dispatch on Base.OneTo. So instead we
# define this method to convert supported axes to Ints, with the expectation that an offset array
# package will define a method with dims::Tuple{Union{Integer, UnitRange}, Vararg{Union{Integer, UnitRange}}}
similar(a::AbstractArray, ::Type{T}, dims::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T} = similar(a, T, to_shape(dims))
# similar creates an Array by default
similar(a::AbstractArray, ::Type{T}, dims::Dims{N}) where {T,N} = Array{T,N}(undef, dims)
to_shape(::Tuple{}) = ()
to_shape(dims::Dims) = dims
to_shape(dims::DimsOrInds) = map(to_shape, dims)::DimsOrInds
# each dimension
to_shape(i::Int) = i
to_shape(i::Integer) = Int(i)
to_shape(r::OneTo) = Int(last(r))
to_shape(r::AbstractUnitRange) = r
"""
similar(storagetype, axes)
Create an uninitialized mutable array analogous to that specified by
`storagetype`, but with `axes` specified by the last
argument. `storagetype` might be a type or a function.
**Examples**:
similar(Array{Int}, axes(A))
creates an array that "acts like" an `Array{Int}` (and might indeed be
backed by one), but which is indexed identically to `A`. If `A` has
conventional indexing, this will be identical to
`Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the
indices of the result will match `A`.
similar(BitArray, (axes(A, 2),))
would create a 1-dimensional logical array whose indices match those
of the columns of `A`.
"""
similar(::Type{T}, dims::DimOrInd...) where {T<:AbstractArray} = similar(T, dims)
similar(::Type{T}, shape::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T<:AbstractArray} = similar(T, to_shape(shape))
similar(::Type{T}, dims::Dims) where {T<:AbstractArray} = T(undef, dims)
"""
empty(v::AbstractVector, [eltype])
Create an empty vector similar to `v`, optionally changing the `eltype`.
# Examples
```jldoctest
julia> empty([1.0, 2.0, 3.0])
0-element Array{Float64,1}
julia> empty([1.0, 2.0, 3.0], String)
0-element Array{String,1}
```
"""
empty(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}()
# like empty, but should return a mutable collection, a Vector by default
emptymutable(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}()
emptymutable(itr, ::Type{U}) where {U} = Vector{U}()
## from general iterable to any array
function copyto!(dest::AbstractArray, src)
destiter = eachindex(dest)
y = iterate(destiter)
for x in src
y === nothing &&
throw(ArgumentError(string("destination has fewer elements than required")))
dest[y[1]] = x
y = iterate(destiter, y[2])
end
return dest
end
function copyto!(dest::AbstractArray, dstart::Integer, src)
i = Int(dstart)
for x in src
dest[i] = x
i += 1
end
return dest
end
# copy from an some iterable object into an AbstractArray
function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer)
if (sstart < 1)
throw(ArgumentError(string("source start offset (",sstart,") is < 1")))
end
y = iterate(src)
for j = 1:(sstart-1)
if y === nothing
throw(ArgumentError(string("source has fewer elements than required, ",
"expected at least ",sstart,", got ",j-1)))
end
y = iterate(src, y[2])
end
if y === nothing
throw(ArgumentError(string("source has fewer elements than required, ",
"expected at least ",sstart,", got ",sstart-1)))
end
i = Int(dstart)
while y != nothing
val, st = y
dest[i] = val
i += 1
y = iterate(src, st)
end
return dest
end
# this method must be separate from the above since src might not have a length
function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer, n::Integer)
n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative")))
n == 0 && return dest
dmax = dstart + n - 1
inds = LinearIndices(dest)
if (dstart ∉ inds || dmax ∉ inds) | (sstart < 1)
sstart < 1 && throw(ArgumentError(string("source start offset (",sstart,") is < 1")))
throw(BoundsError(dest, dstart:dmax))
end
y = iterate(src)
for j = 1:(sstart-1)
if y === nothing
throw(ArgumentError(string("source has fewer elements than required, ",
"expected at least ",sstart,", got ",j-1)))
end
y = iterate(src, y[2])
end
i = Int(dstart)
while i <= dmax && y !== nothing
val, st = y
@inbounds dest[i] = val
y = iterate(src, st)
i += 1
end
i <= dmax && throw(BoundsError(dest, i))
return dest
end
## copy between abstract arrays - generally more efficient
## since a single index variable can be used.
copyto!(dest::AbstractArray, src::AbstractArray) =
copyto!(IndexStyle(dest), dest, IndexStyle(src), src)
function copyto!(::IndexStyle, dest::AbstractArray, ::IndexStyle, src::AbstractArray)
destinds, srcinds = LinearIndices(dest), LinearIndices(src)
isempty(srcinds) || (checkbounds(Bool, destinds, first(srcinds)) && checkbounds(Bool, destinds, last(srcinds))) ||
throw(BoundsError(dest, srcinds))
@inbounds for i in srcinds
dest[i] = src[i]
end
return dest
end
function copyto!(::IndexStyle, dest::AbstractArray, ::IndexCartesian, src::AbstractArray)
destinds, srcinds = LinearIndices(dest), LinearIndices(src)
isempty(srcinds) || (checkbounds(Bool, destinds, first(srcinds)) && checkbounds(Bool, destinds, last(srcinds))) ||
throw(BoundsError(dest, srcinds))
i = 0
@inbounds for a in src
dest[i+=1] = a
end
return dest
end
function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray)
copyto!(dest, dstart, src, first(LinearIndices(src)), length(src))
end
function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray, sstart::Integer)
srcinds = LinearIndices(src)
checkbounds(Bool, srcinds, sstart) || throw(BoundsError(src, sstart))
copyto!(dest, dstart, src, sstart, last(srcinds)-sstart+1)
end
function copyto!(dest::AbstractArray, dstart::Integer,
src::AbstractArray, sstart::Integer,
n::Integer)
n == 0 && return dest
n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative")))
destinds, srcinds = LinearIndices(dest), LinearIndices(src)
(checkbounds(Bool, destinds, dstart) && checkbounds(Bool, destinds, dstart+n-1)) || throw(BoundsError(dest, dstart:dstart+n-1))
(checkbounds(Bool, srcinds, sstart) && checkbounds(Bool, srcinds, sstart+n-1)) || throw(BoundsError(src, sstart:sstart+n-1))
@inbounds for i = 0:(n-1)
dest[dstart+i] = src[sstart+i]
end
return dest
end
function copy(a::AbstractArray)
@_propagate_inbounds_meta
copymutable(a)
end
function copyto!(B::AbstractVecOrMat{R}, ir_dest::AbstractRange{Int}, jr_dest::AbstractRange{Int},
A::AbstractVecOrMat{S}, ir_src::AbstractRange{Int}, jr_src::AbstractRange{Int}) where {R,S}
if length(ir_dest) != length(ir_src)
throw(ArgumentError(string("source and destination must have same size (got ",
length(ir_src)," and ",length(ir_dest),")")))
end
if length(jr_dest) != length(jr_src)
throw(ArgumentError(string("source and destination must have same size (got ",
length(jr_src)," and ",length(jr_dest),")")))
end
@boundscheck checkbounds(B, ir_dest, jr_dest)
@boundscheck checkbounds(A, ir_src, jr_src)
jdest = first(jr_dest)
for jsrc in jr_src
idest = first(ir_dest)
for isrc in ir_src
@inbounds B[idest,jdest] = A[isrc,jsrc]
idest += step(ir_dest)
end
jdest += step(jr_dest)
end
return B
end
"""
copymutable(a)
Make a mutable copy of an array or iterable `a`. For `a::Array`,
this is equivalent to `copy(a)`, but for other array types it may
differ depending on the type of `similar(a)`. For generic iterables
this is equivalent to `collect(a)`.
# Examples
```jldoctest
julia> tup = (1, 2, 3)
(1, 2, 3)
julia> Base.copymutable(tup)
3-element Array{Int64,1}:
1
2
3
```
"""
function copymutable(a::AbstractArray)
@_propagate_inbounds_meta
copyto!(similar(a), a)
end
copymutable(itr) = collect(itr)
zero(x::AbstractArray{T}) where {T} = fill!(similar(x), zero(T))
## iteration support for arrays by iterating over `eachindex` in the array ##
# Allows fast iteration by default for both IndexLinear and IndexCartesian arrays
# While the definitions for IndexLinear are all simple enough to inline on their
# own, IndexCartesian's CartesianIndices is more complicated and requires explicit
# inlining.
function iterate(A::AbstractArray, state=(eachindex(A),))
y = iterate(state...)
y === nothing && return nothing
A[y[1]], (state[1], tail(y)...)
end
isempty(a::AbstractArray) = (length(a) == 0)
## range conversions ##
map(::Type{T}, r::StepRange) where {T<:Real} = T(r.start):T(r.step):T(last(r))
map(::Type{T}, r::UnitRange) where {T<:Real} = T(r.start):T(last(r))
map(::Type{T}, r::StepRangeLen) where {T<:AbstractFloat} = convert(StepRangeLen{T}, r)
function map(::Type{T}, r::LinRange) where T<:AbstractFloat
LinRange(T(r.start), T(r.stop), length(r))
end
## unsafe/pointer conversions ##
# note: the following type definitions don't mean any AbstractArray is convertible to
# a data Ref. they just map the array element type to the pointer type for
# convenience in cases that work.
pointer(x::AbstractArray{T}) where {T} = unsafe_convert(Ptr{T}, x)
function pointer(x::AbstractArray{T}, i::Integer) where T
@_inline_meta
unsafe_convert(Ptr{T}, x) + (i - first(LinearIndices(x)))*elsize(x)
end
## Approach:
# We only define one fallback method on getindex for all argument types.
# That dispatches to an (inlined) internal _getindex function, where the goal is
# to transform the indices such that we can call the only getindex method that
# we require the type A{T,N} <: AbstractArray{T,N} to define; either:
# getindex(::A, ::Int) # if IndexStyle(A) == IndexLinear() OR
# getindex(::A{T,N}, ::Vararg{Int, N}) where {T,N} # if IndexCartesian()
# If the subtype hasn't defined the required method, it falls back to the
# _getindex function again where an error is thrown to prevent stack overflows.
"""
getindex(A, inds...)
Return a subset of array `A` as specified by `inds`, where each `ind` may be an
`Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref). See the manual section on
[array indexing](@ref man-array-indexing) for details.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> getindex(A, 1)
1
julia> getindex(A, [2, 1])
2-element Array{Int64,1}:
3
1
julia> getindex(A, 2:4)
3-element Array{Int64,1}:
3
2
4
```
"""
function getindex(A::AbstractArray, I...)
@_propagate_inbounds_meta
error_if_canonical_getindex(IndexStyle(A), A, I...)
_getindex(IndexStyle(A), A, to_indices(A, I)...)
end
function unsafe_getindex(A::AbstractArray, I...)
@_inline_meta
@inbounds r = getindex(A, I...)
r
end
error_if_canonical_getindex(::IndexLinear, A::AbstractArray, ::Int) =
error("getindex not defined for ", typeof(A))
error_if_canonical_getindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} =
error("getindex not defined for ", typeof(A))
error_if_canonical_getindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing
## Internal definitions
_getindex(::IndexStyle, A::AbstractArray, I...) =
error("getindex for $(typeof(A)) with types $(typeof(I)) is not supported")
## IndexLinear Scalar indexing: canonical method is one Int
_getindex(::IndexLinear, A::AbstractArray, i::Int) = (@_propagate_inbounds_meta; getindex(A, i))
function _getindex(::IndexLinear, A::AbstractArray, I::Vararg{Int,M}) where M
@_inline_meta
@boundscheck checkbounds(A, I...) # generally _to_linear_index requires bounds checking
@inbounds r = getindex(A, _to_linear_index(A, I...))
r
end
_to_linear_index(A::AbstractArray, i::Int) = i
_to_linear_index(A::AbstractVector, i::Int, I::Int...) = i
_to_linear_index(A::AbstractArray) = 1
_to_linear_index(A::AbstractArray, I::Int...) = (@_inline_meta; _sub2ind(A, I...))
## IndexCartesian Scalar indexing: Canonical method is full dimensionality of Ints
function _getindex(::IndexCartesian, A::AbstractArray, I::Vararg{Int,M}) where M
@_inline_meta
@boundscheck checkbounds(A, I...) # generally _to_subscript_indices requires bounds checking
@inbounds r = getindex(A, _to_subscript_indices(A, I...)...)
r
end
function _getindex(::IndexCartesian, A::AbstractArray{T,N}, I::Vararg{Int, N}) where {T,N}
@_propagate_inbounds_meta
getindex(A, I...)
end
_to_subscript_indices(A::AbstractArray, i::Int) = (@_inline_meta; _unsafe_ind2sub(A, i))
_to_subscript_indices(A::AbstractArray{T,N}) where {T,N} = (@_inline_meta; fill_to_length((), 1, Val(N)))
_to_subscript_indices(A::AbstractArray{T,0}) where {T} = ()
_to_subscript_indices(A::AbstractArray{T,0}, i::Int) where {T} = ()
_to_subscript_indices(A::AbstractArray{T,0}, I::Int...) where {T} = ()
function _to_subscript_indices(A::AbstractArray{T,N}, I::Int...) where {T,N}
@_inline_meta
J, Jrem = IteratorsMD.split(I, Val(N))
_to_subscript_indices(A, J, Jrem)
end
_to_subscript_indices(A::AbstractArray, J::Tuple, Jrem::Tuple{}) =
__to_subscript_indices(A, axes(A), J, Jrem)
function __to_subscript_indices(A::AbstractArray,
::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}}, J::Tuple, Jrem::Tuple{})
@_inline_meta
(J..., map(first, tail(_remaining_size(J, axes(A))))...)
end
_to_subscript_indices(A, J::Tuple, Jrem::Tuple) = J # already bounds-checked, safe to drop
_to_subscript_indices(A::AbstractArray{T,N}, I::Vararg{Int,N}) where {T,N} = I
_remaining_size(::Tuple{Any}, t::Tuple) = t
_remaining_size(h::Tuple, t::Tuple) = (@_inline_meta; _remaining_size(tail(h), tail(t)))
_unsafe_ind2sub(::Tuple{}, i) = () # _ind2sub may throw(BoundsError()) in this case
_unsafe_ind2sub(sz, i) = (@_inline_meta; _ind2sub(sz, i))
## Setindex! is defined similarly. We first dispatch to an internal _setindex!
# function that allows dispatch on array storage
"""
setindex!(A, X, inds...)
A[inds...] = X
Store values from array `X` within some subset of `A` as specified by `inds`.
The syntax `A[inds...] = X` is equivalent to `setindex!(A, X, inds...)`.
# Examples
```jldoctest
julia> A = zeros(2,2);
julia> setindex!(A, [10, 20], [1, 2]);
julia> A[[3, 4]] = [30, 40];
julia> A
2×2 Array{Float64,2}:
10.0 30.0
20.0 40.0
```
"""
function setindex!(A::AbstractArray, v, I...)
@_propagate_inbounds_meta
error_if_canonical_setindex(IndexStyle(A), A, I...)
_setindex!(IndexStyle(A), A, v, to_indices(A, I)...)
end
function unsafe_setindex!(A::AbstractArray, v, I...)
@_inline_meta
@inbounds r = setindex!(A, v, I...)
r
end
error_if_canonical_setindex(::IndexLinear, A::AbstractArray, ::Int) =
error("setindex! not defined for ", typeof(A))
error_if_canonical_setindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} =
error("setindex! not defined for ", typeof(A))
error_if_canonical_setindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing
## Internal definitions
_setindex!(::IndexStyle, A::AbstractArray, v, I...) =
error("setindex! for $(typeof(A)) with types $(typeof(I)) is not supported")
## IndexLinear Scalar indexing
_setindex!(::IndexLinear, A::AbstractArray, v, i::Int) = (@_propagate_inbounds_meta; setindex!(A, v, i))
function _setindex!(::IndexLinear, A::AbstractArray, v, I::Vararg{Int,M}) where M
@_inline_meta
@boundscheck checkbounds(A, I...)
@inbounds r = setindex!(A, v, _to_linear_index(A, I...))
r
end
# IndexCartesian Scalar indexing
function _setindex!(::IndexCartesian, A::AbstractArray{T,N}, v, I::Vararg{Int, N}) where {T,N}
@_propagate_inbounds_meta
setindex!(A, v, I...)
end
function _setindex!(::IndexCartesian, A::AbstractArray, v, I::Vararg{Int,M}) where M
@_inline_meta
@boundscheck checkbounds(A, I...)
@inbounds r = setindex!(A, v, _to_subscript_indices(A, I...)...)
r
end
"""
parent(A)
Returns the "parent array" of an array view type (e.g., `SubArray`), or the array itself if
it is not a view.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> V = view(A, 1:2, :)
2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64:
1 2
3 4
julia> parent(V)
2×2 Array{Int64,2}:
1 2
3 4
```
"""
parent(a::AbstractArray) = a
## rudimentary aliasing detection ##
"""
Base.unalias(dest, A)
Return either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from
affecting the returned object. No guarantees are provided.
Custom arrays that wrap or use fields containing arrays that might alias against other
external objects should provide a [`Base.dataids`](@ref) implementation.
This function must return an object of exactly the same type as `A` for performance and type
stability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should
provide a [`Base.unaliascopy`](@ref) implementation.
See also [`Base.mightalias`](@ref).
"""
unalias(dest, A::AbstractArray) = mightalias(dest, A) ? unaliascopy(A) : A
unalias(dest, A::AbstractRange) = A
unalias(dest, A) = A
"""
Base.unaliascopy(A)
Make a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against
another array in order to preserve consistent semantics as that other array is mutated.
This must return an object of the same type as `A` to preserve optimal performance in the
much more common case where aliasing does not occur. By default,
`unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where
`copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of
`Base.unaliascopy(A)`.
"""
unaliascopy(A::Array) = copy(A)
unaliascopy(A::AbstractArray)::typeof(A) = (@_noinline_meta; _unaliascopy(A, copy(A)))
_unaliascopy(A::T, C::T) where {T} = C
_unaliascopy(A, C) = throw(ArgumentError("""
an array of type `$(typeof(A).name)` shares memory with another argument and must
make a preventative copy of itself in order to maintain consistent semantics,
but `copy(A)` returns a new array of type `$(typeof(C))`. To fix, implement:
`Base.unaliascopy(A::$(typeof(A).name))::typeof(A)`"""))
unaliascopy(A) = A
"""
Base.mightalias(A::AbstractArray, B::AbstractArray)
Perform a conservative test to check if arrays `A` and `B` might share the same memory.
By default, this simply checks if either of the arrays reference the same memory
regions, as identified by their [`Base.dataids`](@ref).
"""
mightalias(A::AbstractArray, B::AbstractArray) = !_isdisjoint(dataids(A), dataids(B))
mightalias(x, y) = false
_isdisjoint(as::Tuple{}, bs::Tuple{}) = true
_isdisjoint(as::Tuple{}, bs::Tuple{Any}) = true
_isdisjoint(as::Tuple{}, bs::Tuple) = true
_isdisjoint(as::Tuple{Any}, bs::Tuple{}) = true
_isdisjoint(as::Tuple{Any}, bs::Tuple{Any}) = as[1] != bs[1]
_isdisjoint(as::Tuple{Any}, bs::Tuple) = !(as[1] in bs)
_isdisjoint(as::Tuple, bs::Tuple{}) = true
_isdisjoint(as::Tuple, bs::Tuple{Any}) = !(bs[1] in as)
_isdisjoint(as::Tuple, bs::Tuple) = !(as[1] in bs) && _isdisjoint(tail(as), bs)
"""
Base.dataids(A::AbstractArray)
Return a tuple of `UInt`s that represent the mutable data segments of an array.
Custom arrays that would like to opt-in to aliasing detection of their component
parts can specialize this method to return the concatenation of the `dataids` of
their component parts. A typical definition for an array that wraps a parent is
`Base.dataids(C::CustomArray) = dataids(C.parent)`.
"""
dataids(A::AbstractArray) = (UInt(objectid(A)),)
dataids(A::Array) = (UInt(pointer(A)),)
dataids(::AbstractRange) = ()
dataids(x) = ()
## get (getindex with a default value) ##
RangeVecIntList{A<:AbstractVector{Int}} = Union{Tuple{Vararg{Union{AbstractRange, AbstractVector{Int}}}},
AbstractVector{UnitRange{Int}}, AbstractVector{AbstractRange{Int}}, AbstractVector{A}}
get(A::AbstractArray, i::Integer, default) = checkbounds(Bool, A, i) ? A[i] : default
get(A::AbstractArray, I::Tuple{}, default) = similar(A, typeof(default), 0)
get(A::AbstractArray, I::Dims, default) = checkbounds(Bool, A, I...) ? A[I...] : default
function get!(X::AbstractVector{T}, A::AbstractVector, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T
# 1d is not linear indexing
ind = findall(in(axes1(A)), I)
X[ind] = A[I[ind]]
Xind = axes1(X)
X[first(Xind):first(ind)-1] = default
X[last(ind)+1:last(Xind)] = default
X
end
function get!(X::AbstractArray{T}, A::AbstractArray, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T
# Linear indexing
ind = findall(in(1:length(A)), I)
X[ind] = A[I[ind]]
fill!(view(X, 1:first(ind)-1), default)
fill!(view(X, last(ind)+1:length(X)), default)
X
end
get(A::AbstractArray, I::AbstractRange, default) = get!(similar(A, typeof(default), index_shape(I)), A, I, default)
function get!(X::AbstractArray{T}, A::AbstractArray, I::RangeVecIntList, default::T) where T
fill!(X, default)
dst, src = indcopy(size(A), I)
X[dst...] = A[src...]
X
end
get(A::AbstractArray, I::RangeVecIntList, default) =
get!(similar(A, typeof(default), index_shape(I...)), A, I, default)
## structured matrix methods ##
replace_in_print_matrix(A::AbstractMatrix,i::Integer,j::Integer,s::AbstractString) = s
replace_in_print_matrix(A::AbstractVector,i::Integer,j::Integer,s::AbstractString) = s
## Concatenation ##
eltypeof(x) = typeof(x)
eltypeof(x::AbstractArray) = eltype(x)
promote_eltypeof() = Bottom
promote_eltypeof(v1, vs...) = promote_type(eltypeof(v1), promote_eltypeof(vs...))
promote_eltype() = Bottom
promote_eltype(v1, vs...) = promote_type(eltype(v1), promote_eltype(vs...))
#TODO: ERROR CHECK
_cat(catdim::Integer) = Vector{Any}()
typed_vcat(::Type{T}) where {T} = Vector{T}()
typed_hcat(::Type{T}) where {T} = Vector{T}()
## cat: special cases
vcat(X::T...) where {T} = T[ X[i] for i=1:length(X) ]
vcat(X::T...) where {T<:Number} = T[ X[i] for i=1:length(X) ]
hcat(X::T...) where {T} = T[ X[j] for i=1:1, j=1:length(X) ]
hcat(X::T...) where {T<:Number} = T[ X[j] for i=1:1, j=1:length(X) ]
vcat(X::Number...) = hvcat_fill(Vector{promote_typeof(X...)}(undef, length(X)), X)
hcat(X::Number...) = hvcat_fill(Matrix{promote_typeof(X...)}(undef, 1,length(X)), X)
typed_vcat(::Type{T}, X::Number...) where {T} = hvcat_fill(Vector{T}(undef, length(X)), X)
typed_hcat(::Type{T}, X::Number...) where {T} = hvcat_fill(Matrix{T}(undef, 1,length(X)), X)
vcat(V::AbstractVector...) = typed_vcat(promote_eltype(V...), V...)
vcat(V::AbstractVector{T}...) where {T} = typed_vcat(T, V...)
# FIXME: this alias would better be Union{AbstractVector{T}, Tuple{Vararg{T}}}
# and method signatures should do AbstractVecOrTuple{<:T} when they want covariance,
# but that solution currently fails (see #27188 and #27224)
AbstractVecOrTuple{T} = Union{AbstractVector{<:T}, Tuple{Vararg{T}}}
function _typed_vcat(::Type{T}, V::AbstractVecOrTuple{AbstractVector}) where T
n::Int = 0
for Vk in V
n += length(Vk)
end
a = similar(V[1], T, n)
pos = 1
for k=1:length(V)
Vk = V[k]
p1 = pos+length(Vk)-1
a[pos:p1] = Vk
pos = p1+1
end
a
end
typed_hcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_hcat(T, A)
hcat(A::AbstractVecOrMat...) = typed_hcat(promote_eltype(A...), A...)
hcat(A::AbstractVecOrMat{T}...) where {T} = typed_hcat(T, A...)
function _typed_hcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
nargs = length(A)
nrows = size(A[1], 1)
ncols = 0
dense = true
for j = 1:nargs
Aj = A[j]
if size(Aj, 1) != nrows
throw(ArgumentError("number of rows of each array must match (got $(map(x->size(x,1), A)))"))
end
dense &= isa(Aj,Array)
nd = ndims(Aj)
ncols += (nd==2 ? size(Aj,2) : 1)
end
B = similar(A[1], T, nrows, ncols)
pos = 1
if dense
for k=1:nargs
Ak = A[k]
n = length(Ak)
copyto!(B, pos, Ak, 1, n)
pos += n
end
else
for k=1:nargs
Ak = A[k]
p1 = pos+(isa(Ak,AbstractMatrix) ? size(Ak, 2) : 1)-1
B[:, pos:p1] = Ak
pos = p1+1
end
end
return B
end
vcat(A::AbstractVecOrMat...) = typed_vcat(promote_eltype(A...), A...)
vcat(A::AbstractVecOrMat{T}...) where {T} = typed_vcat(T, A...)
function _typed_vcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
nargs = length(A)
nrows = sum(a->size(a, 1), A)::Int
ncols = size(A[1], 2)
for j = 2:nargs
if size(A[j], 2) != ncols
throw(ArgumentError("number of columns of each array must match (got $(map(x->size(x,2), A)))"))
end
end
B = similar(A[1], T, nrows, ncols)
pos = 1
for k=1:nargs
Ak = A[k]
p1 = pos+size(Ak,1)-1
B[pos:p1, :] = Ak
pos = p1+1
end
return B
end
typed_vcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_vcat(T, A)
reduce(::typeof(vcat), A::AbstractVector{<:AbstractVecOrMat}) =
_typed_vcat(mapreduce(eltype, promote_type, A), A)
reduce(::typeof(hcat), A::AbstractVector{<:AbstractVecOrMat}) =
_typed_hcat(mapreduce(eltype, promote_type, A), A)
## cat: general case
# helper functions
cat_size(A) = (1,)
cat_size(A::AbstractArray) = size(A)
cat_size(A, d) = 1
cat_size(A::AbstractArray, d) = size(A, d)
cat_indices(A, d) = OneTo(1)
cat_indices(A::AbstractArray, d) = axes(A, d)
cat_similar(A, T, shape) = Array{T}(undef, shape)
cat_similar(A::AbstractArray, T, shape) = similar(A, T, shape)
cat_shape(dims, shape::Tuple) = shape
@inline cat_shape(dims, shape::Tuple, nshape::Tuple, shapes::Tuple...) =
cat_shape(dims, _cshp(1, dims, shape, nshape), shapes...)
_cshp(ndim::Int, ::Tuple{}, ::Tuple{}, ::Tuple{}) = ()
_cshp(ndim::Int, ::Tuple{}, ::Tuple{}, nshape) = nshape
_cshp(ndim::Int, dims, ::Tuple{}, ::Tuple{}) = ntuple(b -> 1, Val(length(dims)))
@inline _cshp(ndim::Int, dims, shape, ::Tuple{}) =
(shape[1] + dims[1], _cshp(ndim + 1, tail(dims), tail(shape), ())...)
@inline _cshp(ndim::Int, dims, ::Tuple{}, nshape) =
(nshape[1], _cshp(ndim + 1, tail(dims), (), tail(nshape))...)
@inline function _cshp(ndim::Int, ::Tuple{}, shape, ::Tuple{})
_cs(ndim, shape[1], 1)
(1, _cshp(ndim + 1, (), tail(shape), ())...)
end
@inline function _cshp(ndim::Int, ::Tuple{}, shape, nshape)
next = _cs(ndim, shape[1], nshape[1])
(next, _cshp(ndim + 1, (), tail(shape), tail(nshape))...)
end
@inline function _cshp(ndim::Int, dims, shape, nshape)
a = shape[1]
b = nshape[1]
next = dims[1] ? a + b : _cs(ndim, a, b)
(next, _cshp(ndim + 1, tail(dims), tail(shape), tail(nshape))...)
end
_cs(d, a, b) = (a == b ? a : throw(DimensionMismatch(
"mismatch in dimension $d (expected $a got $b)")))
dims2cat(::Val{n}) where {n} = ntuple(i -> (i == n), Val(n))
dims2cat(dims) = ntuple(in(dims), maximum(dims))
_cat(dims, X...) = cat_t(promote_eltypeof(X...), X...; dims=dims)
@inline cat_t(::Type{T}, X...; dims) where {T} = _cat_t(dims, T, X...)
@inline function _cat_t(dims, T::Type, X...)
catdims = dims2cat(dims)
shape = cat_shape(catdims, (), map(cat_size, X)...)
A = cat_similar(X[1], T, shape)
if T <: Number && count(!iszero, catdims) > 1
fill!(A, zero(T))
end
return __cat(A, shape, catdims, X...)
end
function __cat(A, shape::NTuple{N}, catdims, X...) where N
offsets = zeros(Int, N)
inds = Vector{UnitRange{Int}}(undef, N)
concat = copyto!(zeros(Bool, N), catdims)
for x in X
for i = 1:N
if concat[i]
inds[i] = offsets[i] .+ cat_indices(x, i)
offsets[i] += cat_size(x, i)
else
inds[i] = 1:shape[i]
end
end
I::NTuple{N, UnitRange{Int}} = (inds...,)
if x isa AbstractArray
A[I...] = x
else
fill!(view(A, I...), x)
end
end
return A
end
"""
vcat(A...)
Concatenate along dimension 1.
# Examples
```jldoctest
julia> a = [1 2 3 4 5]
1×5 Array{Int64,2}:
1 2 3 4 5
julia> b = [6 7 8 9 10; 11 12 13 14 15]
2×5 Array{Int64,2}:
6 7 8 9 10
11 12 13 14 15
julia> vcat(a,b)
3×5 Array{Int64,2}:
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
julia> c = ([1 2 3], [4 5 6])
([1 2 3], [4 5 6])
julia> vcat(c...)
2×3 Array{Int64,2}:
1 2 3
4 5 6
```
"""
vcat(X...) = cat(X...; dims=Val(1))
"""
hcat(A...)
Concatenate along dimension 2.
# Examples
```jldoctest
julia> a = [1; 2; 3; 4; 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> b = [6 7; 8 9; 10 11; 12 13; 14 15]
5×2 Array{Int64,2}:
6 7
8 9
10 11
12 13
14 15
julia> hcat(a,b)
5×3 Array{Int64,2}:
1 6 7
2 8 9
3 10 11
4 12 13
5 14 15
julia> c = ([1; 2; 3], [4; 5; 6])
([1, 2, 3], [4, 5, 6])
julia> hcat(c...)
3×2 Array{Int64,2}:
1 4
2 5
3 6
```
"""
hcat(X...) = cat(X...; dims=Val(2))
typed_vcat(T::Type, X...) = cat_t(T, X...; dims=Val(1))
typed_hcat(T::Type, X...) = cat_t(T, X...; dims=Val(2))
"""
cat(A...; dims=dims)
Concatenate the input arrays along the specified dimensions in the iterable `dims`. For
dimensions not in `dims`, all input arrays should have the same size, which will also be the
size of the output array along that dimension. For dimensions in `dims`, the size of the
output array is the sum of the sizes of the input arrays along that dimension. If `dims` is
a single number, the different arrays are tightly stacked along that dimension. If `dims` is
an iterable containing several dimensions, this allows one to construct block diagonal
matrices and their higher-dimensional analogues by simultaneously increasing several
dimensions for every new input array and putting zero blocks elsewhere. For example,
`cat(matrices...; dims=(1,2))` builds a block diagonal matrix, i.e. a block matrix with
`matrices[1]`, `matrices[2]`, ... as diagonal blocks and matching zero blocks away from the
diagonal.
"""
@inline cat(A...; dims) = _cat(dims, A...)
_cat(catdims, A::AbstractArray{T}...) where {T} = cat_t(T, A...; dims=catdims)
# The specializations for 1 and 2 inputs are important
# especially when running with --inline=no, see #11158
vcat(A::AbstractArray) = cat(A; dims=Val(1))
vcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(1))
vcat(A::AbstractArray...) = cat(A...; dims=Val(1))
hcat(A::AbstractArray) = cat(A; dims=Val(2))
hcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(2))
hcat(A::AbstractArray...) = cat(A...; dims=Val(2))
typed_vcat(T::Type, A::AbstractArray) = cat_t(T, A; dims=Val(1))
typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(T, A, B; dims=Val(1))
typed_vcat(T::Type, A::AbstractArray...) = cat_t(T, A...; dims=Val(1))
typed_hcat(T::Type, A::AbstractArray) = cat_t(T, A; dims=Val(2))
typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(T, A, B; dims=Val(2))
typed_hcat(T::Type, A::AbstractArray...) = cat_t(T, A...; dims=Val(2))
# 2d horizontal and vertical concatenation
function hvcat(nbc::Integer, as...)
# nbc = # of block columns
n = length(as)
mod(n,nbc) != 0 &&
throw(ArgumentError("number of arrays $n is not a multiple of the requested number of block columns $nbc"))
nbr = div(n,nbc)
hvcat(ntuple(i->nbc, nbr), as...)
end
"""
hvcat(rows::Tuple{Vararg{Int}}, values...)
Horizontal and vertical concatenation in one call. This function is called for block matrix
syntax. The first argument specifies the number of arguments to concatenate in each block
row.
# Examples
```jldoctest
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
(1, 2, 3, 4, 5, 6)
julia> [a b c; d e f]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> hvcat((3,3), a,b,c,d,e,f)
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> [a b;c d; e f]
3×2 Array{Int64,2}:
1 2
3 4
5 6
julia> hvcat((2,2,2), a,b,c,d,e,f)
3×2 Array{Int64,2}:
1 2
3 4
5 6
```
If the first argument is a single integer `n`, then all block rows are assumed to have `n`
block columns.
"""
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat...) = typed_hvcat(promote_eltype(xs...), rows, xs...)
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat{T}...) where {T} = typed_hvcat(T, rows, xs...)
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as::AbstractVecOrMat...) where T
nbr = length(rows) # number of block rows
nc = 0
for i=1:rows[1]
nc += size(as[i],2)
end
nr = 0
a = 1
for i = 1:nbr
nr += size(as[a],1)
a += rows[i]
end
out = similar(as[1], T, nr, nc)
a = 1
r = 1
for i = 1:nbr
c = 1
szi = size(as[a],1)
for j = 1:rows[i]
Aj = as[a+j-1]
szj = size(Aj,2)
if size(Aj,1) != szi
throw(ArgumentError("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))"))
end
if c-1+szj > nc
throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))"))
end
out[r:r-1+szi, c:c-1+szj] = Aj
c += szj
end
if c != nc+1
throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))"))
end
r += szi
a += rows[i]
end
out
end
hvcat(rows::Tuple{Vararg{Int}}) = []
typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}) where {T} = Vector{T}()
function hvcat(rows::Tuple{Vararg{Int}}, xs::T...) where T<:Number
nr = length(rows)
nc = rows[1]
a = Matrix{T}(undef, nr, nc)
if length(a) != length(xs)
throw(ArgumentError("argument count does not match specified shape (expected $(length(a)), got $(length(xs)))"))
end
k = 1
@inbounds for i=1:nr
if nc != rows[i]
throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
end
for j=1:nc
a[i,j] = xs[k]
k += 1
end
end
a
end
function hvcat_fill(a::Array, xs::Tuple)
k = 1
nr, nc = size(a,1), size(a,2)
for i=1:nr
@inbounds for j=1:nc
a[i,j] = xs[k]
k += 1
end
end
a
end
hvcat(rows::Tuple{Vararg{Int}}, xs::Number...) = typed_hvcat(promote_typeof(xs...), rows, xs...)
hvcat(rows::Tuple{Vararg{Int}}, xs...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, xs::Number...) where T
nr = length(rows)
nc = rows[1]
for i = 2:nr
if nc != rows[i]
throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
end
end
len = length(xs)
if nr*nc != len
throw(ArgumentError("argument count $(len) does not match specified shape $((nr,nc))"))
end
hvcat_fill(Matrix{T}(undef, nr, nc), xs)
end
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as...) where T
nbr = length(rows) # number of block rows
rs = Vector{Any}(undef, nbr)
a = 1
for i = 1:nbr
rs[i] = typed_hcat(T, as[a:a-1+rows[i]]...)
a += rows[i]
end
T[rs...;]
end
## Reductions and accumulates ##
function isequal(A::AbstractArray, B::AbstractArray)
if A === B return true end
if axes(A) != axes(B)
return false
end
for (a, b) in zip(A, B)
if !isequal(a, b)
return false
end
end
return true
end
function cmp(A::AbstractVector, B::AbstractVector)
for (a, b) in zip(A, B)
if !isequal(a, b)
return isless(a, b) ? -1 : 1
end
end
return cmp(length(A), length(B))
end
isless(A::AbstractVector, B::AbstractVector) = cmp(A, B) < 0
function (==)(A::AbstractArray, B::AbstractArray)
if axes(A) != axes(B)
return false
end
anymissing = false
for (a, b) in zip(A, B)
eq = (a == b)
if ismissing(eq)
anymissing = true
elseif !eq
return false
end
end
return anymissing ? missing : true
end
# _sub2ind and _ind2sub
# fallbacks
function _sub2ind(A::AbstractArray, I...)
@_inline_meta
_sub2ind(axes(A), I...)
end
function _ind2sub(A::AbstractArray, ind)
@_inline_meta
_ind2sub(axes(A), ind)
end
# 0-dimensional arrays and indexing with []
_sub2ind(::Tuple{}) = 1
_sub2ind(::DimsInteger) = 1
_sub2ind(::Indices) = 1
_sub2ind(::Tuple{}, I::Integer...) = (@_inline_meta; _sub2ind_recurse((), 1, 1, I...))
# Generic cases
_sub2ind(dims::DimsInteger, I::Integer...) = (@_inline_meta; _sub2ind_recurse(dims, 1, 1, I...))
_sub2ind(inds::Indices, I::Integer...) = (@_inline_meta; _sub2ind_recurse(inds, 1, 1, I...))
# In 1d, there's a question of whether we're doing cartesian indexing
# or linear indexing. Support only the former.
_sub2ind(inds::Indices{1}, I::Integer...) =
throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
_sub2ind(inds::Tuple{OneTo}, I::Integer...) = (@_inline_meta; _sub2ind_recurse(inds, 1, 1, I...)) # only OneTo is safe
_sub2ind(inds::Tuple{OneTo}, i::Integer) = i
_sub2ind_recurse(::Any, L, ind) = ind
function _sub2ind_recurse(::Tuple{}, L, ind, i::Integer, I::Integer...)
@_inline_meta
_sub2ind_recurse((), L, ind+(i-1)*L, I...)
end
function _sub2ind_recurse(inds, L, ind, i::Integer, I::Integer...)
@_inline_meta
r1 = inds[1]
_sub2ind_recurse(tail(inds), nextL(L, r1), ind+offsetin(i, r1)*L, I...)
end
nextL(L, l::Integer) = L*l
nextL(L, r::AbstractUnitRange) = L*unsafe_length(r)
nextL(L, r::Slice) = L*unsafe_length(r.indices)
offsetin(i, l::Integer) = i-1
offsetin(i, r::AbstractUnitRange) = i-first(r)
_ind2sub(::Tuple{}, ind::Integer) = (@_inline_meta; ind == 1 ? () : throw(BoundsError()))
_ind2sub(dims::DimsInteger, ind::Integer) = (@_inline_meta; _ind2sub_recurse(dims, ind-1))
_ind2sub(inds::Indices, ind::Integer) = (@_inline_meta; _ind2sub_recurse(inds, ind-1))
_ind2sub(inds::Indices{1}, ind::Integer) =
throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
_ind2sub(inds::Tuple{OneTo}, ind::Integer) = (ind,)
_ind2sub_recurse(::Tuple{}, ind) = (ind+1,)
function _ind2sub_recurse(indslast::NTuple{1}, ind)
@_inline_meta
(_lookup(ind, indslast[1]),)
end
function _ind2sub_recurse(inds, ind)
@_inline_meta
r1 = inds[1]
indnext, f, l = _div(ind, r1)
(ind-l*indnext+f, _ind2sub_recurse(tail(inds), indnext)...)
end
_lookup(ind, d::Integer) = ind+1
_lookup(ind, r::AbstractUnitRange) = ind+first(r)
_div(ind, d::Integer) = div(ind, d), 1, d
_div(ind, r::AbstractUnitRange) = (d = unsafe_length(r); (div(ind, d), first(r), d))
# Vectorized forms
function _sub2ind(inds::Indices{1}, I1::AbstractVector{T}, I::AbstractVector{T}...) where T<:Integer
throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays"))
end
_sub2ind(inds::Tuple{OneTo}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} =
_sub2ind_vecs(inds, I1, I...)
_sub2ind(inds::Union{DimsInteger,Indices}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} =
_sub2ind_vecs(inds, I1, I...)
function _sub2ind_vecs(inds, I::AbstractVector...)
I1 = I[1]
Iinds = axes1(I1)
for j = 2:length(I)
axes1(I[j]) == Iinds || throw(DimensionMismatch("indices of I[1] ($(Iinds)) does not match indices of I[$j] ($(axes1(I[j])))"))
end
Iout = similar(I1)
_sub2ind!(Iout, inds, Iinds, I)
Iout
end
function _sub2ind!(Iout, inds, Iinds, I)
@_noinline_meta
for i in Iinds
# Iout[i] = _sub2ind(inds, map(Ij -> Ij[i], I)...)
Iout[i] = sub2ind_vec(inds, i, I)
end
Iout
end
sub2ind_vec(inds, i, I) = (@_inline_meta; _sub2ind(inds, _sub2ind_vec(i, I...)...))
_sub2ind_vec(i, I1, I...) = (@_inline_meta; (I1[i], _sub2ind_vec(i, I...)...))
_sub2ind_vec(i) = ()
function _ind2sub(inds::Union{DimsInteger{N},Indices{N}}, ind::AbstractVector{<:Integer}) where N
M = length(ind)
t = ntuple(n->similar(ind),Val(N))
for (i,idx) in pairs(IndexLinear(), ind)
sub = _ind2sub(inds, idx)
for j = 1:N
t[j][i] = sub[j]
end
end
t
end
## iteration utilities ##
"""
foreach(f, c...) -> Nothing
Call function `f` on each element of iterable `c`.
For multiple iterable arguments, `f` is called elementwise.
`foreach` should be used instead of `map` when the results of `f` are not
needed, for example in `foreach(println, array)`.
# Examples
```jldoctest
julia> a = 1:3:7;
julia> foreach(x -> println(x^2), a)
1
16
49
```
"""
foreach(f) = (f(); nothing)
foreach(f, itr) = (for x in itr; f(x); end; nothing)
foreach(f, itrs...) = (for z in zip(itrs...); f(z...); end; nothing)
## map over arrays ##
## transform any set of dimensions
## dims specifies which dimensions will be transformed. for example
## dims==1:2 will call f on all slices A[:,:,...]
"""
mapslices(f, A; dims)
Transform the given dimensions of array `A` using function `f`. `f` is called on each slice
of `A` of the form `A[...,:,...,:,...]`. `dims` is an integer vector specifying where the
colons go in this expression. The results are concatenated along the remaining dimensions.
For example, if `dims` is `[1,2]` and `A` is 4-dimensional, `f` is called on `A[:,:,i,j]`
for all `i` and `j`.
# Examples
```jldoctest
julia> a = reshape(Vector(1:16),(2,2,2,2))
2×2×2×2 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> mapslices(sum, a, dims = [1,2])
1×1×2×2 Array{Int64,4}:
[:, :, 1, 1] =
10
[:, :, 2, 1] =
26
[:, :, 1, 2] =
42
[:, :, 2, 2] =
58
```
"""
function mapslices(f, A::AbstractArray; dims)
if isempty(dims)
return map(f,A)
end
if !isa(dims, AbstractVector)
dims = [dims...]
end
dimsA = [axes(A)...]
ndimsA = ndims(A)
alldims = [1:ndimsA;]
otherdims = setdiff(alldims, dims)
idx = Any[first(ind) for ind in axes(A)]
itershape = tuple(dimsA[otherdims]...)
for d in dims
idx[d] = Slice(axes(A, d))
end
# Apply the function to the first slice in order to determine the next steps
Aslice = A[idx...]
r1 = f(Aslice)
# In some cases, we can re-use the first slice for a dramatic performance
# increase. The slice itself must be mutable and the result cannot contain
# any mutable containers. The following errs on the side of being overly
# strict (#18570 & #21123).
safe_for_reuse = isa(Aslice, StridedArray) &&
(isa(r1, Number) || (isa(r1, AbstractArray) && eltype(r1) <: Number))
# determine result size and allocate
Rsize = copy(dimsA)
# TODO: maybe support removing dimensions
if !isa(r1, AbstractArray) || ndims(r1) == 0
# If the result of f on a single slice is a scalar then we add singleton
# dimensions. When adding the dimensions, we have to respect the
# index type of the input array (e.g. in the case of OffsetArrays)
tmp = similar(Aslice, typeof(r1), reduced_indices(Aslice, 1:ndims(Aslice)))
tmp[firstindex(tmp)] = r1
r1 = tmp
end
nextra = max(0, length(dims)-ndims(r1))
if eltype(Rsize) == Int
Rsize[dims] = [size(r1)..., ntuple(d->1, nextra)...]
else
Rsize[dims] = [axes(r1)..., ntuple(d->OneTo(1), nextra)...]
end
R = similar(r1, tuple(Rsize...,))
ridx = Any[map(first, axes(R))...]
for d in dims
ridx[d] = axes(R,d)
end
concatenate_setindex!(R, r1, ridx...)
nidx = length(otherdims)
indices = Iterators.drop(CartesianIndices(itershape), 1) # skip the first element, we already handled it
inner_mapslices!(safe_for_reuse, indices, nidx, idx, otherdims, ridx, Aslice, A, f, R)
end
@noinline function inner_mapslices!(safe_for_reuse, indices, nidx, idx, otherdims, ridx, Aslice, A, f, R)
if safe_for_reuse
# when f returns an array, R[ridx...] = f(Aslice) line copies elements,
# so we can reuse Aslice
for I in indices
replace_tuples!(nidx, idx, ridx, otherdims, I)
_unsafe_getindex!(Aslice, A, idx...)
concatenate_setindex!(R, f(Aslice), ridx...)
end
else
# we can't guarantee safety (#18524), so allocate new storage for each slice
for I in indices
replace_tuples!(nidx, idx, ridx, otherdims, I)
concatenate_setindex!(R, f(A[idx...]), ridx...)
end
end
return R
end
function replace_tuples!(nidx, idx, ridx, otherdims, I)
for i in 1:nidx
idx[otherdims[i]] = ridx[otherdims[i]] = I.I[i]
end
end
concatenate_setindex!(R, v, I...) = (R[I...] .= (v,); R)
concatenate_setindex!(R, X::AbstractArray, I...) = (R[I...] = X)
## 1 argument
function map!(f::F, dest::AbstractArray, A::AbstractArray) where F
for (i,j) in zip(eachindex(dest),eachindex(A))
dest[i] = f(A[j])
end
return dest
end
# map on collections
map(f, A::AbstractArray) = collect_similar(A, Generator(f,A))
# default to returning an Array for `map` on general iterators
"""
map(f, c...) -> collection
Transform collection `c` by applying `f` to each element. For multiple collection arguments,
apply `f` elementwise.
See also: [`mapslices`](@ref)
# Examples
```jldoctest
julia> map(x -> x * 2, [1, 2, 3])
3-element Array{Int64,1}:
2
4
6
julia> map(+, [1, 2, 3], [10, 20, 30])
3-element Array{Int64,1}:
11
22
33
```
"""
map(f, A) = collect(Generator(f,A))
map(f, ::AbstractDict) = error("map is not defined on dictionaries")
map(f, ::AbstractSet) = error("map is not defined on sets")
## 2 argument
function map!(f::F, dest::AbstractArray, A::AbstractArray, B::AbstractArray) where F
for (i, j, k) in zip(eachindex(dest), eachindex(A), eachindex(B))
dest[i] = f(A[j], B[k])
end
return dest
end
## N argument
@inline ith_all(i, ::Tuple{}) = ()
@inline ith_all(i, as) = (as[1][i], ith_all(i, tail(as))...)
function map_n!(f::F, dest::AbstractArray, As) where F
for i = LinearIndices(As[1])
dest[i] = f(ith_all(i, As)...)
end
return dest
end
"""
map!(function, destination, collection...)
Like [`map`](@ref), but stores the result in `destination` rather than a new
collection. `destination` must be at least as large as the first collection.
# Examples
```jldoctest
julia> a = zeros(3);
julia> map!(x -> x * 2, a, [1, 2, 3]);
julia> a
3-element Array{Float64,1}:
2.0
4.0
6.0
```
"""
map!(f::F, dest::AbstractArray, As::AbstractArray...) where {F} = map_n!(f, dest, As)
map(f) = f()
map(f, iters...) = collect(Generator(f, iters...))
# multi-item push!, pushfirst! (built on top of type-specific 1-item version)
# (note: must not cause a dispatch loop when 1-item case is not defined)
push!(A, a, b) = push!(push!(A, a), b)
push!(A, a, b, c...) = push!(push!(A, a, b), c...)
pushfirst!(A, a, b) = pushfirst!(pushfirst!(A, b), a)
pushfirst!(A, a, b, c...) = pushfirst!(pushfirst!(A, c...), a, b)
## hashing AbstractArray ##
function hash(A::AbstractArray, h::UInt)
h = hash(AbstractArray, h)
# Axes are themselves AbstractArrays, so hashing them directly would stack overflow
# Instead hash the tuple of firsts and lasts along each dimension
h = hash(map(first, axes(A)), h)
h = hash(map(last, axes(A)), h)
isempty(A) && return h
# Goal: Hash approximately log(N) entries with a higher density of hashed elements
# weighted towards the end and special consideration for repeated values. Colliding
# hashes will often subsequently be compared by equality -- and equality between arrays
# works elementwise forwards and is short-circuiting. This means that a collision
# between arrays that differ by elements at the beginning is cheaper than one where the
# difference is towards the end. Furthermore, blindly choosing log(N) entries from a
# sparse array will likely only choose the same element repeatedly (zero in this case).
# To achieve this, we work backwards, starting by hashing the last element of the
# array. After hashing each element, we skip `fibskip` elements, where `fibskip`
# is pulled from the Fibonacci sequence -- Fibonacci was chosen as a simple
# ~O(log(N)) algorithm that ensures we don't hit a common divisor of a dimension
# and only end up hashing one slice of the array (as might happen with powers of
# two). Finally, we find the next distinct value from the one we just hashed.
# This is a little tricky since skipping an integer number of values inherently works
# with linear indices, but `findprev` uses `keys`. Hoist out the conversion "maps":
ks = keys(A)
key_to_linear = LinearIndices(ks) # Index into this map to compute the linear index
linear_to_key = vec(ks) # And vice-versa
# Start at the last index
keyidx = last(ks)
linidx = key_to_linear[keyidx]
fibskip = prevfibskip = oneunit(linidx)
n = 0
while true
n += 1
# Hash the current key-index and its element
elt = A[keyidx]
h = hash(keyidx=>elt, h)
# Skip backwards a Fibonacci number of indices -- this is a linear index operation
linidx = key_to_linear[keyidx]
linidx <= fibskip && break
linidx -= fibskip
keyidx = linear_to_key[linidx]
# Only increase the Fibonacci skip once every N iterations. This was chosen
# to be big enough that all elements of small arrays get hashed while
# obscenely large arrays are still tractable. With a choice of N=4096, an
# entirely-distinct 8000-element array will have ~75% of its elements hashed,
# with every other element hashed in the first half of the array. At the same
# time, hashing a `typemax(Int64)`-length Float64 range takes about a second.
if rem(n, 4096) == 0
fibskip, prevfibskip = fibskip + prevfibskip, fibskip
end
# Find a key index with a value distinct from `elt` -- might be `keyidx` itself
keyidx = findprev(!isequal(elt), A, keyidx)
keyidx === nothing && break
end
return h
end
|