1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## Basic functions ##
isreal(x::AbstractArray) = all(isreal,x)
iszero(x::AbstractArray) = all(iszero,x)
isreal(x::AbstractArray{<:Real}) = true
all(::typeof(isinteger), ::AbstractArray{<:Integer}) = true
## Constructors ##
"""
vec(a::AbstractArray) -> AbstractVector
Reshape the array `a` as a one-dimensional column vector. Return `a` if it is
already an `AbstractVector`. The resulting array
shares the same underlying data as `a`, so it will only be mutable if `a` is
mutable, in which case modifying one will also modify the other.
# Examples
```jldoctest
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> vec(a)
6-element Array{Int64,1}:
1
4
2
5
3
6
julia> vec(1:3)
1:3
```
See also [`reshape`](@ref).
"""
vec(a::AbstractArray) = reshape(a,length(a))
vec(a::AbstractVector) = a
_sub(::Tuple{}, ::Tuple{}) = ()
_sub(t::Tuple, ::Tuple{}) = t
_sub(t::Tuple, s::Tuple) = _sub(tail(t), tail(s))
"""
dropdims(A; dims)
Remove the dimensions specified by `dims` from array `A`.
Elements of `dims` must be unique and within the range `1:ndims(A)`.
`size(A,i)` must equal 1 for all `i` in `dims`.
# Examples
```jldoctest
julia> a = reshape(Vector(1:4),(2,2,1,1))
2×2×1×1 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
julia> dropdims(a; dims=3)
2×2×1 Array{Int64,3}:
[:, :, 1] =
1 3
2 4
```
"""
dropdims(A; dims) = _dropdims(A, dims)
function _dropdims(A::AbstractArray, dims::Dims)
for i in 1:length(dims)
1 <= dims[i] <= ndims(A) || throw(ArgumentError("dropped dims must be in range 1:ndims(A)"))
length(axes(A, dims[i])) == 1 || throw(ArgumentError("dropped dims must all be size 1"))
for j = 1:i-1
dims[j] == dims[i] && throw(ArgumentError("dropped dims must be unique"))
end
end
d = ()
for i = 1:ndims(A)
if !in(i, dims)
d = tuple(d..., axes(A, i))
end
end
reshape(A, d::typeof(_sub(axes(A), dims)))
end
_dropdims(A::AbstractArray, dim::Integer) = _dropdims(A, (Int(dim),))
## Unary operators ##
conj(x::AbstractArray{<:Real}) = x
conj!(x::AbstractArray{<:Real}) = x
real(x::AbstractArray{<:Real}) = x
imag(x::AbstractArray{<:Real}) = zero(x)
+(x::AbstractArray{<:Number}) = x
*(x::AbstractArray{<:Number,2}) = x
# index A[:,:,...,i,:,:,...] where "i" is in dimension "d"
"""
selectdim(A, d::Integer, i)
Return a view of all the data of `A` where the index for dimension `d` equals `i`.
Equivalent to `view(A,:,:,...,i,:,:,...)` where `i` is in position `d`.
# Examples
```jldoctest
julia> A = [1 2 3 4; 5 6 7 8]
2×4 Array{Int64,2}:
1 2 3 4
5 6 7 8
julia> selectdim(A, 2, 3)
2-element view(::Array{Int64,2}, :, 3) with eltype Int64:
3
7
```
"""
@inline selectdim(A::AbstractArray, d::Integer, i) = _selectdim(A, d, i, setindex(map(Slice, axes(A)), i, d))
@noinline function _selectdim(A, d, i, idxs)
d >= 1 || throw(ArgumentError("dimension must be ≥ 1"))
nd = ndims(A)
d > nd && (i == 1 || throw(BoundsError(A, (ntuple(k->Colon(),d-1)..., i))))
return view(A, idxs...)
end
"""
reverse(A; dims::Integer)
Reverse `A` in dimension `dims`.
# Examples
```jldoctest
julia> b = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> reverse(b, dims=2)
2×2 Array{Int64,2}:
2 1
4 3
```
"""
function reverse(A::AbstractArray; dims::Integer)
nd = ndims(A); d = dims
1 ≤ d ≤ nd || throw(ArgumentError("dimension $d is not 1 ≤ $d ≤ $nd"))
if isempty(A)
return copy(A)
elseif nd == 1
return reverse(A)
end
inds = axes(A)
B = similar(A)
nnd = 0
for i = 1:nd
nnd += Int(length(inds[i])==1 || i==d)
end
indsd = inds[d]
sd = first(indsd)+last(indsd)
if nnd==nd
# reverse along the only non-singleton dimension
for i in indsd
B[i] = A[sd-i]
end
return B
end
let B=B # workaround #15276
alli = [ axes(B,n) for n in 1:nd ]
for i in indsd
B[[ n==d ? sd-i : alli[n] for n in 1:nd ]...] = selectdim(A, d, i)
end
end
return B
end
function circshift(a::AbstractArray, shiftamt::Real)
circshift!(similar(a), a, (Integer(shiftamt),))
end
circshift(a::AbstractArray, shiftamt::DimsInteger) = circshift!(similar(a), a, shiftamt)
"""
circshift(A, shifts)
Circularly shift, i.e. rotate, the data in an array. The second argument is a tuple or
vector giving the amount to shift in each dimension, or an integer to shift only in the
first dimension.
# Examples
```jldoctest
julia> b = reshape(Vector(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> circshift(b, (0,2))
4×4 Array{Int64,2}:
9 13 1 5
10 14 2 6
11 15 3 7
12 16 4 8
julia> circshift(b, (-1,0))
4×4 Array{Int64,2}:
2 6 10 14
3 7 11 15
4 8 12 16
1 5 9 13
julia> a = BitArray([true, true, false, false, true])
5-element BitArray{1}:
true
true
false
false
true
julia> circshift(a, 1)
5-element BitArray{1}:
true
true
true
false
false
julia> circshift(a, -1)
5-element BitArray{1}:
true
false
false
true
true
```
See also [`circshift!`](@ref).
"""
function circshift(a::AbstractArray, shiftamt)
circshift!(similar(a), a, map(Integer, (shiftamt...,)))
end
## Other array functions ##
"""
repeat(A::AbstractArray, counts::Integer...)
Construct an array by repeating array `A` a given number of times in each dimension, specified by `counts`.
# Examples
```jldoctest
julia> repeat([1, 2, 3], 2)
6-element Array{Int64,1}:
1
2
3
1
2
3
julia> repeat([1, 2, 3], 2, 3)
6×3 Array{Int64,2}:
1 1 1
2 2 2
3 3 3
1 1 1
2 2 2
3 3 3
```
"""
repeat(a::AbstractArray, counts::Integer...) = repeat(a, outer = counts)
function repeat(a::AbstractVecOrMat, m::Integer, n::Integer=1)
o, p = size(a,1), size(a,2)
b = similar(a, o*m, p*n)
for j=1:n
d = (j-1)*p+1
R = d:d+p-1
for i=1:m
c = (i-1)*o+1
b[c:c+o-1, R] = a
end
end
return b
end
function repeat(a::AbstractVector, m::Integer)
o = length(a)
b = similar(a, o*m)
for i=1:m
c = (i-1)*o+1
b[c:c+o-1] = a
end
return b
end
"""
repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))
Construct an array by repeating the entries of `A`. The i-th element of `inner` specifies
the number of times that the individual entries of the i-th dimension of `A` should be
repeated. The i-th element of `outer` specifies the number of times that a slice along the
i-th dimension of `A` should be repeated. If `inner` or `outer` are omitted, no repetition
is performed.
# Examples
```jldoctest
julia> repeat(1:2, inner=2)
4-element Array{Int64,1}:
1
1
2
2
julia> repeat(1:2, outer=2)
4-element Array{Int64,1}:
1
2
1
2
julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))
4×6 Array{Int64,2}:
1 2 1 2 1 2
1 2 1 2 1 2
3 4 3 4 3 4
3 4 3 4 3 4
```
"""
function repeat(A::AbstractArray; inner = nothing, outer = nothing)
return _repeat_inner_outer(A, inner, outer)
end
# we have optimized implementations of these cases above
_repeat_inner_outer(A::AbstractVecOrMat, ::Nothing, r::Union{Tuple{Integer},Tuple{Integer,Integer}}) = repeat(A, r...)
_repeat_inner_outer(A::AbstractVecOrMat, ::Nothing, r::Integer) = repeat(A, r)
_repeat_inner_outer(A, ::Nothing, ::Nothing) = A
_repeat_inner_outer(A, ::Nothing, outer) = _repeat(A, ntuple(n->1, Val(ndims(A))), rep_kw2tup(outer))
_repeat_inner_outer(A, inner, ::Nothing) = _repeat(A, rep_kw2tup(inner), ntuple(n->1, Val(ndims(A))))
_repeat_inner_outer(A, inner, outer) = _repeat(A, rep_kw2tup(inner), rep_kw2tup(outer))
rep_kw2tup(n::Integer) = (n,)
rep_kw2tup(v::AbstractArray{<:Integer}) = (v...,)
rep_kw2tup(t::Tuple) = t
rep_shapes(A, i, o) = _rshps((), (), size(A), i, o)
_rshps(shp, shp_i, ::Tuple{}, ::Tuple{}, ::Tuple{}) = (shp, shp_i)
@inline _rshps(shp, shp_i, ::Tuple{}, ::Tuple{}, o) =
_rshps((shp..., o[1]), (shp_i..., 1), (), (), tail(o))
@inline _rshps(shp, shp_i, ::Tuple{}, i, ::Tuple{}) = (n = i[1];
_rshps((shp..., n), (shp_i..., n), (), tail(i), ()))
@inline _rshps(shp, shp_i, ::Tuple{}, i, o) = (n = i[1];
_rshps((shp..., n * o[1]), (shp_i..., n), (), tail(i), tail(o)))
@inline _rshps(shp, shp_i, sz, i, o) = (n = sz[1] * i[1];
_rshps((shp..., n * o[1]), (shp_i..., n), tail(sz), tail(i), tail(o)))
_rshps(shp, shp_i, sz, ::Tuple{}, ::Tuple{}) =
(n = length(shp); N = n + length(sz); _reperr("inner", n, N))
_rshps(shp, shp_i, sz, ::Tuple{}, o) =
(n = length(shp); N = n + length(sz); _reperr("inner", n, N))
_rshps(shp, shp_i, sz, i, ::Tuple{}) =
(n = length(shp); N = n + length(sz); _reperr("outer", n, N))
_reperr(s, n, N) = throw(ArgumentError("number of " * s * " repetitions " *
"($n) cannot be less than number of dimensions of input ($N)"))
@noinline function _repeat(A::AbstractArray, inner, outer)
shape, inner_shape = rep_shapes(A, inner, outer)
R = similar(A, shape)
if any(iszero, shape)
return R
end
# fill the first inner block
if all(x -> x == 1, inner)
R[axes(A)...] = A
else
inner_indices = [1:n for n in inner]
for c in CartesianIndices(axes(A))
for i in 1:ndims(A)
n = inner[i]
inner_indices[i] = (1:n) .+ ((c[i] - 1) * n)
end
fill!(view(R, inner_indices...), A[c])
end
end
# fill the outer blocks along each dimension
if all(x -> x == 1, outer)
return R
end
src_indices = [1:n for n in inner_shape]
dest_indices = copy(src_indices)
for i in 1:length(outer)
B = view(R, src_indices...)
for j in 2:outer[i]
dest_indices[i] = dest_indices[i] .+ inner_shape[i]
R[dest_indices...] = B
end
src_indices[i] = dest_indices[i] = 1:shape[i]
end
return R
end
|