1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
eltype(::Type{<:AbstractSet{T}}) where {T} = @isdefined(T) ? T : Any
sizehint!(s::AbstractSet, n) = nothing
"""
union(s, itrs...)
∪(s, itrs...)
Construct the union of sets. Maintain order with arrays.
# Examples
```jldoctest
julia> union([1, 2], [3, 4])
4-element Array{Int64,1}:
1
2
3
4
julia> union([1, 2], [2, 4])
3-element Array{Int64,1}:
1
2
4
julia> union([4, 2], 1:2)
3-element Array{Int64,1}:
4
2
1
julia> union(Set([1, 2]), 2:3)
Set([2, 3, 1])
```
"""
function union end
_in(itr) = x -> x in itr
union(s, sets...) = union!(emptymutable(s, promote_eltype(s, sets...)), s, sets...)
union(s::AbstractSet) = copy(s)
const ∪ = union
"""
union!(s::Union{AbstractSet,AbstractVector}, itrs...)
Construct the union of passed in sets and overwrite `s` with the result.
Maintain order with arrays.
# Examples
```jldoctest
julia> a = Set([1, 3, 4, 5]);
julia> union!(a, 1:2:8);
julia> a
Set([7, 4, 3, 5, 1])
```
"""
function union!(s::AbstractSet, sets...)
for x in sets
union!(s, x)
end
return s
end
max_values(::Type) = typemax(Int)
max_values(T::Type{<:Union{Nothing,BitIntegerSmall}}) = 1 << (8*sizeof(T))
max_values(T::Union) = max(max_values(T.a), max_values(T.b))
max_values(::Type{Bool}) = 2
function union!(s::AbstractSet{T}, itr) where T
haslength(itr) && sizehint!(s, length(s) + length(itr))
for x=itr
push!(s, x)
length(s) == max_values(T) && break
end
s
end
"""
intersect(s, itrs...)
∩(s, itrs...)
Construct the intersection of sets.
Maintain order with arrays.
# Examples
```jldoctest
julia> intersect([1, 2, 3], [3, 4, 5])
1-element Array{Int64,1}:
3
julia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])
2-element Array{Int64,1}:
4
6
julia> intersect(Set([1, 2]), BitSet([2, 3]))
Set([2])
```
"""
intersect(s::AbstractSet, itr, itrs...) = intersect!(intersect(s, itr), itrs...)
intersect(s) = union(s)
intersect(s::AbstractSet, itr) = mapfilter(_in(s), push!, itr, emptymutable(s))
const ∩ = intersect
"""
intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)
Intersect all passed in sets and overwrite `s` with the result.
Maintain order with arrays.
"""
function intersect!(s::AbstractSet, itrs...)
for x in itrs
intersect!(s, x)
end
return s
end
intersect!(s::AbstractSet, s2::AbstractSet) = filter!(_in(s2), s)
intersect!(s::AbstractSet, itr) =
intersect!(s, union!(emptymutable(s, eltype(itr)), itr))
"""
setdiff(s, itrs...)
Construct the set of elements in `s` but not in any of the iterables in `itrs`.
Maintain order with arrays.
# Examples
```jldoctest
julia> setdiff([1,2,3], [3,4,5])
2-element Array{Int64,1}:
1
2
```
"""
setdiff(s::AbstractSet, itrs...) = setdiff!(copymutable(s), itrs...)
setdiff(s) = union(s)
"""
setdiff!(s, itrs...)
Remove from set `s` (in-place) each element of each iterable from `itrs`.
Maintain order with arrays.
# Examples
```jldoctest
julia> a = Set([1, 3, 4, 5]);
julia> setdiff!(a, 1:2:6);
julia> a
Set([4])
```
"""
function setdiff!(s::AbstractSet, itrs...)
for x in itrs
setdiff!(s, x)
end
return s
end
function setdiff!(s::AbstractSet, itr)
for x in itr
delete!(s, x)
end
return s
end
"""
symdiff(s, itrs...)
Construct the symmetric difference of elements in the passed in sets.
When `s` is not an `AbstractSet`, the order is maintained.
Note that in this case the multiplicity of elements matters.
# Examples
```jldoctest
julia> symdiff([1,2,3], [3,4,5], [4,5,6])
3-element Array{Int64,1}:
1
2
6
julia> symdiff([1,2,1], [2, 1, 2])
2-element Array{Int64,1}:
1
2
julia> symdiff(unique([1,2,1]), unique([2, 1, 2]))
0-element Array{Int64,1}
```
"""
symdiff(s, sets...) = symdiff!(emptymutable(s, promote_eltype(s, sets...)), s, sets...)
symdiff(s) = symdiff!(copy(s))
"""
symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)
Construct the symmetric difference of the passed in sets, and overwrite `s` with the result.
When `s` is an array, the order is maintained.
Note that in this case the multiplicity of elements matters.
"""
function symdiff!(s::AbstractSet, itrs...)
for x in itrs
symdiff!(s, x)
end
return s
end
function symdiff!(s::AbstractSet, itr)
for x in itr
x in s ? delete!(s, x) : push!(s, x)
end
s
end
==(l::AbstractSet, r::AbstractSet) = length(l) == length(r) && l ⊆ r
# convenience functions for AbstractSet
# (if needed, only their synonyms ⊊ and ⊆ must be specialized)
<( l::AbstractSet, r::AbstractSet) = l ⊊ r
<=(l::AbstractSet, r::AbstractSet) = l ⊆ r
function issubset(l, r)
if haslength(r)
rlen = length(r)
#This threshold was empirically determined by repeatedly
#sampling using these two methods (see #26198)
lenthresh = 70
if rlen > lenthresh && !isa(r, AbstractSet)
return issubset(l, Set(r))
end
end
for elt in l
if !in(elt, r)
return false
end
end
return true
end
# use the implementation below when it becomes as efficient
# issubset(l, r) = all(_in(r), l)
const ⊆ = issubset
⊇(l, r) = r ⊆ l
"""
issubset(a, b)
⊆(a,b) -> Bool
⊇(b, a) -> Bool
Determine whether every element of `a` is also in `b`, using [`in`](@ref).
# Examples
```jldoctest
julia> issubset([1, 2], [1, 2, 3])
true
julia> [1, 2, 3] ⊆ [1, 2]
false
julia> [1, 2, 3] ⊇ [1, 2]
true
```
"""
issubset, ⊆, ⊇
"""
issetequal(a, b)
Determine whether `a` and `b` have the same elements. Equivalent
to `a ⊆ b && b ⊆ a`.
# Examples
```jldoctest
julia> issetequal([1, 2], [1, 2, 3])
false
julia> issetequal([1, 2], [2, 1])
true
```
"""
issetequal(l, r) = length(l) == length(r) && l ⊆ r
issetequal(l::AbstractSet, r::AbstractSet) = l == r
⊊(l, r) = length(l) < length(r) && l ⊆ r
⊋(l, r) = r ⊊ l
"""
⊊(a, b)
⊋(b, a)
Determines if `a` is a subset of, but not equal to, `b`.
# Examples
```jldoctest
julia> (1, 2) ⊊ (1, 2, 3)
true
julia> (1, 2) ⊊ (1, 2)
false
```
"""
⊊, ⊋
⊈(l, r) = !⊆(l, r)
⊉(l, r) = r ⊈ l
"""
⊈(a, b)
⊉(b, a)
Negation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.
# Examples
```jldoctest
julia> (1, 2) ⊈ (2, 3)
true
julia> (1, 2) ⊈ (1, 2, 3)
false
```
"""
⊈, ⊉
filter(pred, s::AbstractSet) = mapfilter(pred, push!, s, emptymutable(s))
# it must be safe to delete the current element while iterating over s:
unsafe_filter!(pred, s::AbstractSet) = mapfilter(!pred, delete!, s, s)
# TODO: delete mapfilter in favor of comprehensions/foldl/filter when competitive
function mapfilter(pred, f, itr, res)
for x in itr
pred(x) && f(res, x)
end
res
end
|