1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
# accumulate_pairwise slightly slower then accumulate, but more numerically
# stable in certain situations (e.g. sums).
# it does double the number of operations compared to accumulate,
# though for cheap operations like + this does not have much impact (20%)
function _accumulate_pairwise!(op::Op, c::AbstractVector{T}, v::AbstractVector, s, i1, n)::T where {T,Op}
@inbounds if n < 128
s_ = v[i1]
c[i1] = op(s, s_)
for i = i1+1:i1+n-1
s_ = op(s_, v[i])
c[i] = op(s, s_)
end
else
n2 = n >> 1
s_ = _accumulate_pairwise!(op, c, v, s, i1, n2)
s_ = op(s_, _accumulate_pairwise!(op, c, v, op(s, s_), i1+n2, n-n2))
end
return s_
end
function accumulate_pairwise!(op::Op, result::AbstractVector, v::AbstractVector) where Op
li = LinearIndices(v)
li != LinearIndices(result) && throw(DimensionMismatch("input and output array sizes and indices must match"))
n = length(li)
n == 0 && return result
i1 = first(li)
@inbounds result[i1] = v1 = reduce_first(op,v[i1])
n == 1 && return result
_accumulate_pairwise!(op, result, v, v1, i1+1, n-1)
return result
end
function accumulate_pairwise(op, v::AbstractVector{T}) where T
out = similar(v, promote_op(op, T, T))
return accumulate_pairwise!(op, out, v)
end
"""
cumsum!(B, A; dims::Integer)
Cumulative sum of `A` along the dimension `dims`, storing the result in `B`. See also [`cumsum`](@ref).
"""
cumsum!(B::AbstractArray{T}, A; dims::Integer) where {T} =
accumulate!(add_sum, B, A, dims=dims)
function cumsum!(out::AbstractArray, v::AbstractVector; dims::Integer=1)
# we dispatch on the possibility of numerical stability issues
_cumsum!(out, v, dims, ArithmeticStyle(eltype(out)))
end
function _cumsum!(out::AbstractArray{T}, v, dim, ::ArithmeticRounds) where {T}
dim == 1 ? accumulate_pairwise!(add_sum, out, v) : copyto!(out, v)
end
function _cumsum!(out::AbstractArray, v, dim, ::ArithmeticUnknown)
_cumsum!(out, v, dim, ArithmeticRounds())
end
function _cumsum!(out::AbstractArray{T}, v, dim, ::ArithmeticStyle) where {T}
dim == 1 ? accumulate!(add_sum, out, v) : copyto!(out, v)
end
"""
cumsum(A; dims::Integer)
Cumulative sum along the dimension `dims`. See also [`cumsum!`](@ref)
to use a preallocated output array, both for performance and to control the precision of the
output (e.g. to avoid overflow).
# Examples
```jldoctest
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumsum(a, dims=1)
2×3 Array{Int64,2}:
1 2 3
5 7 9
julia> cumsum(a, dims=2)
2×3 Array{Int64,2}:
1 3 6
4 9 15
```
"""
function cumsum(A::AbstractArray{T}; dims::Integer) where T
out = similar(A, promote_op(add_sum, T, T))
cumsum!(out, A, dims=dims)
end
"""
cumsum(x::AbstractVector)
Cumulative sum a vector. See also [`cumsum!`](@ref)
to use a preallocated output array, both for performance and to control the precision of the
output (e.g. to avoid overflow).
# Examples
```jldoctest
julia> cumsum([1, 1, 1])
3-element Array{Int64,1}:
1
2
3
julia> cumsum([fill(1, 2) for i in 1:3])
3-element Array{Array{Int64,1},1}:
[1, 1]
[2, 2]
[3, 3]
```
"""
cumsum(x::AbstractVector) = cumsum(x, dims=1)
"""
cumprod!(B, A; dims::Integer)
Cumulative product of `A` along the dimension `dims`, storing the result in `B`.
See also [`cumprod`](@ref).
"""
cumprod!(B::AbstractArray{T}, A; dims::Integer) where {T} =
accumulate!(mul_prod, B, A, dims=dims)
"""
cumprod!(y::AbstractVector, x::AbstractVector)
Cumulative product of a vector `x`, storing the result in `y`.
See also [`cumprod`](@ref).
"""
cumprod!(y::AbstractVector, x::AbstractVector) = cumprod!(y, x, dims=1)
"""
cumprod(A; dims::Integer)
Cumulative product along the dimension `dim`. See also
[`cumprod!`](@ref) to use a preallocated output array, both for performance and
to control the precision of the output (e.g. to avoid overflow).
# Examples
```jldoctest
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumprod(a, dims=1)
2×3 Array{Int64,2}:
1 2 3
4 10 18
julia> cumprod(a, dims=2)
2×3 Array{Int64,2}:
1 2 6
4 20 120
```
"""
function cumprod(A::AbstractArray; dims::Integer)
return accumulate(mul_prod, A, dims=dims)
end
"""
cumprod(x::AbstractVector)
Cumulative product of a vector. See also
[`cumprod!`](@ref) to use a preallocated output array, both for performance and
to control the precision of the output (e.g. to avoid overflow).
# Examples
```jldoctest
julia> cumprod(fill(1//2, 3))
3-element Array{Rational{Int64},1}:
1//2
1//4
1//8
julia> cumprod([fill(1//3, 2, 2) for i in 1:3])
3-element Array{Array{Rational{Int64},2},1}:
[1//3 1//3; 1//3 1//3]
[2//9 2//9; 2//9 2//9]
[4//27 4//27; 4//27 4//27]
```
"""
cumprod(x::AbstractVector) = cumprod(x, dims=1)
"""
accumulate(op, A; dims::Integer, [init])
Cumulative operation `op` along the dimension `dims` of `A` (providing `dims` is optional
for vectors). An initial value `init` may optionally be provided by a keyword argument. See
also [`accumulate!`](@ref) to use a preallocated output array, both for performance and
to control the precision of the output (e.g. to avoid overflow). For common operations
there are specialized variants of `accumulate`, see: [`cumsum`](@ref), [`cumprod`](@ref)
# Examples
```jldoctest
julia> accumulate(+, [1,2,3])
3-element Array{Int64,1}:
1
3
6
julia> accumulate(*, [1,2,3])
3-element Array{Int64,1}:
1
2
6
julia> accumulate(+, [1,2,3]; init=100)
3-element Array{Int64,1}:
101
103
106
julia> accumulate(min, [1,2,-1]; init=0)
3-element Array{Int64,1}:
0
0
-1
julia> accumulate(+, fill(1, 3, 3), dims=1)
3×3 Array{Int64,2}:
1 1 1
2 2 2
3 3 3
julia> accumulate(+, fill(1, 3, 3), dims=2)
3×3 Array{Int64,2}:
1 2 3
1 2 3
1 2 3
```
"""
function accumulate(op, A; dims::Union{Nothing,Integer}=nothing, kw...)
nt = kw.data
if nt isa NamedTuple{()}
out = similar(A, promote_op(op, eltype(A), eltype(A)))
elseif nt isa NamedTuple{(:init,)}
out = similar(A, promote_op(op, typeof(nt.init), eltype(A)))
else
throw(ArgumentError("acccumulate does not support the keyword arguments $(setdiff(keys(nt), (:init,)))"))
end
accumulate!(op, out, A; dims=dims, kw...)
end
"""
accumulate!(op, B, A; [dims], [init])
Cumulative operation `op` on `A` along the dimension `dims`, storing the result in `B`.
Providing `dims` is optional for vectors. If the keyword argument `init` is given, its
value is used to instantiate the accumulation. See also [`accumulate`](@ref).
# Examples
```jldoctest
julia> x = [1, 0, 2, 0, 3];
julia> y = [0, 0, 0, 0, 0];
julia> accumulate!(+, y, x);
julia> y
5-element Array{Int64,1}:
1
1
3
3
6
julia> A = [1 2; 3 4];
julia> B = [0 0; 0 0];
julia> accumulate!(-, B, A, dims=1);
julia> B
2×2 Array{Int64,2}:
1 2
-2 -2
julia> accumulate!(-, B, A, dims=2);
julia> B
2×2 Array{Int64,2}:
1 -1
3 -1
```
"""
function accumulate!(op, B, A; dims::Union{Integer, Nothing} = nothing, kw...)
nt = kw.data
if nt isa NamedTuple{()}
_accumulate!(op, B, A, dims, nothing)
elseif nt isa NamedTuple{(:init,)}
_accumulate!(op, B, A, dims, Some(nt.init))
else
throw(ArgumentError("acccumulate! does not support the keyword arguments $(setdiff(keys(nt), (:init,)))"))
end
end
function _accumulate!(op, B, A, dims::Nothing, init::Union{Nothing, Some})
throw(ArgumentError("Keyword argument dims must be provided for multidimensional arrays"))
end
function _accumulate!(op, B, A::AbstractVector, dims::Nothing, init::Nothing)
isempty(A) && return B
v1 = reduce_first(op, first(A))
_accumulate1!(op, B, v1, A, 1)
end
function _accumulate!(op, B, A::AbstractVector, dims::Nothing, init::Some)
isempty(A) && return B
v1 = op(something(init), first(A))
_accumulate1!(op, B, v1, A, 1)
end
function _accumulate!(op, B, A, dims::Integer, init::Union{Nothing, Some})
dims > 0 || throw(ArgumentError("dims must be a positive integer"))
inds_t = axes(A)
axes(B) == inds_t || throw(DimensionMismatch("shape of B must match A"))
dims > ndims(A) && return copyto!(B, A)
isempty(inds_t[dims]) && return B
if dims == 1
# We can accumulate to a temporary variable, which allows
# register usage and will be slightly faster
ind1 = inds_t[1]
@inbounds for I in CartesianIndices(tail(inds_t))
if init === nothing
tmp = reduce_first(op, A[first(ind1), I])
else
tmp = op(something(init), A[first(ind1), I])
end
B[first(ind1), I] = tmp
for i_1 = first(ind1)+1:last(ind1)
tmp = op(tmp, A[i_1, I])
B[i_1, I] = tmp
end
end
else
R1 = CartesianIndices(axes(A)[1:dims-1]) # not type-stable
R2 = CartesianIndices(axes(A)[dims+1:end])
_accumulaten!(op, B, A, R1, inds_t[dims], R2, init) # use function barrier
end
return B
end
@noinline function _accumulaten!(op, B, A, R1, ind, R2, init::Nothing)
# Copy the initial element in each 1d vector along dimension `dim`
ii = first(ind)
@inbounds for J in R2, I in R1
B[I, ii, J] = reduce_first(op, A[I, ii, J])
end
# Accumulate
@inbounds for J in R2, i in first(ind)+1:last(ind), I in R1
B[I, i, J] = op(B[I, i-1, J], A[I, i, J])
end
B
end
@noinline function _accumulaten!(op, B, A, R1, ind, R2, init::Some)
# Copy the initial element in each 1d vector along dimension `dim`
ii = first(ind)
@inbounds for J in R2, I in R1
B[I, ii, J] = op(something(init), A[I, ii, J])
end
# Accumulate
@inbounds for J in R2, i in first(ind)+1:last(ind), I in R1
B[I, i, J] = op(B[I, i-1, J], A[I, i, J])
end
B
end
function _accumulate1!(op, B, v1, A::AbstractVector, dim::Integer)
dim > 0 || throw(ArgumentError("dim must be a positive integer"))
inds = LinearIndices(A)
inds == LinearIndices(B) || throw(DimensionMismatch("LinearIndices of A and B don't match"))
dim > 1 && return copyto!(B, A)
(i1, state) = iterate(inds) # We checked earlier that A isn't empty
cur_val = v1
B[i1] = cur_val
next = iterate(inds, state)
@inbounds while next !== nothing
(i, state) = next
cur_val = op(cur_val, A[i])
B[i] = cur_val
next = iterate(inds, state)
end
return B
end
|