1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base.Iterators: Enumerate
"""
asyncmap(f, c...; ntasks=0, batch_size=nothing)
Uses multiple concurrent tasks to map `f` over a collection (or multiple
equal length collections). For multiple collection arguments, `f` is
applied elementwise.
`ntasks` specifies the number of tasks to run concurrently.
Depending on the length of the collections, if `ntasks` is unspecified,
up to 100 tasks will be used for concurrent mapping.
`ntasks` can also be specified as a zero-arg function. In this case, the
number of tasks to run in parallel is checked before processing every element and a new
task started if the value of `ntasks_func` is less than the current number
of tasks.
If `batch_size` is specified, the collection is processed in batch mode. `f` must
then be a function that must accept a `Vector` of argument tuples and must
return a vector of results. The input vector will have a length of `batch_size` or less.
The following examples highlight execution in different tasks by returning
the `objectid` of the tasks in which the mapping function is executed.
First, with `ntasks` undefined, each element is processed in a different task.
```
julia> tskoid() = objectid(current_task());
julia> asyncmap(x->tskoid(), 1:5)
5-element Array{UInt64,1}:
0x6e15e66c75c75853
0x440f8819a1baa682
0x9fb3eeadd0c83985
0xebd3e35fe90d4050
0x29efc93edce2b961
julia> length(unique(asyncmap(x->tskoid(), 1:5)))
5
```
With `ntasks=2` all elements are processed in 2 tasks.
```
julia> asyncmap(x->tskoid(), 1:5; ntasks=2)
5-element Array{UInt64,1}:
0x027ab1680df7ae94
0xa23d2f80cd7cf157
0x027ab1680df7ae94
0xa23d2f80cd7cf157
0x027ab1680df7ae94
julia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))
2
```
With `batch_size` defined, the mapping function needs to be changed to accept an array
of argument tuples and return an array of results. `map` is used in the modified mapping
function to achieve this.
```
julia> batch_func(input) = map(x->string("args_tuple: ", x, ", element_val: ", x[1], ", task: ", tskoid()), input)
batch_func (generic function with 1 method)
julia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)
5-element Array{String,1}:
"args_tuple: (1,), element_val: 1, task: 9118321258196414413"
"args_tuple: (2,), element_val: 2, task: 4904288162898683522"
"args_tuple: (3,), element_val: 3, task: 9118321258196414413"
"args_tuple: (4,), element_val: 4, task: 4904288162898683522"
"args_tuple: (5,), element_val: 5, task: 9118321258196414413"
```
!!! note
Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently,
`asyncmap` is beneficial only when the mapping function involves any I/O - disk, network, remote
worker invocation, etc.
"""
function asyncmap(f, c...; ntasks=0, batch_size=nothing)
return async_usemap(f, c...; ntasks=ntasks, batch_size=batch_size)
end
function async_usemap(f, c...; ntasks=0, batch_size=nothing)
ntasks = verify_ntasks(c[1], ntasks)
batch_size = verify_batch_size(batch_size)
if batch_size !== nothing
exec_func = batch -> begin
# extract the Refs from the input tuple
batch_refs = map(x->x[1], batch)
# and the args tuple....
batched_args = map(x->x[2], batch)
results = f(batched_args)
foreach(x -> (batch_refs[x[1]].x = x[2]), enumerate(results))
end
else
exec_func = (r,args) -> (r.x = f(args...))
end
chnl, worker_tasks = setup_chnl_and_tasks(exec_func, ntasks, batch_size)
return wrap_n_exec_twice(chnl, worker_tasks, ntasks, exec_func, c...)
end
batch_size_err_str(batch_size) = string("batch_size must be specified as a positive integer. batch_size=", batch_size)
function verify_batch_size(batch_size)
if batch_size === nothing
return batch_size
elseif isa(batch_size, Number)
batch_size = Int(batch_size)
batch_size < 1 && throw(ArgumentError(batch_size_err_str(batch_size)))
return batch_size
else
throw(ArgumentError(batch_size_err_str(batch_size)))
end
end
function verify_ntasks(iterable, ntasks)
if !((isa(ntasks, Number) && (ntasks >= 0)) || isa(ntasks, Function))
err = string("ntasks must be specified as a positive integer or a 0-arg function. ntasks=", ntasks)
throw(ArgumentError(err))
end
if ntasks == 0
chklen = IteratorSize(iterable)
if (chklen isa HasLength) || (chklen isa HasShape)
ntasks = max(1,min(100, length(iterable)))
else
ntasks = 100
end
end
return ntasks
end
function wrap_n_exec_twice(chnl, worker_tasks, ntasks, exec_func, c...)
# The driver task, creates a Ref object and writes it and the args tuple to
# the communication channel for processing by a free worker task.
push_arg_to_channel = (x...) -> (r=Ref{Any}(nothing); put!(chnl,(r,x));r)
if isa(ntasks, Function)
map_f = (x...) -> begin
# check number of tasks every time, and start one if required.
# number_tasks > optimal_number is fine, the other way around is inefficient.
if length(worker_tasks) < ntasks()
start_worker_task!(worker_tasks, exec_func, chnl)
end
push_arg_to_channel(x...)
end
else
map_f = push_arg_to_channel
end
maptwice(map_f, chnl, worker_tasks, c...)
end
function maptwice(wrapped_f, chnl, worker_tasks, c...)
# first run, returns a collection of Refs
asyncrun_excp = nothing
local asyncrun
try
asyncrun = map(wrapped_f, c...)
catch ex
if isa(ex,InvalidStateException)
# channel could be closed due to exceptions in the async tasks,
# we propagate those errors, if any, over the `put!` failing
# in asyncrun due to a closed channel.
asyncrun_excp = ex
else
rethrow(ex)
end
end
# close channel and wait for all worker tasks to finish
close(chnl)
# check and throw any exceptions from the worker tasks
foreach(x->(v=fetch(x); isa(v, Exception) && throw(v)), worker_tasks)
# check if there was a genuine problem with asyncrun
(asyncrun_excp !== nothing) && throw(asyncrun_excp)
if isa(asyncrun, Ref)
# scalar case
return asyncrun.x
else
# second run, extract values from the Refs and return
return map(ref->ref.x, asyncrun)
end
end
function setup_chnl_and_tasks(exec_func, ntasks, batch_size=nothing)
if isa(ntasks, Function)
nt = ntasks()
# start at least one worker task.
if nt == 0
nt = 1
end
else
nt = ntasks
end
# Use an unbuffered channel for communicating with the worker tasks. In the event
# of an error in any of the worker tasks, the channel is closed. This
# results in the `put!` in the driver task failing immediately.
chnl = Channel(0)
worker_tasks = []
foreach(_ -> start_worker_task!(worker_tasks, exec_func, chnl, batch_size), 1:nt)
yield()
return (chnl, worker_tasks)
end
function start_worker_task!(worker_tasks, exec_func, chnl, batch_size=nothing)
t = @async begin
retval = nothing
try
if isa(batch_size, Number)
while isopen(chnl)
# The mapping function expects an array of input args, as it processes
# elements in a batch.
batch_collection=Any[]
n = 0
for exec_data in chnl
push!(batch_collection, exec_data)
n += 1
(n == batch_size) && break
end
if n > 0
exec_func(batch_collection)
end
end
else
for exec_data in chnl
exec_func(exec_data...)
end
end
catch e
close(chnl)
retval = e
end
retval
end
push!(worker_tasks, t)
end
# Special handling for some types.
function asyncmap(f, s::AbstractString; kwargs...)
s2 = Vector{Char}(undef, length(s))
asyncmap!(f, s2, s; kwargs...)
return String(s2)
end
# map on a single BitArray returns a BitArray if the mapping function is boolean.
function asyncmap(f, b::BitArray; kwargs...)
b2 = async_usemap(f, b; kwargs...)
if eltype(b2) == Bool
return BitArray(b2)
end
return b2
end
mutable struct AsyncCollector
f
results
enumerator::Enumerate
ntasks
batch_size
nt_check::Bool # check number of tasks on every iteration
AsyncCollector(f, r, en::Enumerate, ntasks, batch_size) = new(f, r, en, ntasks, batch_size, isa(ntasks, Function))
end
"""
AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing) -> iterator
Return an iterator which applies `f` to each element of `c` asynchronously
and collects output into `results`.
Keyword args `ntasks` and `batch_size` have the same behavior as in
[`asyncmap`](@ref). If `batch_size` is specified, `f` must
be a function which operates on an array of argument tuples.
!!! note
`iterate(::AsyncCollector, state) -> (nothing, state)`. A successful return
from `iterate` indicates that the next element from the input collection is
being processed asynchronously. It blocks until a free worker task becomes
available.
!!! note
`for _ in AsyncCollector(f, results, c...; ntasks=1) end` is equivalent to
`map!(f, results, c...)`.
"""
function AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing)
AsyncCollector(f, results, enumerate(zip(c...)), ntasks, batch_size)
end
mutable struct AsyncCollectorState
chnl::Channel
worker_tasks::Array{Task,1}
enum_state # enumerator state
AsyncCollectorState(chnl::Channel, worker_tasks::Vector) =
new(chnl, convert(Vector{Task}, worker_tasks))
end
function iterate(itr::AsyncCollector)
itr.ntasks = verify_ntasks(itr.enumerator, itr.ntasks)
itr.batch_size = verify_batch_size(itr.batch_size)
if itr.batch_size !== nothing
exec_func = batch -> begin
# extract indices from the input tuple
batch_idxs = map(x->x[1], batch)
# and the args tuple....
batched_args = map(x->x[2], batch)
results = f(batched_args)
foreach(x -> (itr.results[batch_idxs[x[1]]] = x[2]), enumerate(results))
end
else
exec_func = (i,args) -> (itr.results[i]=itr.f(args...))
end
chnl, worker_tasks = setup_chnl_and_tasks((i,args) -> (itr.results[i]=itr.f(args...)), itr.ntasks, itr.batch_size)
return iterate(itr, AsyncCollectorState(chnl, worker_tasks))
end
function wait_done(itr::AsyncCollector, state::AsyncCollectorState)
close(state.chnl)
# wait for all tasks to finish
foreach(x->(v=fetch(x); isa(v, Exception) && throw(v)), state.worker_tasks)
empty!(state.worker_tasks)
end
function iterate(itr::AsyncCollector, state::AsyncCollectorState)
if itr.nt_check && (length(state.worker_tasks) < itr.ntasks())
start_worker_task!(state.worker_tasks, itr.f, state.chnl)
end
# Get index and mapped function arguments from enumeration iterator.
y = isdefined(state, :enum_state) ?
iterate(itr.enumerator, state.enum_state) :
iterate(itr.enumerator)
if y === nothing
wait_done(itr, state)
return nothing
end
(i, args), state.enum_state = y
put!(state.chnl, (i, args))
return (nothing, state)
end
"""
AsyncGenerator(f, c...; ntasks=0, batch_size=nothing) -> iterator
Apply `f` to each element of `c` using at most `ntasks` asynchronous tasks.
Keyword args `ntasks` and `batch_size` have the same behavior as in
[`asyncmap`](@ref). If `batch_size` is specified, `f` must
be a function which operates on an array of argument tuples.
!!! note
`collect(AsyncGenerator(f, c...; ntasks=1))` is equivalent to
`map(f, c...)`.
"""
mutable struct AsyncGenerator
collector::AsyncCollector
end
function AsyncGenerator(f, c...; ntasks=0)
AsyncGenerator(AsyncCollector(f, Dict{Int,Any}(), c...; ntasks=ntasks))
end
mutable struct AsyncGeneratorState
i::Int
collector_done::Bool
collector_state::AsyncCollectorState
AsyncGeneratorState(i::Int) = new(i, false)
end
function iterate(itr::AsyncGenerator, state::AsyncGeneratorState=AsyncGeneratorState(0))
state.i += 1
results_dict = itr.collector.results
while !state.collector_done && !haskey(results_dict, state.i)
y = isdefined(state, :collector_state) ?
iterate(itr.collector, state.collector_state) :
iterate(itr.collector)
if y === nothing
# `check_done` waits for async tasks to finish. if we do not have the index
# we are looking for, it is an error.
state.collector_done = true
break;
end
_, state.collector_state = y
end
state.collector_done && isempty(results_dict) && return nothing
r = results_dict[state.i]
delete!(results_dict, state.i)
return (r, state)
end
# pass-through iterator traits to the iterable
# on which the mapping function is being applied
IteratorSize(::Type{AsyncGenerator}) = SizeUnknown()
IteratorEltype(::Type{AsyncGenerator}) = EltypeUnknown()
size(itr::AsyncGenerator) = size(itr.collector.enumerator)
length(itr::AsyncGenerator) = length(itr.collector.enumerator)
"""
asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)
Like [`asyncmap`](@ref), but stores output in `results` rather than
returning a collection.
"""
function asyncmap!(f, r, c1, c...; ntasks=0, batch_size=nothing)
foreach(identity, AsyncCollector(f, r, c1, c...; ntasks=ntasks, batch_size=batch_size))
r
end
|