1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Factorials
const _fact_table64 = Vector{Int64}(undef, 20)
_fact_table64[1] = 1
for n in 2:20
_fact_table64[n] = _fact_table64[n-1] * n
end
const _fact_table128 = Vector{UInt128}(undef, 34)
_fact_table128[1] = 1
for n in 2:34
_fact_table128[n] = _fact_table128[n-1] * n
end
function factorial_lookup(n::Integer, table, lim)
n < 0 && throw(DomainError(n, "`n` must not be negative."))
n > lim && throw(OverflowError(string(n, " is too large to look up in the table")))
n == 0 && return one(n)
@inbounds f = table[n]
return oftype(n, f)
end
factorial(n::Int128) = factorial_lookup(n, _fact_table128, 33)
factorial(n::UInt128) = factorial_lookup(n, _fact_table128, 34)
factorial(n::Union{Int64,UInt64}) = factorial_lookup(n, _fact_table64, 20)
if Int === Int32
factorial(n::Union{Int8,UInt8,Int16,UInt16}) = factorial(Int32(n))
factorial(n::Union{Int32,UInt32}) = factorial_lookup(n, _fact_table64, 12)
else
factorial(n::Union{Int8,UInt8,Int16,UInt16,Int32,UInt32}) = factorial(Int64(n))
end
# Basic functions for working with permutations
"""
isperm(v) -> Bool
Return `true` if `v` is a valid permutation.
# Examples
```jldoctest
julia> isperm([1; 2])
true
julia> isperm([1; 3])
false
```
"""
function isperm(A)
n = length(A)
used = falses(n)
for a in A
(0 < a <= n) && (used[a] ⊻= true) || return false
end
true
end
isperm(p::Tuple{}) = true
isperm(p::Tuple{Int}) = p[1] == 1
isperm(p::Tuple{Int,Int}) = ((p[1] == 1) & (p[2] == 2)) | ((p[1] == 2) & (p[2] == 1))
function permute!!(a, p::AbstractVector{<:Integer})
@assert !has_offset_axes(a, p)
count = 0
start = 0
while count < length(a)
ptr = start = findnext(!iszero, p, start+1)::Int
temp = a[start]
next = p[start]
count += 1
while next != start
a[ptr] = a[next]
p[ptr] = 0
ptr = next
next = p[next]
count += 1
end
a[ptr] = temp
p[ptr] = 0
end
a
end
"""
permute!(v, p)
Permute vector `v` in-place, according to permutation `p`. No checking is done
to verify that `p` is a permutation.
To return a new permutation, use `v[p]`. Note that this is generally faster than
`permute!(v,p)` for large vectors.
See also [`invpermute!`](@ref).
# Examples
```jldoctest
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> permute!(A, perm);
julia> A
4-element Array{Int64,1}:
1
4
3
1
```
"""
permute!(a, p::AbstractVector) = permute!!(a, copymutable(p))
function invpermute!!(a, p::AbstractVector{<:Integer})
@assert !has_offset_axes(a, p)
count = 0
start = 0
while count < length(a)
start = findnext(!iszero, p, start+1)::Int
temp = a[start]
next = p[start]
count += 1
while next != start
temp_next = a[next]
a[next] = temp
temp = temp_next
ptr = p[next]
p[next] = 0
next = ptr
count += 1
end
a[next] = temp
p[next] = 0
end
a
end
"""
invpermute!(v, p)
Like [`permute!`](@ref), but the inverse of the given permutation is applied.
# Examples
```jldoctest
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> invpermute!(A, perm);
julia> A
4-element Array{Int64,1}:
4
1
3
1
```
"""
invpermute!(a, p::AbstractVector) = invpermute!!(a, copymutable(p))
"""
invperm(v)
Return the inverse permutation of `v`.
If `B = A[v]`, then `A == B[invperm(v)]`.
# Examples
```jldoctest
julia> v = [2; 4; 3; 1];
julia> invperm(v)
4-element Array{Int64,1}:
4
1
3
2
julia> A = ['a','b','c','d'];
julia> B = A[v]
4-element Array{Char,1}:
'b'
'd'
'c'
'a'
julia> B[invperm(v)]
4-element Array{Char,1}:
'a'
'b'
'c'
'd'
```
"""
function invperm(a::AbstractVector)
@assert !has_offset_axes(a)
b = zero(a) # similar vector of zeros
n = length(a)
@inbounds for (i, j) in enumerate(a)
((1 <= j <= n) && b[j] == 0) ||
throw(ArgumentError("argument is not a permutation"))
b[j] = i
end
b
end
function invperm(p::Union{Tuple{},Tuple{Int},Tuple{Int,Int}})
isperm(p) || throw(ArgumentError("argument is not a permutation"))
p # in dimensions 0-2, every permutation is its own inverse
end
invperm(a::Tuple) = (invperm([a...])...,)
#XXX This function should be moved to Combinatorics.jl but is currently used by Base.DSP.
"""
nextprod([k_1, k_2,...], n)
Next integer greater than or equal to `n` that can be written as ``\\prod k_i^{p_i}`` for integers
``p_1``, ``p_2``, etc.
# Examples
```jldoctest
julia> nextprod([2, 3], 105)
108
julia> 2^2 * 3^3
108
```
"""
function nextprod(a::Vector{Int}, x)
if x > typemax(Int)
throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
end
k = length(a)
v = fill(1, k) # current value of each counter
mx = [nextpow(ai,x) for ai in a] # maximum value of each counter
v[1] = mx[1] # start at first case that is >= x
p::widen(Int) = mx[1] # initial value of product in this case
best = p
icarry = 1
while v[end] < mx[end]
if p >= x
best = p < best ? p : best # keep the best found yet
carrytest = true
while carrytest
p = div(p, v[icarry])
v[icarry] = 1
icarry += 1
p *= a[icarry]
v[icarry] *= a[icarry]
carrytest = v[icarry] > mx[icarry] && icarry < k
end
if p < x
icarry = 1
end
else
while p < x
p *= a[1]
v[1] *= a[1]
end
end
end
# might overflow, but want predictable return type
return mx[end] < best ? Int(mx[end]) : Int(best)
end
|