1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
struct InvokeData
mt::Core.MethodTable
entry::Core.TypeMapEntry
types0
end
struct InliningTodo
idx::Int # The statement to replace
# Properties of the call - these determine how arguments
# need to be rewritten.
isva::Bool
isinvoke::Bool
isapply::Bool
na::Int
method::Method # The method being inlined
sparams::Vector{Any} # The static parameters we computed for this call site
metharg # ::Type
# The LineTable and IR of the inlinee
linetable::Vector{LineInfoNode}
ir::IRCode
# If the function being inlined is a single basic block we can use a
# simpler inlining algorithm. This flag determines whether that's allowed
linear_inline_eligible::Bool
end
struct ConstantCase
val::Any
method::Method
sparams::Vector{Any}
metharg::Any
ConstantCase(@nospecialize(val), method::Method, sparams::Vector{Any}, @nospecialize(metharg)) =
new(val, method, sparams, metharg)
end
struct DynamicCase
method::Method
sparams::Vector{Any}
metharg::Any
DynamicCase(method::Method, sparams::Vector{Any}, @nospecialize(metharg)) =
new(method, sparams, metharg)
end
struct UnionSplit
idx::Int # The statement to replace
fully_covered::Bool
atype # ::Type
isinvoke::Bool
cases::Vector{Pair{Any, Any}}
bbs::Vector{Int}
UnionSplit(idx::Int, fully_covered::Bool, @nospecialize(atype), isinvoke::Bool,
cases::Vector{Pair{Any, Any}}) =
new(idx, fully_covered, atype, isinvoke, cases, Int[])
end
function ssa_inlining_pass!(ir::IRCode, linetable::Vector{LineInfoNode}, sv::OptimizationState)
# Go through the function, performing simple ininlingin (e.g. replacing call by constants
# and analyzing legality of inlining).
@timeit "analysis" todo = assemble_inline_todo!(ir, linetable, sv)
isempty(todo) && return ir
# Do the actual inlining for every call we identified
@timeit "execution" ir = batch_inline!(todo, ir, linetable, sv)
return ir
end
mutable struct CFGInliningState
new_cfg_blocks::Vector{BasicBlock}
inserted_block_ranges::Vector{UnitRange{Int}}
todo_bbs::Vector{Tuple{Int, Int}}
first_bb::Int
bb_rename::Vector{Int}
split_targets::BitSet
merged_orig_blocks::BitSet
cfg::CFG
end
function CFGInliningState(ir::IRCode)
CFGInliningState(
BasicBlock[],
UnitRange{Int}[],
Tuple{Int, Int}[],
0,
zeros(Int, length(ir.cfg.blocks)),
BitSet(),
BitSet(),
ir.cfg
)
end
# Tells the inliner that we're now inlining into block `block`, meaning
# all previous blocks have been proceesed and can be added to the new cfg
function inline_into_block!(state::CFGInliningState, block::Int)
if state.first_bb != block
new_range = state.first_bb+1:block
l = length(state.new_cfg_blocks)
state.bb_rename[new_range] = (l+1:l+length(new_range))
append!(state.new_cfg_blocks, map(copy, state.cfg.blocks[new_range]))
push!(state.merged_orig_blocks, last(new_range))
end
state.first_bb = block
return
end
function cfg_inline_item!(item::InliningTodo, state::CFGInliningState, from_unionsplit::Bool=false)
inlinee_cfg = item.ir.cfg
# Figure out if we need to split the BB
need_split_before = false
need_split = true
block = block_for_inst(state.cfg, item.idx)
inline_into_block!(state, block)
if !isempty(inlinee_cfg.blocks[1].preds)
need_split_before = true
end
last_block_idx = last(state.cfg.blocks[block].stmts)
if false # TODO: ((idx+1) == last_block_idx && isa(ir[SSAValue(last_block_idx)], GotoNode))
need_split = false
post_bb_id = -ir[SSAValue(last_block_idx)].label
else
post_bb_id = length(state.new_cfg_blocks) + length(inlinee_cfg.blocks) + (need_split_before ? 1 : 0)
need_split = true #!(idx == last_block_idx)
end
if !need_split
delete!(state.merged_orig_blocks, last(new_range))
end
push!(state.todo_bbs, (length(state.new_cfg_blocks) - 1 + (need_split_before ? 1 : 0), post_bb_id))
from_unionsplit || delete!(state.split_targets, length(state.new_cfg_blocks))
orig_succs = copy(state.new_cfg_blocks[end].succs)
empty!(state.new_cfg_blocks[end].succs)
if need_split_before
l = length(state.new_cfg_blocks)
bb_rename_range = (1+l:length(inlinee_cfg.blocks)+l)
push!(state.new_cfg_blocks[end].succs, length(state.new_cfg_blocks)+1)
append!(state.new_cfg_blocks, inlinee_cfg.blocks)
else
# Merge the last block that was already there with the first block we're adding
l = length(state.new_cfg_blocks)
bb_rename_range = (l:length(inlinee_cfg.blocks)+l-1)
append!(state.new_cfg_blocks[end].succs, inlinee_cfg.blocks[1].succs)
append!(state.new_cfg_blocks, inlinee_cfg.blocks[2:end])
end
if need_split
push!(state.new_cfg_blocks, BasicBlock(state.cfg.blocks[block].stmts,
Int[], orig_succs))
from_unionsplit || push!(state.split_targets, length(state.new_cfg_blocks))
end
new_block_range = (length(state.new_cfg_blocks)-length(inlinee_cfg.blocks)+1):length(state.new_cfg_blocks)
push!(state.inserted_block_ranges, new_block_range)
# Fixup the edges of the newely added blocks
for (old_block, new_block) in enumerate(bb_rename_range)
if old_block != 1 || need_split_before
p = state.new_cfg_blocks[new_block].preds
map!(p, p) do old_pred_block
return old_pred_block == 0 ? 0 : bb_rename_range[old_pred_block]
end
end
if new_block != last(new_block_range)
s = state.new_cfg_blocks[new_block].succs
map!(s, s) do old_succ_block
return bb_rename_range[old_succ_block]
end
end
end
if need_split_before
push!(state.new_cfg_blocks[first(bb_rename_range)].preds, first(bb_rename_range)-1)
end
for (old_block, new_block) in enumerate(bb_rename_range)
if (length(state.new_cfg_blocks[new_block].succs) == 0)
terminator_idx = last(inlinee_cfg.blocks[old_block].stmts)
terminator = item.ir[SSAValue(terminator_idx)]
if isa(terminator, ReturnNode) && isdefined(terminator, :val)
push!(state.new_cfg_blocks[new_block].succs, post_bb_id)
if need_split
push!(state.new_cfg_blocks[post_bb_id].preds, new_block)
end
end
end
end
end
function cfg_inline_unionsplit!(item::UnionSplit, state::CFGInliningState)
block = block_for_inst(state.cfg, item.idx)
inline_into_block!(state, block)
from_bbs = Int[]
delete!(state.split_targets, length(state.new_cfg_blocks))
orig_succs = copy(state.new_cfg_blocks[end].succs)
empty!(state.new_cfg_blocks[end].succs)
for (i, (_, case)) in enumerate(item.cases)
# The condition gets sunk into the previous block
# Add a block for the union-split body
push!(state.new_cfg_blocks, BasicBlock(StmtRange(item.idx, item.idx)))
cond_bb = length(state.new_cfg_blocks)-1
push!(state.new_cfg_blocks[end].preds, cond_bb)
push!(state.new_cfg_blocks[cond_bb].succs, cond_bb+1)
if isa(case, InliningTodo) && !case.linear_inline_eligible
cfg_inline_item!(case, state, true)
end
bb = length(state.new_cfg_blocks)
push!(from_bbs, bb)
# TODO: Right now we unconditionally generate a fallback block
# in case of subtyping errors - This is probably unnecessary.
if true # i != length(item.cases) || !item.fully_covered
# This block will have the next condition or the final else case
push!(state.new_cfg_blocks, BasicBlock(StmtRange(item.idx, item.idx)))
push!(state.new_cfg_blocks[cond_bb].succs, length(state.new_cfg_blocks))
push!(state.new_cfg_blocks[end].preds, cond_bb)
push!(item.bbs, length(state.new_cfg_blocks))
end
end
# The edge from the fallback block.
if !item.fully_covered
push!(from_bbs, length(state.new_cfg_blocks))
end
# This block will be the block everyone returns to
push!(state.new_cfg_blocks, BasicBlock(StmtRange(item.idx, item.idx), from_bbs, orig_succs))
join_bb = length(state.new_cfg_blocks)
push!(state.split_targets, join_bb)
push!(item.bbs, join_bb)
for bb in from_bbs
push!(state.new_cfg_blocks[bb].succs, join_bb)
end
end
function finish_cfg_inline!(state::CFGInliningState)
new_range = (state.first_bb + 1):length(state.cfg.blocks)
l = length(state.new_cfg_blocks)
state.bb_rename[new_range] = (l+1:l+length(new_range))
append!(state.new_cfg_blocks, state.cfg.blocks[new_range])
# Rename edges original bbs
for (orig_bb, bb) in pairs(state.bb_rename)
p, s = state.new_cfg_blocks[bb].preds, state.new_cfg_blocks[bb].succs
map!(p, p) do pred_bb
pred_bb == length(state.bb_rename) && return length(state.new_cfg_blocks)
return state.bb_rename[pred_bb + 1] - 1
end
if !(orig_bb in state.merged_orig_blocks)
map!(s, s) do succ_bb
return state.bb_rename[succ_bb]
end
end
end
for bb in collect(state.split_targets)
s = state.new_cfg_blocks[bb].succs
map!(s, s) do succ_bb
return state.bb_rename[succ_bb]
end
end
# Rename any annotated original bb references
for bb in 1:length(state.new_cfg_blocks)
s = state.new_cfg_blocks[bb].succs
map!(s, s) do succ_bb
return succ_bb < 0 ? state.bb_rename[-succ_bb] : succ_bb
end
end
end
function ir_inline_item!(compact::IncrementalCompact, idx::Int, argexprs::Vector{Any},
linetable::Vector{LineInfoNode}, item::InliningTodo,
boundscheck::Symbol, todo_bbs::Vector{Tuple{Int, Int}})
# Ok, do the inlining here
inline_cfg = item.ir.cfg
stmt = compact.result[idx]
linetable_offset = length(linetable)
# Append the linetable of the inlined function to our line table
inlined_at = Int(compact.result_lines[idx])
for entry in item.linetable
push!(linetable, LineInfoNode(entry.mod, entry.method, entry.file, entry.line,
(entry.inlined_at > 0 ? entry.inlined_at + linetable_offset : inlined_at)))
end
if item.isva
vararg = mk_tuplecall!(compact, argexprs[item.na:end], compact.result_lines[idx])
argexprs = Any[argexprs[1:(item.na - 1)]..., vararg]
end
flag = compact.result_flags[idx]
boundscheck_idx = boundscheck
if boundscheck_idx === :default || boundscheck_idx === :propagate
if (flag & IR_FLAG_INBOUNDS) != 0
boundscheck_idx = :off
end
end
# If the iterator already moved on to the next basic block,
# temporarily re-open in again.
local return_value
# Special case inlining that maintains the current basic block if there's only one BB in the target
if item.linear_inline_eligible
terminator = item.ir[SSAValue(last(inline_cfg.blocks[1].stmts))]
#compact[idx] = nothing
inline_compact = IncrementalCompact(compact, item.ir, compact.result_idx)
for (idx′, stmt′) in inline_compact
# This dance is done to maintain accurate usage counts in the
# face of rename_arguments! mutating in place - should figure out
# something better eventually.
inline_compact[idx′] = nothing
stmt′ = ssa_substitute!(idx′, stmt′, argexprs, item.method.sig, item.sparams, linetable_offset, boundscheck_idx, compact)
if isa(stmt′, ReturnNode)
isa(stmt′.val, SSAValue) && (compact.used_ssas[stmt′.val.id] += 1)
return_value = SSAValue(idx′)
inline_compact[idx′] = stmt′.val
val = stmt′.val
inline_compact.result_types[idx′] = (isa(val, Argument) || isa(val, Expr)) ?
compact_exprtype(compact, stmt′.val) :
compact_exprtype(inline_compact, stmt′.val)
break
end
inline_compact[idx′] = stmt′
end
just_fixup!(inline_compact)
compact.result_idx = inline_compact.result_idx
else
bb_offset, post_bb_id = popfirst!(todo_bbs)
# This implements the need_split_before flag above
need_split_before = !isempty(item.ir.cfg.blocks[1].preds)
if need_split_before
finish_current_bb!(compact)
end
pn = PhiNode()
#compact[idx] = nothing
inline_compact = IncrementalCompact(compact, item.ir, compact.result_idx)
for (idx′, stmt′) in inline_compact
inline_compact[idx′] = nothing
stmt′ = ssa_substitute!(idx′, stmt′, argexprs, item.method.sig, item.sparams, linetable_offset, boundscheck_idx, compact)
if isa(stmt′, ReturnNode)
if isdefined(stmt′, :val)
val = stmt′.val
# GlobalRefs can have side effects, but are currently
# allowed in arguments of ReturnNodes
push!(pn.edges, inline_compact.active_result_bb-1)
if isa(val, GlobalRef) || isa(val, Expr)
stmt′ = val
inline_compact.result_types[idx′] = (isa(val, Argument) || isa(val, Expr)) ?
compact_exprtype(compact, val) :
compact_exprtype(inline_compact, val)
insert_node_here!(inline_compact, GotoNode(post_bb_id),
Any, compact.result_lines[idx′],
true)
push!(pn.values, SSAValue(idx′))
else
push!(pn.values, val)
stmt′ = GotoNode(post_bb_id)
end
end
elseif isa(stmt′, GotoNode)
stmt′ = GotoNode(stmt′.label + bb_offset)
elseif isa(stmt′, Expr) && stmt′.head == :enter
stmt′ = Expr(:enter, stmt′.args[1] + bb_offset)
elseif isa(stmt′, GotoIfNot)
stmt′ = GotoIfNot(stmt′.cond, stmt′.dest + bb_offset)
elseif isa(stmt′, PhiNode)
stmt′ = PhiNode(Any[edge+bb_offset for edge in stmt′.edges], stmt′.values)
end
inline_compact[idx′] = stmt′
end
just_fixup!(inline_compact)
compact.result_idx = inline_compact.result_idx
compact.active_result_bb = inline_compact.active_result_bb
for i = 1:length(pn.values)
isassigned(pn.values, i) || continue
if isa(pn.values[i], SSAValue)
compact.used_ssas[pn.values[i].id] += 1
end
end
if length(pn.edges) == 1
return_value = pn.values[1]
else
return_value = insert_node_here!(compact, pn, compact_exprtype(compact, SSAValue(idx)), compact.result_lines[idx])
end
end
return_value
end
const fatal_type_bound_error = ErrorException("fatal error in type inference (type bound)")
function ir_inline_unionsplit!(compact::IncrementalCompact, idx::Int,
argexprs::Vector{Any}, linetable::Vector{LineInfoNode},
item::UnionSplit, boundscheck::Symbol, todo_bbs::Vector{Tuple{Int, Int}})
stmt, typ, line = compact.result[idx], compact.result_types[idx], compact.result_lines[idx]
atype = item.atype
generic_bb = item.bbs[end-1]
join_bb = item.bbs[end]
bb = compact.active_result_bb
pn = PhiNode()
has_generic = false
@assert length(item.bbs) > length(item.cases)
for ((metharg, case), next_cond_bb) in zip(item.cases, item.bbs)
@assert !isa(metharg, UnionAll)
cond = true
@assert length(atype.parameters) == length(metharg.parameters)
for i in 1:length(atype.parameters)
a, m = atype.parameters[i], metharg.parameters[i]
# If this is always true, we don't need to check for it
a <: m && continue
# Generate isa check
isa_expr = Expr(:call, isa, argexprs[i], m)
ssa = insert_node_here!(compact, isa_expr, Bool, line)
if cond === true
cond = ssa
else
and_expr = Expr(:call, and_int, cond, ssa)
cond = insert_node_here!(compact, and_expr, Bool, line)
end
end
insert_node_here!(compact, GotoIfNot(cond, next_cond_bb), Union{}, line)
bb = next_cond_bb - 1
finish_current_bb!(compact)
argexprs′ = argexprs
if !isa(case, ConstantCase)
argexprs′ = copy(argexprs)
for i = 1:length(metharg.parameters)
a, m = atype.parameters[i], metharg.parameters[i]
(isa(argexprs[i], SSAValue) || isa(argexprs[i], Argument)) || continue
if !(a <: m)
argexprs′[i] = insert_node_here!(compact, PiNode(argexprs′[i], m),
m, line)
end
end
end
if isa(case, InliningTodo)
val = ir_inline_item!(compact, idx, argexprs′, linetable, case, boundscheck, todo_bbs)
elseif isa(case, MethodInstance)
val = insert_node_here!(compact, Expr(:invoke, case, argexprs′...), typ, line)
else
case = case::ConstantCase
val = case.val
end
push!(pn.edges, bb)
push!(pn.values, val)
insert_node_here!(compact, GotoNode(join_bb), Union{}, line)
finish_current_bb!(compact)
end
bb += 1
# We're now in the fall through block, decide what to do
if item.fully_covered
e = Expr(:call, GlobalRef(Core, :throw), fatal_type_bound_error)
insert_node_here!(compact, e, Union{}, line)
insert_node_here!(compact, ReturnNode(), Union{}, line)
finish_current_bb!(compact)
else
ssa = insert_node_here!(compact, stmt, typ, line)
push!(pn.edges, bb)
push!(pn.values, ssa)
insert_node_here!(compact, GotoNode(join_bb), Union{}, line)
finish_current_bb!(compact)
end
# We're now in the join block.
compact.ssa_rename[compact.idx-1] = insert_node_here!(compact, pn, typ, line)
nothing
end
function batch_inline!(todo::Vector{Any}, ir::IRCode, linetable::Vector{LineInfoNode}, sv::OptimizationState)
# Compute the new CFG first (modulo statement ranges, which will be computed below)
state = CFGInliningState(ir)
for item in todo
if isa(item, UnionSplit)
cfg_inline_unionsplit!(item::UnionSplit, state)
else
item = item::InliningTodo
# A linear inline does not modify the CFG
item.linear_inline_eligible && continue
cfg_inline_item!(item, state)
end
end
finish_cfg_inline!(state)
boundscheck = inbounds_option()
if boundscheck === :default && sv.src.propagate_inbounds
boundscheck = :propagate
end
let compact = IncrementalCompact(ir)
compact.result_bbs = state.new_cfg_blocks
# This needs to be a minimum and is more of a size hint
nn = 0
for item in todo
if isa(item, InliningTodo)
nn += (length(item.ir.stmts) + length(item.ir.new_nodes))
end
end
nnewnodes = length(compact.result) + nn
resize!(compact, nnewnodes)
item = popfirst!(todo)
inline_idx = item.idx
for (idx, stmt) in compact
if compact.idx - 1 == inline_idx
argexprs = copy(stmt.args)
refinish = false
if compact.result_idx == first(compact.result_bbs[compact.active_result_bb].stmts)
compact.active_result_bb -= 1
refinish = true
end
# At the moment we will allow globalrefs in argument position, turn those into ssa values
for aidx in 1:length(argexprs)
aexpr = argexprs[aidx]
if isa(aexpr, GlobalRef) || isa(aexpr, Expr)
argexprs[aidx] = insert_node_here!(compact, aexpr, compact_exprtype(compact, aexpr), compact.result_lines[idx])
end
end
if item.isinvoke
argexprs = rewrite_invoke_exprargs!((node, typ)->insert_node_here!(compact, node, typ, compact.result_lines[idx]),
argexprs)
end
if isa(item, InliningTodo)
compact.ssa_rename[compact.idx-1] = ir_inline_item!(compact, idx, argexprs, linetable, item, boundscheck, state.todo_bbs)
elseif isa(item, UnionSplit)
ir_inline_unionsplit!(compact, idx, argexprs, linetable, item, boundscheck, state.todo_bbs)
end
compact[idx] = nothing
refinish && finish_current_bb!(compact)
if !isempty(todo)
item = popfirst!(todo)
inline_idx = item.idx
else
inline_idx = -1
end
elseif isa(stmt, GotoNode)
compact[idx] = GotoNode(state.bb_rename[stmt.label])
elseif isa(stmt, Expr) && stmt.head == :enter
compact[idx] = Expr(:enter, state.bb_rename[stmt.args[1]])
elseif isa(stmt, GotoIfNot)
compact[idx] = GotoIfNot(stmt.cond, state.bb_rename[stmt.dest])
elseif isa(stmt, PhiNode)
compact[idx] = PhiNode(Any[edge == length(state.bb_rename) ? length(state.new_cfg_blocks) : state.bb_rename[edge+1]-1 for edge in stmt.edges], stmt.values)
end
end
ir = finish(compact)
end
return ir
end
function _spec_lambda(@nospecialize(atype), sv::OptimizationState, @nospecialize(invoke_data))
if invoke_data === nothing
return ccall(:jl_get_spec_lambda, Any, (Any, UInt), atype, sv.params.world)
else
invoke_data = invoke_data::InvokeData
atype <: invoke_data.types0 || return nothing
return ccall(:jl_get_invoke_lambda, Any, (Any, Any, Any, UInt),
invoke_data.mt, invoke_data.entry, atype, sv.params.world)
end
end
function spec_lambda(@nospecialize(atype), sv::OptimizationState, @nospecialize(invoke_data))
linfo = _spec_lambda(atype, sv, invoke_data)
linfo !== nothing && add_backedge!(linfo, sv)
linfo
end
function rewrite_apply_exprargs!(ir::IRCode, idx::Int, argexprs::Vector{Any}, atypes::Vector{Any}, sv::OptimizationState)
new_argexprs = Any[argexprs[2]]
new_atypes = Any[atypes[2]]
# loop over original arguments and flatten any known iterators
for i in 3:length(argexprs)
def = argexprs[i]
# As a special case, if we can see the tuple() call, look at it's arguments to find
# our types. They can be more precise (e.g. f(Bool, A...) would be lowered as
# _apply(f, tuple(Bool)::Tuple{DataType}, A), which might not be precise enough to
# get a good method match). This pattern is used in the array code a bunch.
if isa(def, SSAValue) && is_tuple_call(ir, ir[def])
def_args = ir[def].args
def_atypes = Any[argextype(def_args[i], ir, sv.sp) for i in 2:length(def_args)]
elseif isa(def, Argument) && def.n === length(ir.argtypes) && !isempty(sv.result_vargs)
def_atypes = sv.result_vargs
else
def_atypes = Any[]
for p in widenconst(atypes[i]).parameters
if isa(p, DataType) && isdefined(p, :instance)
# replace singleton types with their equivalent Const object
p = Const(p.instance)
elseif isconstType(p)
p = Const(p.parameters[1])
end
push!(def_atypes, p)
end
end
# now push flattened types into new_atypes and getfield exprs into new_argexprs
for j in 1:length(def_atypes)
def_atype = def_atypes[j]
new_call = Expr(:call, Core.getfield, def, j)
new_argexpr = insert_node!(ir, idx, def_atype, new_call)
push!(new_argexprs, new_argexpr)
push!(new_atypes, def_atype)
end
end
return new_argexprs, new_atypes
end
function rewrite_invoke_exprargs!(inserter, argexprs::Vector{Any})
argexpr0 = argexprs[2]
argexprs = argexprs[4:end]
pushfirst!(argexprs, argexpr0)
return argexprs
end
function singleton_type(@nospecialize(ft))
if isa(ft, Const)
return ft.val
elseif ft isa DataType && isdefined(ft, :instance)
return ft.instance
end
return nothing
end
function analyze_method!(idx::Int, @nospecialize(f), @nospecialize(ft), @nospecialize(metharg), methsp::SimpleVector,
method::Method, stmt::Expr, atypes::Vector{Any}, sv::OptimizationState, @nospecialize(atype_unlimited),
isinvoke::Bool, isapply::Bool, invoke_data::Union{InvokeData,Nothing}, @nospecialize(stmttyp))
methsig = method.sig
# Check whether this call just evaluates to a constant
if isa(f, widenconst(ft)) && !isdefined(method, :generator) && method.pure &&
isa(stmttyp, Const) && stmttyp.actual && is_inlineable_constant(stmttyp.val)
return ConstantCase(quoted(stmttyp.val), method, Any[methsp...], metharg)
end
# Check that we habe the correct number of arguments
na = Int(method.nargs)
npassedargs = length(atypes)
if na != npassedargs && !(na > 0 && method.isva)
# we have a method match only because an earlier
# inference step shortened our call args list, even
# though we have too many arguments to actually
# call this function
return nothing
end
# Bail out if any static parameters are left as TypeVar
ok = true
for i = 1:length(methsp)
isa(methsp[i], TypeVar) && return nothing
end
# Find the linfo for this methods
linfo = code_for_method(method, metharg, methsp, sv.params.world, true) # Union{Nothing, MethodInstance}
if !isa(linfo, MethodInstance)
return spec_lambda(atype_unlimited, sv, invoke_data)
end
if invoke_api(linfo) == 2
# in this case function can be inlined to a constant
add_backedge!(linfo, sv)
return ConstantCase(quoted(linfo.inferred_const), method, Any[methsp...], metharg)
end
isconst, inferred = find_inferred(linfo, atypes, sv)
if isconst
return ConstantCase(inferred, method, Any[methsp...], metharg)
end
if inferred === nothing
return spec_lambda(atype_unlimited, sv, invoke_data)
end
src_inferred = ccall(:jl_ast_flag_inferred, Bool, (Any,), inferred)
src_inlineable = ccall(:jl_ast_flag_inlineable, Bool, (Any,), inferred)
if !(src_inferred && src_inlineable)
return spec_lambda(atype_unlimited, sv, invoke_data)
end
# At this point we're committed to performing the inlining, add the backedge
add_backedge!(linfo, sv)
if isa(inferred, CodeInfo)
src = inferred
ast = copy_exprargs(inferred.code)
else
src = ccall(:jl_uncompress_ast, Any, (Any, Any), method, inferred::Vector{UInt8})::CodeInfo
ast = src.code
end
@timeit "inline IR inflation" begin
ir2, inline_linetable = inflate_ir(src, linfo), src.linetable
end
#verify_ir(ir2)
return InliningTodo(idx,
na > 0 && method.isva,
isinvoke, isapply, na,
method, Any[methsp...], metharg,
inline_linetable, ir2, linear_inline_eligible(ir2))
end
# Neither the product iterator not CartesianIndices are available
# here, so use this poor man's version
struct SimpleCartesian
ranges::Vector{UnitRange{Int}}
end
function iterate(s::SimpleCartesian, state::Vector{Int}=Int[1 for _ in 1:length(s.ranges)])
state[end] > last(s.ranges[end]) && return nothing
vals = copy(state)
any = false
for i = 1:length(s.ranges)
if state[i] < last(s.ranges[i])
for j = 1:(i-1)
state[j] = first(s.ranges[j])
end
state[i] += 1
any = true
break
end
end
if !any
state[end] += 1
end
(vals, state)
end
# Given a signure, iterate over the signatures to union split over
struct UnionSplitSignature
it::SimpleCartesian
typs::Vector{Any}
end
function UnionSplitSignature(atypes::Vector{Any})
typs = Any[uniontypes(widenconst(atypes[i])) for i = 1:length(atypes)]
ranges = UnitRange{Int}[1:length(typs[i]) for i = 1:length(typs)]
return UnionSplitSignature(SimpleCartesian(ranges), typs)
end
function iterate(split::UnionSplitSignature, state::Vector{Int}...)
y = iterate(split.it, state...)
y === nothing && return nothing
idxs, state = y
sig = Any[split.typs[i][j] for (i, j) in enumerate(idxs)]
return (sig, state)
end
function handle_single_case!(ir::IRCode, stmt::Expr, idx::Int, @nospecialize(case), isinvoke::Bool, todo::Vector{Any}, sv::OptimizationState)
if isa(case, ConstantCase)
ir[SSAValue(idx)] = case.val
elseif isa(case, MethodInstance)
if isinvoke
stmt.args = rewrite_invoke_exprargs!(
(node, typ)->insert_node!(ir, idx, typ, node),
stmt.args)
end
stmt.head = :invoke
pushfirst!(stmt.args, case)
elseif case === nothing
# Do, well, nothing
else
push!(todo, case::InliningTodo)
end
nothing
end
function assemble_inline_todo!(ir::IRCode, linetable::Vector{LineInfoNode}, sv::OptimizationState)
# todo = (inline_idx, (isva, isinvoke, isapply, na), method, spvals, inline_linetable, inline_ir, lie)
todo = Any[]
for idx in 1:length(ir.stmts)
stmt = ir.stmts[idx]
isexpr(stmt, :call) || continue
eargs = stmt.args
isempty(eargs) && continue
arg1 = eargs[1]
ft = argextype(arg1, ir, sv.sp)
has_free_typevars(ft) && continue
f = singleton_type(ft)
f === Core.Intrinsics.llvmcall && continue
f === Core.Intrinsics.cglobal && continue
atypes = Vector{Any}(undef, length(stmt.args))
atypes[1] = ft
ok = true
for i = 2:length(stmt.args)
a = argextype(stmt.args[i], ir, sv.sp)
(a === Bottom || isvarargtype(a)) && (ok = false; break)
atypes[i] = a
end
ok || continue
# Check if we match any of the early inliners
calltype = ir.types[idx]
res = early_inline_special_case(ir, f, ft, stmt, atypes, sv, calltype)
if res !== nothing
ir.stmts[idx] = res
continue
end
if f !== Core.invoke && f !== Core._apply &&
(isa(f, IntrinsicFunction) || ft ⊑ IntrinsicFunction || isa(f, Builtin) || ft ⊑ Builtin)
# No inlining for builtins (other than what's handled in the early inliner)
# TODO: this test is wrong if we start to handle Unions of function types later
continue
end
# Special handling for Core.invoke and Core._apply, which can follow the normal inliner
# logic with modified inlining target
isapply = isinvoke = false
# Handle _apply
if f === Core._apply
ft = atypes[2]
has_free_typevars(ft) && continue
f = singleton_type(ft)
# Try to figure out the signature of the function being called
# and if rewrite_apply_exprargs can deal with this form
ok = true
for i = 3:length(atypes)
typ = widenconst(atypes[i])
# TODO: We could basically run the iteration protocol here
if !isa(typ, DataType) || typ.name !== Tuple.name ||
isvatuple(typ) || length(typ.parameters) > sv.params.MAX_TUPLE_SPLAT
ok = false
break
end
end
ok || continue
isapply = true
# Independent of whether we can inline, the above analysis allows us to rewrite
# this apply call to a regular call
stmt.args, atypes = rewrite_apply_exprargs!(ir, idx, stmt.args, atypes, sv)
end
if f !== Core.invoke && (isa(f, IntrinsicFunction) || ft ⊑ IntrinsicFunction || isa(f, Builtin) || ft ⊑ Builtin)
# TODO: this test is wrong if we start to handle Unions of function types later
continue
end
# Handle invoke
invoke_data = nothing
if f === Core.invoke && length(atypes) >= 3
res = compute_invoke_data(atypes, stmt.args, sv)
res === nothing && continue
(f, ft, atypes, argexprs, invoke_data) = res
end
isinvoke = (invoke_data !== nothing)
atype = argtypes_to_type(atypes)
# In :invoke, make sure that the arguments we're passing are a subtype of the
# signature we're invoking.
(invoke_data === nothing || atype <: invoke_data.types0) || continue
# Bail out here if inlining is disabled
sv.params.inlining || continue
# Special case inliners for regular functions
if late_inline_special_case!(ir, idx, stmt, atypes, f, ft) || f === return_type
continue
end
# Ok, now figure out what method to call
if invoke_data !== nothing
method = invoke_data.entry.func
(metharg, methsp) = ccall(:jl_type_intersection_with_env, Any, (Any, Any),
atype, method.sig)::SimpleVector
methsp = methsp::SimpleVector
result = analyze_method!(idx, f, ft, metharg, methsp, method, stmt, atypes, sv, atype, isinvoke, isapply, invoke_data,
calltype)
handle_single_case!(ir, stmt, idx, result, isinvoke, todo, sv)
continue
end
# Regular case: Perform method matching
min_valid = UInt[typemin(UInt)]
max_valid = UInt[typemax(UInt)]
meth = _methods_by_ftype(atype, sv.params.MAX_METHODS, sv.params.world, min_valid, max_valid)
if meth === false || length(meth) == 0
# No applicable method, or too many applicable methods
continue
end
cases = Pair{Any, Any}[]
# TODO: This could be better
signature_union = Union{Any[match[1]::Type for match in meth]...}
signature_fully_covered = atype <: signature_union
fully_covered = signature_fully_covered
split_out_sigs = Any[]
# For any method match that's a dispatch tuple, extract those cases first
for (i, match) in enumerate(meth)
(metharg, methsp, method) = (match[1]::Type, match[2]::SimpleVector, match[3]::Method)
if !isdispatchtuple(metharg)
fully_covered = false
continue
end
case = analyze_method!(idx, f, ft, metharg, methsp, method, stmt, atypes, sv, metharg, isinvoke, isapply, invoke_data, calltype)
if case === nothing
fully_covered = false
continue
end
push!(cases, Pair{Any,Any}(metharg, case))
push!(split_out_sigs, metharg)
end
# Now, if profitable union split the atypes into dispatch tuples and match the appropriate method
nu = countunionsplit(atypes)
if nu != 1 && nu <= sv.params.MAX_UNION_SPLITTING
fully_covered = true
for sig in UnionSplitSignature(atypes)
metharg′ = argtypes_to_type(sig)
if !isdispatchtuple(metharg′)
fully_covered = false
continue
elseif _any(x->x === metharg′, split_out_sigs)
continue
end
# `meth` is in specificity order, so find the first applicable method
found_any = false
for (i, match) in enumerate(meth)
(metharg, methsp, method) = (match[1]::Type, match[2]::SimpleVector, match[3]::Method)
metharg′ <: method.sig || continue
case = analyze_method!(idx, f, ft, metharg′, methsp, method, stmt, atypes, sv, metharg′, isinvoke, isapply, invoke_data,
calltype)
if case !== nothing
found_any = true
push!(cases, Pair{Any,Any}(metharg′, case))
end
break
end
if !found_any
fully_covered = false
continue
end
end
end
# If we're fully covered and there's only one applicable method,
# we inline, even if the signature is not a dispatch tuple
if signature_fully_covered && length(cases) == 0 && length(meth) == 1
metharg = meth[1][1]::Type
methsp = meth[1][2]::SimpleVector
method = meth[1][3]::Method
fully_covered = true
case = analyze_method!(idx, f, ft, metharg, methsp, method, stmt, atypes, sv, atype, isinvoke, isapply, invoke_data, calltype)
case === nothing && continue
push!(cases, Pair{Any,Any}(metharg, case))
end
# If we only have one case and that case is fully covered, we may either
# be able to do the inlining now (for constant cases), or push it directly
# onto the todo list
if fully_covered && length(cases) == 1
handle_single_case!(ir, stmt, idx, cases[1][2], isinvoke, todo, sv)
continue
end
length(cases) == 0 && continue
push!(todo, UnionSplit(idx, fully_covered, atype, isinvoke, cases))
end
todo
end
function mk_tuplecall!(compact::IncrementalCompact, args::Vector{Any}, line_idx::Int32)
e = Expr(:call, TOP_TUPLE, args...)
etyp = tuple_tfunc(Tuple{Any[widenconst(compact_exprtype(compact, args[i])) for i in 1:length(args)]...})
return insert_node_here!(compact, e, etyp, line_idx)
end
function linear_inline_eligible(ir::IRCode)
length(ir.cfg.blocks) == 1 || return false
terminator = ir[SSAValue(last(ir.cfg.blocks[1].stmts))]
isa(terminator, ReturnNode) || return false
isdefined(terminator, :val) || return false
return true
end
function compute_invoke_data(@nospecialize(atypes), argexprs::Vector{Any}, sv::OptimizationState)
ft = widenconst(atypes[2])
invoke_tt = widenconst(atypes[3])
mt = argument_mt(ft)
if mt === nothing || !isType(invoke_tt) || has_free_typevars(invoke_tt) ||
has_free_typevars(ft) || (ft <: Builtin)
# TODO: this can be rather aggressive at preventing inlining of closures
# XXX: this is wrong for `ft <: Type`, since we are failing to check that
# the result doesn't have subtypes, or to do an intersection lookup
return nothing
end
if !(isa(invoke_tt.parameters[1], Type) &&
invoke_tt.parameters[1] <: Tuple)
return nothing
end
invoke_tt = invoke_tt.parameters[1]
invoke_types = rewrap_unionall(Tuple{ft, unwrap_unionall(invoke_tt).parameters...}, invoke_tt)
invoke_entry = ccall(:jl_gf_invoke_lookup, Any, (Any, UInt),
invoke_types, sv.params.world)
invoke_entry === nothing && return nothing
invoke_data = InvokeData(mt, invoke_entry, invoke_types)
atype0 = atypes[2]
argexpr0 = argexprs[2]
atypes = atypes[4:end]
argexprs = argexprs[4:end]
pushfirst!(atypes, atype0)
pushfirst!(argexprs, argexpr0)
f = isdefined(ft, :instance) ? ft.instance : nothing
return svec(f, ft, atypes, argexprs, invoke_data)
end
# Check for a number of functions known to be pure
function ispuretopfunction(@nospecialize(f))
return istopfunction(f, :typejoin) ||
istopfunction(f, :isbits) ||
istopfunction(f, :isbitstype) ||
istopfunction(f, :promote_type)
end
function early_inline_special_case(ir::IRCode, @nospecialize(f), @nospecialize(ft), e::Expr, atypes::Vector{Any}, sv::OptimizationState,
@nospecialize(etype))
if (f === typeassert || ft ⊑ typeof(typeassert)) && length(atypes) == 3
# typeassert(x::S, T) => x, when S<:T
a3 = atypes[3]
if (isType(a3) && !has_free_typevars(a3) && atypes[2] ⊑ a3.parameters[1]) ||
(isa(a3, Const) && isa(a3.val, Type) && atypes[2] ⊑ a3.val)
val = e.args[2]
val === nothing && return QuoteNode(val)
return val
end
end
if sv.params.inlining
if isa(etype, Const) # || isconstType(etype)
val = etype.val
is_inlineable_constant(val) || return nothing
if ispuretopfunction(f) ||
(isa(f, IntrinsicFunction) ? is_pure_intrinsic_optim(f) :
contains_is(_PURE_BUILTINS, f))
return quoted(val)
elseif contains_is(_PURE_OR_ERROR_BUILTINS, f)
if _builtin_nothrow(f, atypes[2:end], etype)
return quoted(val)
end
end
end
end
return nothing
end
function late_inline_special_case!(ir::IRCode, idx::Int, stmt::Expr, atypes::Vector{Any}, @nospecialize(f), @nospecialize(ft))
typ = ir.types[idx]
if length(atypes) == 3 && istopfunction(f, :!==)
# special-case inliner for !== that precedes _methods_by_ftype union splitting
# and that works, even though inference generally avoids inferring the `!==` Method
if isa(typ, Const)
ir[SSAValue(idx)] = quoted(typ.val)
return true
end
cmp_call = Expr(:call, GlobalRef(Core, :(===)), stmt.args[2], stmt.args[3])
cmp_call_ssa = insert_node!(ir, idx, Bool, cmp_call)
not_call = Expr(:call, GlobalRef(Core.Intrinsics, :not_int), cmp_call_ssa)
ir[SSAValue(idx)] = not_call
return true
elseif length(atypes) == 3 && istopfunction(f, :(>:))
# special-case inliner for issupertype
# that works, even though inference generally avoids inferring the `>:` Method
if isa(typ, Const)
ir[SSAValue(idx)] = quoted(typ.val)
return true
end
subtype_call = Expr(:call, GlobalRef(Core, :(<:)), stmt.args[3], stmt.args[2])
ir[SSAValue(idx)] = subtype_call
return true
elseif f === return_type
if isconstType(typ)
ir[SSAValue(idx)] = quoted(typ.parameters[1])
return true
elseif isa(typ, Const)
ir[SSAValue(idx)] = quoted(typ.val)
return true
end
end
return false
end
function ssa_substitute!(idx::Int, @nospecialize(val), arg_replacements::Vector{Any},
@nospecialize(spsig), spvals::Vector{Any},
linetable_offset::Int, boundscheck::Symbol, compact::IncrementalCompact)
compact.result_flags[idx] &= ~IR_FLAG_INBOUNDS
compact.result_lines[idx] += linetable_offset
return ssa_substitute_op!(val, arg_replacements, spsig, spvals, boundscheck)
end
function ssa_substitute_op!(@nospecialize(val), arg_replacements::Vector{Any},
@nospecialize(spsig), spvals::Vector{Any}, boundscheck::Symbol)
if isa(val, Argument)
return arg_replacements[val.n]
end
if isa(val, Expr)
e = val::Expr
head = e.head
if head === :static_parameter
return quoted(spvals[e.args[1]])
elseif head === :cfunction
@assert !isa(spsig, UnionAll) || !isempty(spvals)
e.args[3] = ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), e.args[3], spsig, spvals)
e.args[4] = svec(Any[
ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), argt, spsig, spvals)
for argt
in e.args[4] ]...)
elseif head === :foreigncall
@assert !isa(spsig, UnionAll) || !isempty(spvals)
for i = 1:length(e.args)
if i == 2
e.args[2] = ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), e.args[2], spsig, spvals)
elseif i == 3
argtuple = Any[
ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), argt, spsig, spvals)
for argt
in e.args[3] ]
e.args[3] = svec(argtuple...)
end
end
elseif head === :boundscheck
if boundscheck === :off # inbounds == true
return false
elseif boundscheck === :propagate
return e
else # on or default
return true
end
end
end
urs = userefs(val)
for op in urs
op[] = ssa_substitute_op!(op[], arg_replacements, spsig, spvals, boundscheck)
end
return urs[]
end
function find_inferred(linfo::MethodInstance, @nospecialize(atypes), sv::OptimizationState)
# see if the method has a InferenceResult in the current cache
# or an existing inferred code info store in `.inferred`
haveconst = false
for i in 1:length(atypes)
a = atypes[i]
if isa(a, Const) && !isdefined(typeof(a.val), :instance) && !(isa(a.val, Type) && issingletontype(a.val))
# have new information from argtypes that wasn't available from the signature
haveconst = true
break
end
end
if haveconst
inf_result = cache_lookup(linfo, atypes, sv.params.cache) # Union{Nothing, InferenceResult}
else
inf_result = nothing
end
if isa(inf_result, InferenceResult)
let inferred_src = inf_result.src
if isa(inferred_src, CodeInfo)
return svec(false, inferred_src)
end
if isa(inferred_src, Const) && is_inlineable_constant(inferred_src.val)
add_backedge!(linfo, sv)
return svec(true, quoted(inferred_src.val),)
end
end
end
if isdefined(linfo, :inferred)
return svec(false, linfo.inferred)
end
return svec(false, nothing)
end
|