File: inlining.jl

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (1163 lines) | stat: -rw-r--r-- 47,258 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
# This file is a part of Julia. License is MIT: https://julialang.org/license

struct InvokeData
    mt::Core.MethodTable
    entry::Core.TypeMapEntry
    types0
end

struct InliningTodo
    idx::Int # The statement to replace
    # Properties of the call - these determine how arguments
    # need to be rewritten.
    isva::Bool
    isinvoke::Bool
    isapply::Bool
    na::Int
    method::Method  # The method being inlined
    sparams::Vector{Any} # The static parameters we computed for this call site
    metharg # ::Type
    # The LineTable and IR of the inlinee
    linetable::Vector{LineInfoNode}
    ir::IRCode
    # If the function being inlined is a single basic block we can use a
    # simpler inlining algorithm. This flag determines whether that's allowed
    linear_inline_eligible::Bool
end

struct ConstantCase
    val::Any
    method::Method
    sparams::Vector{Any}
    metharg::Any
    ConstantCase(@nospecialize(val), method::Method, sparams::Vector{Any}, @nospecialize(metharg)) =
        new(val, method, sparams, metharg)
end

struct DynamicCase
    method::Method
    sparams::Vector{Any}
    metharg::Any
    DynamicCase(method::Method, sparams::Vector{Any}, @nospecialize(metharg)) =
        new(method, sparams, metharg)
end

struct UnionSplit
    idx::Int # The statement to replace
    fully_covered::Bool
    atype # ::Type
    isinvoke::Bool
    cases::Vector{Pair{Any, Any}}
    bbs::Vector{Int}
    UnionSplit(idx::Int, fully_covered::Bool, @nospecialize(atype), isinvoke::Bool,
               cases::Vector{Pair{Any, Any}}) =
        new(idx, fully_covered, atype, isinvoke, cases, Int[])
end

function ssa_inlining_pass!(ir::IRCode, linetable::Vector{LineInfoNode}, sv::OptimizationState)
    # Go through the function, performing simple ininlingin (e.g. replacing call by constants
    # and analyzing legality of inlining).
    @timeit "analysis" todo = assemble_inline_todo!(ir, linetable, sv)
    isempty(todo) && return ir
    # Do the actual inlining for every call we identified
    @timeit "execution" ir = batch_inline!(todo, ir, linetable, sv)
    return ir
end

mutable struct CFGInliningState
    new_cfg_blocks::Vector{BasicBlock}
    inserted_block_ranges::Vector{UnitRange{Int}}
    todo_bbs::Vector{Tuple{Int, Int}}
    first_bb::Int
    bb_rename::Vector{Int}
    split_targets::BitSet
    merged_orig_blocks::BitSet
    cfg::CFG
end

function CFGInliningState(ir::IRCode)
    CFGInliningState(
        BasicBlock[],
        UnitRange{Int}[],
        Tuple{Int, Int}[],
        0,
        zeros(Int, length(ir.cfg.blocks)),
        BitSet(),
        BitSet(),
        ir.cfg
    )
end

# Tells the inliner that we're now inlining into block `block`, meaning
# all previous blocks have been proceesed and can be added to the new cfg
function inline_into_block!(state::CFGInliningState, block::Int)
    if state.first_bb != block
        new_range = state.first_bb+1:block
        l = length(state.new_cfg_blocks)
        state.bb_rename[new_range] = (l+1:l+length(new_range))
        append!(state.new_cfg_blocks, map(copy, state.cfg.blocks[new_range]))
        push!(state.merged_orig_blocks, last(new_range))
    end
    state.first_bb = block
    return
end

function cfg_inline_item!(item::InliningTodo, state::CFGInliningState, from_unionsplit::Bool=false)
    inlinee_cfg = item.ir.cfg
    # Figure out if we need to split the BB
    need_split_before = false
    need_split = true
    block = block_for_inst(state.cfg, item.idx)
    inline_into_block!(state, block)

    if !isempty(inlinee_cfg.blocks[1].preds)
        need_split_before = true
    end

    last_block_idx = last(state.cfg.blocks[block].stmts)
    if false # TODO: ((idx+1) == last_block_idx && isa(ir[SSAValue(last_block_idx)], GotoNode))
        need_split = false
        post_bb_id = -ir[SSAValue(last_block_idx)].label
    else
        post_bb_id = length(state.new_cfg_blocks) + length(inlinee_cfg.blocks) + (need_split_before ? 1 : 0)
        need_split = true #!(idx == last_block_idx)
    end

    if !need_split
        delete!(state.merged_orig_blocks, last(new_range))
    end

    push!(state.todo_bbs, (length(state.new_cfg_blocks) - 1 + (need_split_before ? 1 : 0), post_bb_id))

    from_unionsplit || delete!(state.split_targets, length(state.new_cfg_blocks))
    orig_succs = copy(state.new_cfg_blocks[end].succs)
    empty!(state.new_cfg_blocks[end].succs)
    if need_split_before
        l = length(state.new_cfg_blocks)
        bb_rename_range = (1+l:length(inlinee_cfg.blocks)+l)
        push!(state.new_cfg_blocks[end].succs, length(state.new_cfg_blocks)+1)
        append!(state.new_cfg_blocks, inlinee_cfg.blocks)
    else
        # Merge the last block that was already there with the first block we're adding
        l = length(state.new_cfg_blocks)
        bb_rename_range = (l:length(inlinee_cfg.blocks)+l-1)
        append!(state.new_cfg_blocks[end].succs, inlinee_cfg.blocks[1].succs)
        append!(state.new_cfg_blocks, inlinee_cfg.blocks[2:end])
    end
    if need_split
        push!(state.new_cfg_blocks, BasicBlock(state.cfg.blocks[block].stmts,
            Int[], orig_succs))
        from_unionsplit || push!(state.split_targets, length(state.new_cfg_blocks))
    end
    new_block_range = (length(state.new_cfg_blocks)-length(inlinee_cfg.blocks)+1):length(state.new_cfg_blocks)
    push!(state.inserted_block_ranges, new_block_range)

    # Fixup the edges of the newely added blocks
    for (old_block, new_block) in enumerate(bb_rename_range)
        if old_block != 1 || need_split_before
            p = state.new_cfg_blocks[new_block].preds
            map!(p, p) do old_pred_block
                return old_pred_block == 0 ? 0 : bb_rename_range[old_pred_block]
            end
        end
        if new_block != last(new_block_range)
            s = state.new_cfg_blocks[new_block].succs
            map!(s, s) do old_succ_block
                return bb_rename_range[old_succ_block]
            end
        end
    end

    if need_split_before
        push!(state.new_cfg_blocks[first(bb_rename_range)].preds, first(bb_rename_range)-1)
    end

    for (old_block, new_block) in enumerate(bb_rename_range)
        if (length(state.new_cfg_blocks[new_block].succs) == 0)
            terminator_idx = last(inlinee_cfg.blocks[old_block].stmts)
            terminator = item.ir[SSAValue(terminator_idx)]
            if isa(terminator, ReturnNode) && isdefined(terminator, :val)
                push!(state.new_cfg_blocks[new_block].succs, post_bb_id)
                if need_split
                    push!(state.new_cfg_blocks[post_bb_id].preds, new_block)
                end
            end
        end
    end
end

function cfg_inline_unionsplit!(item::UnionSplit, state::CFGInliningState)
    block = block_for_inst(state.cfg, item.idx)
    inline_into_block!(state, block)
    from_bbs = Int[]
    delete!(state.split_targets, length(state.new_cfg_blocks))
    orig_succs = copy(state.new_cfg_blocks[end].succs)
    empty!(state.new_cfg_blocks[end].succs)
    for (i, (_, case)) in enumerate(item.cases)
        # The condition gets sunk into the previous block
        # Add a block for the union-split body
        push!(state.new_cfg_blocks, BasicBlock(StmtRange(item.idx, item.idx)))
        cond_bb = length(state.new_cfg_blocks)-1
        push!(state.new_cfg_blocks[end].preds, cond_bb)
        push!(state.new_cfg_blocks[cond_bb].succs, cond_bb+1)
        if isa(case, InliningTodo) && !case.linear_inline_eligible
            cfg_inline_item!(case, state, true)
        end
        bb = length(state.new_cfg_blocks)
        push!(from_bbs, bb)
        # TODO: Right now we unconditionally generate a fallback block
        # in case of subtyping errors - This is probably unnecessary.
        if true # i != length(item.cases) || !item.fully_covered
            # This block will have the next condition or the final else case
            push!(state.new_cfg_blocks, BasicBlock(StmtRange(item.idx, item.idx)))
            push!(state.new_cfg_blocks[cond_bb].succs, length(state.new_cfg_blocks))
            push!(state.new_cfg_blocks[end].preds, cond_bb)
            push!(item.bbs, length(state.new_cfg_blocks))
        end
    end
    # The edge from the fallback block.
    if !item.fully_covered
        push!(from_bbs, length(state.new_cfg_blocks))
    end
    # This block will be the block everyone returns to
    push!(state.new_cfg_blocks, BasicBlock(StmtRange(item.idx, item.idx), from_bbs, orig_succs))
    join_bb = length(state.new_cfg_blocks)
    push!(state.split_targets, join_bb)
    push!(item.bbs, join_bb)
    for bb in from_bbs
        push!(state.new_cfg_blocks[bb].succs, join_bb)
    end
end

function finish_cfg_inline!(state::CFGInliningState)
    new_range = (state.first_bb + 1):length(state.cfg.blocks)
    l = length(state.new_cfg_blocks)
    state.bb_rename[new_range] = (l+1:l+length(new_range))
    append!(state.new_cfg_blocks, state.cfg.blocks[new_range])

    # Rename edges original bbs
    for (orig_bb, bb) in pairs(state.bb_rename)
        p, s = state.new_cfg_blocks[bb].preds, state.new_cfg_blocks[bb].succs
        map!(p, p) do pred_bb
            pred_bb == length(state.bb_rename) && return length(state.new_cfg_blocks)
            return state.bb_rename[pred_bb + 1] - 1
        end
        if !(orig_bb in state.merged_orig_blocks)
            map!(s, s) do succ_bb
                return state.bb_rename[succ_bb]
            end
        end
    end

    for bb in collect(state.split_targets)
        s = state.new_cfg_blocks[bb].succs
        map!(s, s) do succ_bb
            return state.bb_rename[succ_bb]
        end
    end

    # Rename any annotated original bb references
    for bb in 1:length(state.new_cfg_blocks)
        s = state.new_cfg_blocks[bb].succs
        map!(s, s) do succ_bb
            return succ_bb < 0 ? state.bb_rename[-succ_bb] : succ_bb
        end
    end
end

function ir_inline_item!(compact::IncrementalCompact, idx::Int, argexprs::Vector{Any},
                         linetable::Vector{LineInfoNode}, item::InliningTodo,
                         boundscheck::Symbol, todo_bbs::Vector{Tuple{Int, Int}})
    # Ok, do the inlining here
    inline_cfg = item.ir.cfg
    stmt = compact.result[idx]
    linetable_offset = length(linetable)
    # Append the linetable of the inlined function to our line table
    inlined_at = Int(compact.result_lines[idx])
    for entry in item.linetable
        push!(linetable, LineInfoNode(entry.mod, entry.method, entry.file, entry.line,
            (entry.inlined_at > 0 ? entry.inlined_at + linetable_offset : inlined_at)))
    end
    if item.isva
        vararg = mk_tuplecall!(compact, argexprs[item.na:end], compact.result_lines[idx])
        argexprs = Any[argexprs[1:(item.na - 1)]..., vararg]
    end
    flag = compact.result_flags[idx]
    boundscheck_idx = boundscheck
    if boundscheck_idx === :default || boundscheck_idx === :propagate
        if (flag & IR_FLAG_INBOUNDS) != 0
            boundscheck_idx = :off
        end
    end
    # If the iterator already moved on to the next basic block,
    # temporarily re-open in again.
    local return_value
    # Special case inlining that maintains the current basic block if there's only one BB in the target
    if item.linear_inline_eligible
        terminator = item.ir[SSAValue(last(inline_cfg.blocks[1].stmts))]
        #compact[idx] = nothing
        inline_compact = IncrementalCompact(compact, item.ir, compact.result_idx)
        for (idx′, stmt′) in inline_compact
            # This dance is done to maintain accurate usage counts in the
            # face of rename_arguments! mutating in place - should figure out
            # something better eventually.
            inline_compact[idx′] = nothing
            stmt′ = ssa_substitute!(idx′, stmt′, argexprs, item.method.sig, item.sparams, linetable_offset, boundscheck_idx, compact)
            if isa(stmt′, ReturnNode)
                isa(stmt′.val, SSAValue) && (compact.used_ssas[stmt′.val.id] += 1)
                return_value = SSAValue(idx′)
                inline_compact[idx′] = stmt′.val
                val = stmt′.val
                inline_compact.result_types[idx′] = (isa(val, Argument) || isa(val, Expr)) ?
                    compact_exprtype(compact, stmt′.val) :
                    compact_exprtype(inline_compact, stmt′.val)
                break
            end
            inline_compact[idx′] = stmt′
        end
        just_fixup!(inline_compact)
        compact.result_idx = inline_compact.result_idx
    else
        bb_offset, post_bb_id = popfirst!(todo_bbs)
        # This implements the need_split_before flag above
        need_split_before = !isempty(item.ir.cfg.blocks[1].preds)
        if need_split_before
            finish_current_bb!(compact)
        end
        pn = PhiNode()
        #compact[idx] = nothing
        inline_compact = IncrementalCompact(compact, item.ir, compact.result_idx)
        for (idx′, stmt′) in inline_compact
            inline_compact[idx′] = nothing
            stmt′ = ssa_substitute!(idx′, stmt′, argexprs, item.method.sig, item.sparams, linetable_offset, boundscheck_idx, compact)
            if isa(stmt′, ReturnNode)
                if isdefined(stmt′, :val)
                    val = stmt′.val
                    # GlobalRefs can have side effects, but are currently
                    # allowed in arguments of ReturnNodes
                    push!(pn.edges, inline_compact.active_result_bb-1)
                    if isa(val, GlobalRef) || isa(val, Expr)
                        stmt′ = val
                        inline_compact.result_types[idx′] = (isa(val, Argument) || isa(val, Expr)) ?
                            compact_exprtype(compact, val) :
                            compact_exprtype(inline_compact, val)
                        insert_node_here!(inline_compact, GotoNode(post_bb_id),
                                          Any, compact.result_lines[idx′],
                                          true)
                        push!(pn.values, SSAValue(idx′))
                    else
                        push!(pn.values, val)
                        stmt′ = GotoNode(post_bb_id)
                    end

                end
            elseif isa(stmt′, GotoNode)
                stmt′ = GotoNode(stmt′.label + bb_offset)
            elseif isa(stmt′, Expr) && stmt′.head == :enter
                stmt′ = Expr(:enter, stmt′.args[1] + bb_offset)
            elseif isa(stmt′, GotoIfNot)
                stmt′ = GotoIfNot(stmt′.cond, stmt′.dest + bb_offset)
            elseif isa(stmt′, PhiNode)
                stmt′ = PhiNode(Any[edge+bb_offset for edge in stmt′.edges], stmt′.values)
            end
            inline_compact[idx′] = stmt′
        end
        just_fixup!(inline_compact)
        compact.result_idx = inline_compact.result_idx
        compact.active_result_bb = inline_compact.active_result_bb
        for i = 1:length(pn.values)
            isassigned(pn.values, i) || continue
            if isa(pn.values[i], SSAValue)
                compact.used_ssas[pn.values[i].id] += 1
            end
        end
        if length(pn.edges) == 1
            return_value = pn.values[1]
        else
            return_value = insert_node_here!(compact, pn, compact_exprtype(compact, SSAValue(idx)), compact.result_lines[idx])
        end
    end
    return_value
end

const fatal_type_bound_error = ErrorException("fatal error in type inference (type bound)")

function ir_inline_unionsplit!(compact::IncrementalCompact, idx::Int,
                               argexprs::Vector{Any}, linetable::Vector{LineInfoNode},
                               item::UnionSplit, boundscheck::Symbol, todo_bbs::Vector{Tuple{Int, Int}})
    stmt, typ, line = compact.result[idx], compact.result_types[idx], compact.result_lines[idx]
    atype = item.atype
    generic_bb = item.bbs[end-1]
    join_bb = item.bbs[end]
    bb = compact.active_result_bb
    pn = PhiNode()
    has_generic = false
    @assert length(item.bbs) > length(item.cases)
    for ((metharg, case), next_cond_bb) in zip(item.cases, item.bbs)
        @assert !isa(metharg, UnionAll)
        cond = true
        @assert length(atype.parameters) == length(metharg.parameters)
        for i in 1:length(atype.parameters)
            a, m = atype.parameters[i], metharg.parameters[i]
            # If this is always true, we don't need to check for it
            a <: m && continue
            # Generate isa check
            isa_expr = Expr(:call, isa, argexprs[i], m)
            ssa = insert_node_here!(compact, isa_expr, Bool, line)
            if cond === true
                cond = ssa
            else
                and_expr = Expr(:call, and_int, cond, ssa)
                cond = insert_node_here!(compact, and_expr, Bool, line)
            end
        end
        insert_node_here!(compact, GotoIfNot(cond, next_cond_bb), Union{}, line)
        bb = next_cond_bb - 1
        finish_current_bb!(compact)
        argexprs′ = argexprs
        if !isa(case, ConstantCase)
            argexprs′ = copy(argexprs)
            for i = 1:length(metharg.parameters)
                a, m = atype.parameters[i], metharg.parameters[i]
                (isa(argexprs[i], SSAValue) || isa(argexprs[i], Argument)) || continue
                if !(a <: m)
                    argexprs′[i] = insert_node_here!(compact, PiNode(argexprs′[i], m),
                                                     m, line)
                end
            end
        end
        if isa(case, InliningTodo)
            val = ir_inline_item!(compact, idx, argexprs′, linetable, case, boundscheck, todo_bbs)
        elseif isa(case, MethodInstance)
            val = insert_node_here!(compact, Expr(:invoke, case, argexprs′...), typ, line)
        else
            case = case::ConstantCase
            val = case.val
        end
        push!(pn.edges, bb)
        push!(pn.values, val)
        insert_node_here!(compact, GotoNode(join_bb), Union{}, line)
        finish_current_bb!(compact)
    end
    bb += 1
    # We're now in the fall through block, decide what to do
    if item.fully_covered
        e = Expr(:call, GlobalRef(Core, :throw), fatal_type_bound_error)
        insert_node_here!(compact, e, Union{}, line)
        insert_node_here!(compact, ReturnNode(), Union{}, line)
        finish_current_bb!(compact)
    else
        ssa = insert_node_here!(compact, stmt, typ, line)
        push!(pn.edges, bb)
        push!(pn.values, ssa)
        insert_node_here!(compact, GotoNode(join_bb), Union{}, line)
        finish_current_bb!(compact)
    end

    # We're now in the join block.
    compact.ssa_rename[compact.idx-1] = insert_node_here!(compact, pn, typ, line)
    nothing
end

function batch_inline!(todo::Vector{Any}, ir::IRCode, linetable::Vector{LineInfoNode}, sv::OptimizationState)
    # Compute the new CFG first (modulo statement ranges, which will be computed below)
    state = CFGInliningState(ir)
    for item in todo
        if isa(item, UnionSplit)
            cfg_inline_unionsplit!(item::UnionSplit, state)
        else
            item = item::InliningTodo
            # A linear inline does not modify the CFG
            item.linear_inline_eligible && continue
            cfg_inline_item!(item, state)
        end
    end
    finish_cfg_inline!(state)

    boundscheck = inbounds_option()
    if boundscheck === :default && sv.src.propagate_inbounds
        boundscheck = :propagate
    end

    let compact = IncrementalCompact(ir)
        compact.result_bbs = state.new_cfg_blocks
        # This needs to be a minimum and is more of a size hint
        nn = 0
        for item in todo
            if isa(item, InliningTodo)
                nn += (length(item.ir.stmts) + length(item.ir.new_nodes))
            end
        end
        nnewnodes = length(compact.result) + nn
        resize!(compact, nnewnodes)
        item = popfirst!(todo)
        inline_idx = item.idx
        for (idx, stmt) in compact
            if compact.idx - 1 == inline_idx
                argexprs = copy(stmt.args)
                refinish = false
                if compact.result_idx == first(compact.result_bbs[compact.active_result_bb].stmts)
                    compact.active_result_bb -= 1
                    refinish = true
                end
                # At the moment we will allow globalrefs in argument position, turn those into ssa values
                for aidx in 1:length(argexprs)
                    aexpr = argexprs[aidx]
                    if isa(aexpr, GlobalRef) || isa(aexpr, Expr)
                        argexprs[aidx] = insert_node_here!(compact, aexpr, compact_exprtype(compact, aexpr), compact.result_lines[idx])
                    end
                end
                if item.isinvoke
                    argexprs = rewrite_invoke_exprargs!((node, typ)->insert_node_here!(compact, node, typ, compact.result_lines[idx]),
                                                argexprs)
                end
                if isa(item, InliningTodo)
                    compact.ssa_rename[compact.idx-1] = ir_inline_item!(compact, idx, argexprs, linetable, item, boundscheck, state.todo_bbs)
                elseif isa(item, UnionSplit)
                    ir_inline_unionsplit!(compact, idx, argexprs, linetable, item, boundscheck, state.todo_bbs)
                end
                compact[idx] = nothing
                refinish && finish_current_bb!(compact)
                if !isempty(todo)
                    item = popfirst!(todo)
                    inline_idx = item.idx
                else
                    inline_idx = -1
                end
            elseif isa(stmt, GotoNode)
                compact[idx] = GotoNode(state.bb_rename[stmt.label])
            elseif isa(stmt, Expr) && stmt.head == :enter
                compact[idx] = Expr(:enter, state.bb_rename[stmt.args[1]])
            elseif isa(stmt, GotoIfNot)
                compact[idx] = GotoIfNot(stmt.cond, state.bb_rename[stmt.dest])
            elseif isa(stmt, PhiNode)
                compact[idx] = PhiNode(Any[edge == length(state.bb_rename) ? length(state.new_cfg_blocks) : state.bb_rename[edge+1]-1 for edge in stmt.edges], stmt.values)
            end
        end

        ir = finish(compact)
    end
    return ir
end

function _spec_lambda(@nospecialize(atype), sv::OptimizationState, @nospecialize(invoke_data))
    if invoke_data === nothing
        return ccall(:jl_get_spec_lambda, Any, (Any, UInt), atype, sv.params.world)
    else
        invoke_data = invoke_data::InvokeData
        atype <: invoke_data.types0 || return nothing
        return ccall(:jl_get_invoke_lambda, Any, (Any, Any, Any, UInt),
                     invoke_data.mt, invoke_data.entry, atype, sv.params.world)
    end
end

function spec_lambda(@nospecialize(atype), sv::OptimizationState, @nospecialize(invoke_data))
    linfo = _spec_lambda(atype, sv, invoke_data)
    linfo !== nothing && add_backedge!(linfo, sv)
    linfo
end

function rewrite_apply_exprargs!(ir::IRCode, idx::Int, argexprs::Vector{Any}, atypes::Vector{Any}, sv::OptimizationState)
    new_argexprs = Any[argexprs[2]]
    new_atypes = Any[atypes[2]]
    # loop over original arguments and flatten any known iterators
    for i in 3:length(argexprs)
        def = argexprs[i]
        # As a special case, if we can see the tuple() call, look at it's arguments to find
        # our types. They can be more precise (e.g. f(Bool, A...) would be lowered as
        # _apply(f, tuple(Bool)::Tuple{DataType}, A), which might not be precise enough to
        # get a good method match). This pattern is used in the array code a bunch.
        if isa(def, SSAValue) && is_tuple_call(ir, ir[def])
            def_args = ir[def].args
            def_atypes = Any[argextype(def_args[i], ir, sv.sp) for i in 2:length(def_args)]
        elseif isa(def, Argument) && def.n === length(ir.argtypes) && !isempty(sv.result_vargs)
            def_atypes = sv.result_vargs
        else
            def_atypes = Any[]
            for p in widenconst(atypes[i]).parameters
                if isa(p, DataType) && isdefined(p, :instance)
                    # replace singleton types with their equivalent Const object
                    p = Const(p.instance)
                elseif isconstType(p)
                    p = Const(p.parameters[1])
                end
                push!(def_atypes, p)
            end
        end
        # now push flattened types into new_atypes and getfield exprs into new_argexprs
        for j in 1:length(def_atypes)
            def_atype = def_atypes[j]
            new_call = Expr(:call, Core.getfield, def, j)
            new_argexpr = insert_node!(ir, idx, def_atype, new_call)
            push!(new_argexprs, new_argexpr)
            push!(new_atypes, def_atype)
        end
    end
    return new_argexprs, new_atypes
end

function rewrite_invoke_exprargs!(inserter, argexprs::Vector{Any})
    argexpr0 = argexprs[2]
    argexprs = argexprs[4:end]
    pushfirst!(argexprs, argexpr0)
    return argexprs
end

function singleton_type(@nospecialize(ft))
    if isa(ft, Const)
        return ft.val
    elseif ft isa DataType && isdefined(ft, :instance)
        return ft.instance
    end
    return nothing
end

function analyze_method!(idx::Int, @nospecialize(f), @nospecialize(ft), @nospecialize(metharg), methsp::SimpleVector,
                         method::Method, stmt::Expr, atypes::Vector{Any}, sv::OptimizationState, @nospecialize(atype_unlimited),
                         isinvoke::Bool, isapply::Bool, invoke_data::Union{InvokeData,Nothing}, @nospecialize(stmttyp))
    methsig = method.sig

    # Check whether this call just evaluates to a constant
    if isa(f, widenconst(ft)) && !isdefined(method, :generator) && method.pure &&
            isa(stmttyp, Const) && stmttyp.actual && is_inlineable_constant(stmttyp.val)
        return ConstantCase(quoted(stmttyp.val), method, Any[methsp...], metharg)
    end

    # Check that we habe the correct number of arguments
    na = Int(method.nargs)
    npassedargs = length(atypes)
    if na != npassedargs && !(na > 0 && method.isva)
        # we have a method match only because an earlier
        # inference step shortened our call args list, even
        # though we have too many arguments to actually
        # call this function
        return nothing
    end

    # Bail out if any static parameters are left as TypeVar
    ok = true
    for i = 1:length(methsp)
        isa(methsp[i], TypeVar) && return nothing
    end

    # Find the linfo for this methods
    linfo = code_for_method(method, metharg, methsp, sv.params.world, true) # Union{Nothing, MethodInstance}
    if !isa(linfo, MethodInstance)
        return spec_lambda(atype_unlimited, sv, invoke_data)
    end

    if invoke_api(linfo) == 2
        # in this case function can be inlined to a constant
        add_backedge!(linfo, sv)
        return ConstantCase(quoted(linfo.inferred_const), method, Any[methsp...], metharg)
    end

    isconst, inferred = find_inferred(linfo, atypes, sv)
    if isconst
        return ConstantCase(inferred, method, Any[methsp...], metharg)
    end
    if inferred === nothing
        return spec_lambda(atype_unlimited, sv, invoke_data)
    end

    src_inferred = ccall(:jl_ast_flag_inferred, Bool, (Any,), inferred)
    src_inlineable = ccall(:jl_ast_flag_inlineable, Bool, (Any,), inferred)

    if !(src_inferred && src_inlineable)
        return spec_lambda(atype_unlimited, sv, invoke_data)
    end

    # At this point we're committed to performing the inlining, add the backedge
    add_backedge!(linfo, sv)

    if isa(inferred, CodeInfo)
        src = inferred
        ast = copy_exprargs(inferred.code)
    else
        src = ccall(:jl_uncompress_ast, Any, (Any, Any), method, inferred::Vector{UInt8})::CodeInfo
        ast = src.code
    end

    @timeit "inline IR inflation" begin
        ir2, inline_linetable = inflate_ir(src, linfo), src.linetable
    end
    #verify_ir(ir2)

    return InliningTodo(idx,
        na > 0 && method.isva,
        isinvoke, isapply, na,
        method, Any[methsp...], metharg,
        inline_linetable, ir2, linear_inline_eligible(ir2))
end

# Neither the product iterator not CartesianIndices are available
# here, so use this poor man's version
struct SimpleCartesian
    ranges::Vector{UnitRange{Int}}
end
function iterate(s::SimpleCartesian, state::Vector{Int}=Int[1 for _ in 1:length(s.ranges)])
    state[end] > last(s.ranges[end]) && return nothing
    vals = copy(state)
    any = false
    for i = 1:length(s.ranges)
        if state[i] < last(s.ranges[i])
            for j = 1:(i-1)
                state[j] = first(s.ranges[j])
            end
            state[i] += 1
            any = true
            break
        end
    end
    if !any
        state[end] += 1
    end
    (vals, state)
end

# Given a signure, iterate over the signatures to union split over
struct UnionSplitSignature
    it::SimpleCartesian
    typs::Vector{Any}
end

function UnionSplitSignature(atypes::Vector{Any})
    typs = Any[uniontypes(widenconst(atypes[i])) for i = 1:length(atypes)]
    ranges = UnitRange{Int}[1:length(typs[i]) for i = 1:length(typs)]
    return UnionSplitSignature(SimpleCartesian(ranges), typs)
end

function iterate(split::UnionSplitSignature, state::Vector{Int}...)
    y = iterate(split.it, state...)
    y === nothing && return nothing
    idxs, state = y
    sig = Any[split.typs[i][j] for (i, j) in enumerate(idxs)]
    return (sig, state)
end

function handle_single_case!(ir::IRCode, stmt::Expr, idx::Int, @nospecialize(case), isinvoke::Bool, todo::Vector{Any}, sv::OptimizationState)
    if isa(case, ConstantCase)
        ir[SSAValue(idx)] = case.val
    elseif isa(case, MethodInstance)
        if isinvoke
            stmt.args = rewrite_invoke_exprargs!(
                (node, typ)->insert_node!(ir, idx, typ, node),
                stmt.args)
        end
        stmt.head = :invoke
        pushfirst!(stmt.args, case)
    elseif case === nothing
        # Do, well, nothing
    else
        push!(todo, case::InliningTodo)
    end
    nothing
end

function assemble_inline_todo!(ir::IRCode, linetable::Vector{LineInfoNode}, sv::OptimizationState)
    # todo = (inline_idx, (isva, isinvoke, isapply, na), method, spvals, inline_linetable, inline_ir, lie)
    todo = Any[]
    for idx in 1:length(ir.stmts)
        stmt = ir.stmts[idx]
        isexpr(stmt, :call) || continue
        eargs = stmt.args
        isempty(eargs) && continue
        arg1 = eargs[1]

        ft = argextype(arg1, ir, sv.sp)
        has_free_typevars(ft) && continue
        f = singleton_type(ft)
        f === Core.Intrinsics.llvmcall && continue
        f === Core.Intrinsics.cglobal && continue

        atypes = Vector{Any}(undef, length(stmt.args))
        atypes[1] = ft
        ok = true
        for i = 2:length(stmt.args)
            a = argextype(stmt.args[i], ir, sv.sp)
            (a === Bottom || isvarargtype(a)) && (ok = false; break)
            atypes[i] = a
        end
        ok || continue

        # Check if we match any of the early inliners
        calltype = ir.types[idx]
        res = early_inline_special_case(ir, f, ft, stmt, atypes, sv, calltype)
        if res !== nothing
            ir.stmts[idx] = res
            continue
        end

        if f !== Core.invoke && f !== Core._apply &&
                (isa(f, IntrinsicFunction) || ft ⊑ IntrinsicFunction || isa(f, Builtin) || ft ⊑ Builtin)
            # No inlining for builtins (other than what's handled in the early inliner)
            # TODO: this test is wrong if we start to handle Unions of function types later
            continue
        end

        # Special handling for Core.invoke and Core._apply, which can follow the normal inliner
        # logic with modified inlining target
        isapply = isinvoke = false

        # Handle _apply
        if f === Core._apply
            ft = atypes[2]
            has_free_typevars(ft) && continue
            f = singleton_type(ft)
            # Try to figure out the signature of the function being called
            # and if rewrite_apply_exprargs can deal with this form
            ok = true
            for i = 3:length(atypes)
                typ = widenconst(atypes[i])
                # TODO: We could basically run the iteration protocol here
                if !isa(typ, DataType) || typ.name !== Tuple.name ||
                    isvatuple(typ) || length(typ.parameters) > sv.params.MAX_TUPLE_SPLAT
                    ok = false
                    break
                end
            end
            ok || continue
            isapply = true
            # Independent of whether we can inline, the above analysis allows us to rewrite
            # this apply call to a regular call
            stmt.args, atypes = rewrite_apply_exprargs!(ir, idx, stmt.args, atypes, sv)
        end

        if f !== Core.invoke && (isa(f, IntrinsicFunction) || ft ⊑ IntrinsicFunction || isa(f, Builtin) || ft ⊑ Builtin)
            # TODO: this test is wrong if we start to handle Unions of function types later
            continue
        end

        # Handle invoke
        invoke_data = nothing
        if f === Core.invoke && length(atypes) >= 3
            res = compute_invoke_data(atypes, stmt.args, sv)
            res === nothing && continue
            (f, ft, atypes, argexprs, invoke_data) = res
        end
        isinvoke = (invoke_data !== nothing)

        atype = argtypes_to_type(atypes)

        # In :invoke, make sure that the arguments we're passing are a subtype of the
        # signature we're invoking.
        (invoke_data === nothing || atype <: invoke_data.types0) || continue

        # Bail out here if inlining is disabled
        sv.params.inlining || continue

        # Special case inliners for regular functions
        if late_inline_special_case!(ir, idx, stmt, atypes, f, ft) || f === return_type
            continue
        end

        # Ok, now figure out what method to call
        if invoke_data !== nothing
            method = invoke_data.entry.func
            (metharg, methsp) = ccall(:jl_type_intersection_with_env, Any, (Any, Any),
                                    atype, method.sig)::SimpleVector
            methsp = methsp::SimpleVector
            result = analyze_method!(idx, f, ft, metharg, methsp, method, stmt, atypes, sv, atype, isinvoke, isapply, invoke_data,
                                     calltype)
            handle_single_case!(ir, stmt, idx, result, isinvoke, todo, sv)
            continue
        end

        # Regular case: Perform method matching
        min_valid = UInt[typemin(UInt)]
        max_valid = UInt[typemax(UInt)]
        meth = _methods_by_ftype(atype, sv.params.MAX_METHODS, sv.params.world, min_valid, max_valid)
        if meth === false || length(meth) == 0
            # No applicable method, or too many applicable methods
            continue
        end

        cases = Pair{Any, Any}[]
        # TODO: This could be better
        signature_union = Union{Any[match[1]::Type for match in meth]...}
        signature_fully_covered = atype <: signature_union
        fully_covered = signature_fully_covered
        split_out_sigs = Any[]

        # For any method match that's a dispatch tuple, extract those cases first
        for (i, match) in enumerate(meth)
            (metharg, methsp, method) = (match[1]::Type, match[2]::SimpleVector, match[3]::Method)
            if !isdispatchtuple(metharg)
                fully_covered = false
                continue
            end
            case = analyze_method!(idx, f, ft, metharg, methsp, method, stmt, atypes, sv, metharg, isinvoke, isapply, invoke_data, calltype)
            if case === nothing
                fully_covered = false
                continue
            end
            push!(cases, Pair{Any,Any}(metharg, case))
            push!(split_out_sigs, metharg)
        end

        # Now, if profitable union split the atypes into dispatch tuples and match the appropriate method
        nu = countunionsplit(atypes)
        if nu != 1 && nu <= sv.params.MAX_UNION_SPLITTING
            fully_covered = true
            for sig in UnionSplitSignature(atypes)
                metharg′ = argtypes_to_type(sig)
                if !isdispatchtuple(metharg′)
                    fully_covered = false
                    continue
                elseif _any(x->x === metharg′, split_out_sigs)
                    continue
                end
                # `meth` is in specificity order, so find the first applicable method
                found_any = false
                for (i, match) in enumerate(meth)
                    (metharg, methsp, method) = (match[1]::Type, match[2]::SimpleVector, match[3]::Method)
                    metharg′ <: method.sig || continue
                    case = analyze_method!(idx, f, ft, metharg′, methsp, method, stmt, atypes, sv, metharg′, isinvoke, isapply, invoke_data,
                                           calltype)
                    if case !== nothing
                        found_any = true
                        push!(cases, Pair{Any,Any}(metharg′, case))
                    end
                    break
                end
                if !found_any
                    fully_covered = false
                    continue
                end
            end
        end

        # If we're fully covered and there's only one applicable method,
        # we inline, even if the signature is not a dispatch tuple
        if signature_fully_covered && length(cases) == 0 && length(meth) == 1
            metharg = meth[1][1]::Type
            methsp = meth[1][2]::SimpleVector
            method = meth[1][3]::Method
            fully_covered = true
            case = analyze_method!(idx, f, ft, metharg, methsp, method, stmt, atypes, sv, atype, isinvoke, isapply, invoke_data, calltype)
            case === nothing && continue
            push!(cases, Pair{Any,Any}(metharg, case))
        end

        # If we only have one case and that case is fully covered, we may either
        # be able to do the inlining now (for constant cases), or push it directly
        # onto the todo list
        if fully_covered && length(cases) == 1
            handle_single_case!(ir, stmt, idx, cases[1][2], isinvoke, todo, sv)
            continue
        end
        length(cases) == 0 && continue
        push!(todo, UnionSplit(idx, fully_covered, atype, isinvoke, cases))
    end
    todo
end

function mk_tuplecall!(compact::IncrementalCompact, args::Vector{Any}, line_idx::Int32)
    e = Expr(:call, TOP_TUPLE, args...)
    etyp = tuple_tfunc(Tuple{Any[widenconst(compact_exprtype(compact, args[i])) for i in 1:length(args)]...})
    return insert_node_here!(compact, e, etyp, line_idx)
end

function linear_inline_eligible(ir::IRCode)
    length(ir.cfg.blocks) == 1 || return false
    terminator = ir[SSAValue(last(ir.cfg.blocks[1].stmts))]
    isa(terminator, ReturnNode) || return false
    isdefined(terminator, :val) || return false
    return true
end

function compute_invoke_data(@nospecialize(atypes), argexprs::Vector{Any}, sv::OptimizationState)
    ft = widenconst(atypes[2])
    invoke_tt = widenconst(atypes[3])
    mt = argument_mt(ft)
    if mt === nothing || !isType(invoke_tt) || has_free_typevars(invoke_tt) ||
            has_free_typevars(ft) || (ft <: Builtin)
        # TODO: this can be rather aggressive at preventing inlining of closures
        # XXX: this is wrong for `ft <: Type`, since we are failing to check that
        #      the result doesn't have subtypes, or to do an intersection lookup
        return nothing
    end
    if !(isa(invoke_tt.parameters[1], Type) &&
            invoke_tt.parameters[1] <: Tuple)
        return nothing
    end
    invoke_tt = invoke_tt.parameters[1]
    invoke_types = rewrap_unionall(Tuple{ft, unwrap_unionall(invoke_tt).parameters...}, invoke_tt)
    invoke_entry = ccall(:jl_gf_invoke_lookup, Any, (Any, UInt),
                         invoke_types, sv.params.world)
    invoke_entry === nothing && return nothing
    invoke_data = InvokeData(mt, invoke_entry, invoke_types)
    atype0 = atypes[2]
    argexpr0 = argexprs[2]
    atypes = atypes[4:end]
    argexprs = argexprs[4:end]
    pushfirst!(atypes, atype0)
    pushfirst!(argexprs, argexpr0)
    f = isdefined(ft, :instance) ? ft.instance : nothing
    return svec(f, ft, atypes, argexprs, invoke_data)
end

# Check for a number of functions known to be pure
function ispuretopfunction(@nospecialize(f))
    return istopfunction(f, :typejoin) ||
        istopfunction(f, :isbits) ||
        istopfunction(f, :isbitstype) ||
        istopfunction(f, :promote_type)
end

function early_inline_special_case(ir::IRCode, @nospecialize(f), @nospecialize(ft), e::Expr, atypes::Vector{Any}, sv::OptimizationState,
                                   @nospecialize(etype))
    if (f === typeassert || ft ⊑ typeof(typeassert)) && length(atypes) == 3
        # typeassert(x::S, T) => x, when S<:T
        a3 = atypes[3]
        if (isType(a3) && !has_free_typevars(a3) && atypes[2] ⊑ a3.parameters[1]) ||
            (isa(a3, Const) && isa(a3.val, Type) && atypes[2] ⊑ a3.val)
            val = e.args[2]
            val === nothing && return QuoteNode(val)
            return val
        end
    end

    if sv.params.inlining
        if isa(etype, Const) # || isconstType(etype)
            val = etype.val
            is_inlineable_constant(val) || return nothing
            if ispuretopfunction(f) ||
                    (isa(f, IntrinsicFunction) ? is_pure_intrinsic_optim(f) :
                    contains_is(_PURE_BUILTINS, f))
                return quoted(val)
            elseif contains_is(_PURE_OR_ERROR_BUILTINS, f)
                if _builtin_nothrow(f, atypes[2:end], etype)
                    return quoted(val)
                end
            end
        end
    end

    return nothing
end

function late_inline_special_case!(ir::IRCode, idx::Int, stmt::Expr, atypes::Vector{Any}, @nospecialize(f), @nospecialize(ft))
    typ = ir.types[idx]
    if length(atypes) == 3 && istopfunction(f, :!==)
        # special-case inliner for !== that precedes _methods_by_ftype union splitting
        # and that works, even though inference generally avoids inferring the `!==` Method
        if isa(typ, Const)
            ir[SSAValue(idx)] = quoted(typ.val)
            return true
        end
        cmp_call = Expr(:call, GlobalRef(Core, :(===)), stmt.args[2], stmt.args[3])
        cmp_call_ssa = insert_node!(ir, idx, Bool, cmp_call)
        not_call = Expr(:call, GlobalRef(Core.Intrinsics, :not_int), cmp_call_ssa)
        ir[SSAValue(idx)] = not_call
        return true
    elseif length(atypes) == 3 && istopfunction(f, :(>:))
        # special-case inliner for issupertype
        # that works, even though inference generally avoids inferring the `>:` Method
        if isa(typ, Const)
            ir[SSAValue(idx)] = quoted(typ.val)
            return true
        end
        subtype_call = Expr(:call, GlobalRef(Core, :(<:)), stmt.args[3], stmt.args[2])
        ir[SSAValue(idx)] = subtype_call
        return true
    elseif f === return_type
        if isconstType(typ)
            ir[SSAValue(idx)] = quoted(typ.parameters[1])
            return true
        elseif isa(typ, Const)
            ir[SSAValue(idx)] = quoted(typ.val)
            return true
        end
    end
    return false
end

function ssa_substitute!(idx::Int, @nospecialize(val), arg_replacements::Vector{Any},
                         @nospecialize(spsig), spvals::Vector{Any},
                         linetable_offset::Int, boundscheck::Symbol, compact::IncrementalCompact)
    compact.result_flags[idx] &= ~IR_FLAG_INBOUNDS
    compact.result_lines[idx] += linetable_offset
    return ssa_substitute_op!(val, arg_replacements, spsig, spvals, boundscheck)
end

function ssa_substitute_op!(@nospecialize(val), arg_replacements::Vector{Any},
                            @nospecialize(spsig), spvals::Vector{Any}, boundscheck::Symbol)
    if isa(val, Argument)
        return arg_replacements[val.n]
    end
    if isa(val, Expr)
        e = val::Expr
        head = e.head
        if head === :static_parameter
            return quoted(spvals[e.args[1]])
        elseif head === :cfunction
            @assert !isa(spsig, UnionAll) || !isempty(spvals)
            e.args[3] = ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), e.args[3], spsig, spvals)
            e.args[4] = svec(Any[
                ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), argt, spsig, spvals)
                for argt
                in e.args[4] ]...)
        elseif head === :foreigncall
            @assert !isa(spsig, UnionAll) || !isempty(spvals)
            for i = 1:length(e.args)
                if i == 2
                    e.args[2] = ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), e.args[2], spsig, spvals)
                elseif i == 3
                    argtuple = Any[
                        ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), argt, spsig, spvals)
                        for argt
                        in e.args[3] ]
                    e.args[3] = svec(argtuple...)
                end
            end
        elseif head === :boundscheck
            if boundscheck === :off # inbounds == true
                return false
            elseif boundscheck === :propagate
                return e
            else # on or default
                return true
            end
        end
    end
    urs = userefs(val)
    for op in urs
        op[] = ssa_substitute_op!(op[], arg_replacements, spsig, spvals, boundscheck)
    end
    return urs[]
end

function find_inferred(linfo::MethodInstance, @nospecialize(atypes), sv::OptimizationState)
    # see if the method has a InferenceResult in the current cache
    # or an existing inferred code info store in `.inferred`
    haveconst = false
    for i in 1:length(atypes)
        a = atypes[i]
        if isa(a, Const) && !isdefined(typeof(a.val), :instance) && !(isa(a.val, Type) && issingletontype(a.val))
            # have new information from argtypes that wasn't available from the signature
            haveconst = true
            break
        end
    end
    if haveconst
        inf_result = cache_lookup(linfo, atypes, sv.params.cache) # Union{Nothing, InferenceResult}
    else
        inf_result = nothing
    end
    if isa(inf_result, InferenceResult)
        let inferred_src = inf_result.src
            if isa(inferred_src, CodeInfo)
                return svec(false, inferred_src)
            end
            if isa(inferred_src, Const) && is_inlineable_constant(inferred_src.val)
                add_backedge!(linfo, sv)
                return svec(true, quoted(inferred_src.val),)
            end
        end
    end
    if isdefined(linfo, :inferred)
        return svec(false, linfo.inferred)
    end
    return svec(false, nothing)
end