1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
mutable struct SlotInfo
defs::Vector{Int}
uses::Vector{Int}
any_newvar::Bool
end
SlotInfo() = SlotInfo(Int[], Int[], false)
function scan_entry!(result::Vector{SlotInfo}, idx::Int, @nospecialize(stmt))
# NewVarNodes count as defs for the purpose
# of liveness analysis (i.e. they kill use chains)
if isa(stmt, NewvarNode)
result[slot_id(stmt.slot)].any_newvar = true
push!(result[slot_id(stmt.slot)].defs, idx)
return
elseif isexpr(stmt, :(=))
if isa(stmt.args[1], SlotNumber)
push!(result[slot_id(stmt.args[1])].defs, idx)
end
stmt = stmt.args[2]
end
if isa(stmt, Union{SlotNumber, TypedSlot})
push!(result[slot_id(stmt)].uses, idx)
return
end
for op in userefs(stmt)
val = op[]
if isa(val, Union{SlotNumber, TypedSlot})
push!(result[slot_id(val)].uses, idx)
end
end
end
function lift_defuse(cfg::CFG, defuse)
map(defuse) do slot
SlotInfo(
Int[block_for_inst(cfg, x) for x in slot.defs],
Int[block_for_inst(cfg, x) for x in slot.uses],
slot.any_newvar
)
end
end
@inline slot_id(s) = isa(s, SlotNumber) ? (s::SlotNumber).id : (s::TypedSlot).id
function scan_slot_def_use(nargs::Int, ci::CodeInfo, code::Vector{Any})
nslots = length(ci.slotnames)
result = SlotInfo[SlotInfo() for i = 1:nslots]
# Set defs for arguments
for var in result[1:(1+nargs)]
push!(var.defs, 0)
end
for (idx, stmt) in Iterators.enumerate(code)
scan_entry!(result, idx, stmt)
end
result
end
function renumber_ssa(stmt::SSAValue, ssanums::Vector{Any}, new_ssa::Bool=false, used_ssa::Union{Nothing, Vector{Int}}=nothing)
id = stmt.id
if id > length(ssanums)
return stmt
end
val = ssanums[id]
if isa(val, SSAValue) && used_ssa !== nothing
used_ssa[val.id] += 1
end
return val
end
function renumber_ssa!(@nospecialize(stmt), ssanums::Vector{Any}, new_ssa::Bool=false, used_ssa::Union{Nothing, Vector{Int}}=nothing)
isa(stmt, SSAValue) && return renumber_ssa(stmt, ssanums, new_ssa, used_ssa)
return ssamap(val->renumber_ssa(val, ssanums, new_ssa, used_ssa), stmt)
end
function make_ssa!(ci::CodeInfo, code::Vector{Any}, idx, slot, @nospecialize(typ))
(idx == 0) && return Argument(slot)
stmt = code[idx]
@assert isexpr(stmt, :(=))
code[idx] = stmt.args[2]
ci.ssavaluetypes[idx] = typ
idx
end
struct UndefToken
end
const undef_token = UndefToken()
function new_to_regular(@nospecialize(stmt), new_offset::Int)
if isa(stmt, NewSSAValue)
return SSAValue(stmt.id + new_offset)
end
urs = userefs(stmt)
for op in urs
val = op[]
if isa(val, NewSSAValue)
op[] = SSAValue(val.id + new_offset)
end
end
return urs[]
end
function fixup_slot!(ir::IRCode, ci::CodeInfo, idx::Int, slot::Int, @nospecialize(stmt::Union{SlotNumber, TypedSlot}), @nospecialize(ssa))
# We don't really have the information here to get rid of these.
# We'll do so later
if ssa === undef_token
insert_node!(ir, idx, Any, Expr(:throw_undef_if_not, ci.slotnames[slot], false))
return undef_token
end
if !isa(ssa, Argument) && !(ssa === nothing) && ((ci.slotflags[slot] & SLOT_USEDUNDEF) != 0)
insert_node!(ir, idx, Any, Expr(:undefcheck, ci.slotnames[slot], ssa))
end
if isa(stmt, SlotNumber)
return ssa
elseif isa(stmt, TypedSlot)
return NewSSAValue(insert_node!(ir, idx, stmt.typ, PiNode(ssa, stmt.typ)).id - length(ir.stmts))
end
end
function fixemup!(cond, rename, ir::IRCode, ci::CodeInfo, idx::Int, @nospecialize(stmt))
if isa(stmt, Union{SlotNumber, TypedSlot}) && cond(stmt)
return fixup_slot!(ir, ci, idx, slot_id(stmt), stmt, rename(stmt))
end
if isexpr(stmt, :(=))
stmt.args[2] = fixemup!(cond, rename, ir, ci, idx, stmt.args[2])
return stmt
end
if isa(stmt, PhiNode)
for i = 1:length(stmt.edges)
isassigned(stmt.values, i) || continue
val = stmt.values[i]
isa(val, Union{SlotNumber, TypedSlot}) || continue
cond(val) || continue
bb_idx = block_for_inst(ir.cfg, stmt.edges[i])
from_bb_terminator = last(ir.cfg.blocks[bb_idx].stmts)
stmt.values[i] = fixup_slot!(ir, ci, from_bb_terminator, slot_id(val), val, rename(val))
end
return stmt
end
if isexpr(stmt, :isdefined)
val = stmt.args[1]
if isa(val, Union{SlotNumber, TypedSlot})
slot = slot_id(val)
if (ci.slotflags[slot] & SLOT_USEDUNDEF) == 0
return true
else
ssa = rename(val)
if ssa === undef_token
return false
elseif !isa(ssa, SSAValue) && !isa(ssa, NewSSAValue)
return true
end
end
stmt.args[1] = ssa
end
return stmt
end
urs = userefs(stmt)
for op in urs
val = op[]
if isa(val, Union{SlotNumber, TypedSlot}) && cond(val)
x = fixup_slot!(ir, ci, idx, slot_id(val), val, rename(val))
# We inserted an undef error node. Delete subsequent statement
# to avoid confusing the optimizer
if x === undef_token
return nothing
end
op[] = x
end
end
return urs[]
end
function fixup_uses!(ir::IRCode, ci::CodeInfo, code, uses::Vector{Int}, slot, @nospecialize(ssa))
for use in uses
code[use] = fixemup!(stmt->slot_id(stmt)==slot, stmt->ssa, ir, ci, use, code[use])
end
end
function rename_uses!(ir::IRCode, ci::CodeInfo, idx::Int, @nospecialize(stmt), renames::Vector{Any})
return fixemup!(stmt->true, stmt->renames[slot_id(stmt)], ir, ci, idx, stmt)
end
function strip_trailing_junk!(ci::CodeInfo, code::Vector{Any}, flags::Vector{UInt8})
# Remove `nothing`s at the end, we don't handle them well
# (we expect the last instruction to be a terminator)
for i = length(code):-1:1
if code[i] !== nothing
resize!(code, i)
resize!(ci.ssavaluetypes, i)
resize!(ci.codelocs, i)
resize!(flags, i)
break
end
end
# If the last instruction is not a terminator, add one. This can
# happen for implicit return on dead branches.
term = code[end]
if !isa(term, GotoIfNot) && !isa(term, GotoNode) && !isa(term, ReturnNode)
push!(code, ReturnNode())
push!(ci.ssavaluetypes, Union{})
push!(ci.codelocs, 0)
push!(flags, 0x00)
end
nothing
end
struct DelayedTyp
phi::NewSSAValue
end
# maybe use expr_type?
function typ_for_val(@nospecialize(x), ci::CodeInfo, spvals::SimpleVector, idx::Int, slottypes::Vector{Any})
if isa(x, Expr)
if x.head === :static_parameter
return sparam_type(spvals[x.args[1]])
elseif x.head === :boundscheck
return Bool
elseif x.head === :copyast
return typ_for_val(x.args[1], ci, spvals, idx, slottypes)
end
return ci.ssavaluetypes[idx]
end
isa(x, GlobalRef) && return abstract_eval_global(x.mod, x.name)
isa(x, SSAValue) && return ci.ssavaluetypes[x.id]
isa(x, Argument) && return slottypes[x.n]
isa(x, NewSSAValue) && return DelayedTyp(x)
isa(x, QuoteNode) && return Const(x.value)
isa(x, Union{Symbol, PiNode, PhiNode, SlotNumber, TypedSlot}) && error("unexpected val type")
return Const(x)
end
struct BlockLiveness
def_bbs::Vector{Int}
live_in_bbs::Vector{Int}
end
# Run iterated dominance frontier
#
# The algorithm we have here essentially follows LLVM, which itself is a
# a cleaned up version of the linear-time algorithm described in
#
# A Linear Time Algorithm for Placing phi-Nodes (by Sreedhar and Gao)
#
# The algorithm here, is quite straightforward. Suppose we have a CFG:
#
# A -> B -> D -> F
# \-> C -------/
#
# and a corresponding dominator tree:
#
# A
# |- B - D
# |- C
# |- F
#
# Now, for every definition of our slot, we simply walk down the dominator
# tree and look for any edges that leave the sub-domtree rooted by our definition.
#
# E.g. in our example above, if we have a definition in `B`, we look at its successors,
# which is only `D`, which is dominated by `B` and hence doesn't need a phi node.
# Then we descend down the subtree rooted at `B` and end up in `D`. `D` has a successor
# `F`, which is not part of the current subtree, (i.e. not dominated by `B`), so it
# needs a phi node.
#
# Now, the key insight of that algorithm is that we have two defs, in blocks `A` and `B`,
# and `A` dominates `B`, then we do not need to recurse into `B`, because the set of
# potential backedges from a subtree rooted at `B` (to outside the subtree) is a strict
# subset of those backedges from a subtree rooted at `A` (out outside the subtree rooted
# at `A`). Note however that this does not work the other way. Thus, the algorithm
# needs to make sure that we always visit `B` before `A`.
function idf(cfg::CFG, liveness::BlockLiveness, domtree::DomTree)
# This should be a priority queue, but TODO - sorted array for now
defs = liveness.def_bbs
pq = Tuple{Int, Int}[(defs[i], domtree.nodes[defs[i]].level) for i in 1:length(defs)]
sort!(pq, by=x->x[2])
phiblocks = Int[]
# This bitset makes sure we only add a phi node to a given block once.
processed = BitSet()
# This bitset implements the `key insight` mentioned above. In particular, it prevents
# us from visiting a subtree that we have already visited before.
visited = BitSet()
while !isempty(pq)
# We pop from the end of the array - i.e. the element with the highest level.
node, level = pop!(pq)
worklist = Int[]
push!(worklist, node)
while !isempty(worklist)
active = pop!(worklist)
for succ in cfg.blocks[active].succs
# Check whether the current root (`node`) dominates succ.
# We are guaranteed that `node` dominates `active`, since
# we've arrived at `active` by following dominator tree edges.
# If `succ`'s level is less than or equal to that of `node`,
# it cannot possibly be dominated by `node`. On the other hand,
# since at this point we know that there is an edge from `node`'s
# subtree to `succ`, we know that if succ's level is greater than
# that of `node`, it must be dominated by `node`.
succ_level = domtree.nodes[succ].level
succ_level > level && continue
# We don't dominate succ. We need to place a phinode,
# unless liveness said otherwise.
succ in processed && continue
push!(processed, succ)
if !(succ in liveness.live_in_bbs)
continue
end
push!(phiblocks, succ)
# Basically: Consider the phi node we just added another
# def of this value. N.B.: This needs to retain the invariant that it
# is processed before any of its parents in the dom tree. This is guaranteed,
# because succ_level <= level, which is the greatest level we have currently
# processed. Thus, we have not yet processed any subtrees of level < succ_level.
if !(succ in defs)
push!(pq, (succ, succ_level))
sort!(pq, by=x->x[2])
end
end
# Recurse down the current subtree
for child in domtree.nodes[active].children
child in visited && continue
push!(visited, child)
push!(worklist, child)
end
end
end
phiblocks
end
function rename_incoming_edge(old_edge, old_to, result_order, bb_rename)
new_edge_from = bb_rename[old_edge]
if old_edge == old_to - 1
# Could have been a crit edge break
if new_edge_from < length(result_order) && result_order[new_edge_from + 1] == 0
new_edge_from += 1
end
end
new_edge_from
end
function rename_outgoing_edge(old_to, old_from, result_order, bb_rename)
new_edge_to = bb_rename[old_to]
if old_from == old_to - 1
# Could have been a crit edge break
if bb_rename[old_from] < length(result_order) && result_order[bb_rename[old_from]+1] == 0
new_edge_to = bb_rename[old_from] + 1
end
end
new_edge_to
end
function rename_phinode_edges(node, bb, result_order, bb_rename)
new_values = Any[]
new_edges = Any[]
for (idx, edge) in pairs(node.edges)
(edge == 0 || haskey(bb_rename, edge)) || continue
new_edge_from = edge == 0 ? 0 : rename_incoming_edge(edge, bb, result_order, bb_rename)
push!(new_edges, new_edge_from)
if isassigned(node.values, idx)
push!(new_values, node.values[idx])
else
resize!(new_values, length(new_values)+1)
end
end
if length(new_edges) == 1
return isassigned(new_values, 1) ? new_values[1] : PhiNode(Any[], Any[])
else
return PhiNode(new_edges, new_values)
end
end
"""
Sort the basic blocks in `ir` into domtree order (i.e. if bb`` is higher in
the domtree than bb2, it will come first in the linear order). The resulting
ir has the property that a linear traversal of basic blocks will also be a
RPO traversal and in particular, any use of an SSA value must come after (by linear
order) its definition.
"""
function domsort_ssa!(ir::IRCode, domtree::DomTree)
# First compute the new order of basic blocks
result_order = Int[]
stack = Int[]
node = 1
ncritbreaks = 0
nnewfallthroughs = 0
while node !== -1
push!(result_order, node)
cs = domtree.nodes[node].children
terminator = ir.stmts[ir.cfg.blocks[node].stmts.last]
iscondbr = isa(terminator, GotoIfNot)
let old_node = node + 1
if length(cs) >= 1
# Adding the nodes in reverse sorted order attempts to retain
# the original source order of the nodes as much as possible.
# This is not required for correctness, but is easier on the humans
if old_node in cs
# Schedule the fall through node first,
# so we can retain the fall through
append!(stack, reverse(sort(filter(x -> (x != old_node), cs))))
node = node + 1
else
append!(stack, reverse(sort(cs)))
node = pop!(stack)
end
else
if isempty(stack)
node = -1
else
node = pop!(stack)
end
end
if node != old_node && !isa(terminator, Union{GotoNode, ReturnNode})
if isa(terminator, GotoIfNot)
# Need to break the critical edge
ncritbreaks += 1
push!(result_order, 0)
else
nnewfallthroughs += 1
end
end
end
end
bb_rename = IdDict{Int,Int}(i=>x for (x, i) in pairs(result_order) if i !== 0)
new_bbs = Vector{BasicBlock}(undef, length(result_order))
nstmts = 0
for i in result_order
if i !== 0
nstmts += length(ir.cfg.blocks[i].stmts)
end
end
result_stmts = Vector{Any}(undef, nstmts + ncritbreaks + nnewfallthroughs)
result_types = Any[Any for i = 1:length(result_stmts)]
result_ltable = fill(Int32(0), length(result_stmts))
result_flags = fill(0x00, length(result_stmts))
inst_rename = Vector{Any}(undef, length(ir.stmts))
for i = 1:length(ir.new_nodes)
push!(inst_rename, SSAValue(nstmts + i + ncritbreaks + nnewfallthroughs))
end
bb_start_off = 0
crit_edge_breaks_fixup = Tuple{Int, Int}[]
for (new_bb, bb) in pairs(result_order)
if bb == 0
@assert isa(result_stmts[bb_start_off+1], GotoNode)
# N.B.: The .label has already been renamed when it was created.
new_bbs[new_bb] = BasicBlock((bb_start_off+1):(bb_start_off+1), [new_bb-1], [result_stmts[bb_start_off+1].label])
bb_start_off += 1
continue
end
old_inst_range = ir.cfg.blocks[bb].stmts
inst_range = (bb_start_off+1):(bb_start_off+length(old_inst_range))
for (nidx, idx) in zip(inst_range, old_inst_range)
inst_rename[idx] = SSAValue(nidx)
stmt = ir.stmts[idx]
if isa(stmt, PhiNode)
result_stmts[nidx] = rename_phinode_edges(stmt, bb, result_order, bb_rename)
else
result_stmts[nidx] = stmt
end
result_types[nidx] = ir.types[idx]
result_ltable[nidx] = ir.lines[idx]
result_flags[nidx] = ir.flags[idx]
end
# Now fix up the terminator
terminator = result_stmts[inst_range[end]]
if isa(terminator, GotoNode)
# Convert to implicit fall through
if bb_rename[terminator.label] == new_bb + 1
result_stmts[inst_range[end]] = nothing
else
result_stmts[inst_range[end]] = GotoNode(bb_rename[terminator.label])
end
elseif isa(terminator, GotoIfNot)
# Check if we need to break the critical edge
if bb_rename[bb + 1] != new_bb + 1
@assert result_order[new_bb + 1] == 0
# Add an explicit goto node in the next basic block (we accounted for this above)
result_stmts[inst_range[end]+1] = GotoNode(bb_rename[bb+1])
end
result_stmts[inst_range[end]] = GotoIfNot(terminator.cond, bb_rename[terminator.dest])
elseif !isa(terminator, ReturnNode)
if isa(terminator, Expr) && terminator.head == :enter
terminator.args[1] = bb_rename[terminator.args[1]]
end
if bb_rename[bb + 1] != new_bb + 1
# Add an explicit goto node
result_stmts[inst_range[end]+1] = GotoNode(bb_rename[bb+1])
inst_range = first(inst_range):(last(inst_range)+1)
end
end
bb_start_off += length(inst_range)
local new_preds, new_succs
let bb = bb, bb_rename = bb_rename, result_order = result_order
new_preds = Int[rename_incoming_edge(i, bb, result_order, bb_rename) for i in ir.cfg.blocks[bb].preds if haskey(bb_rename, i)]
new_succs = Int[rename_outgoing_edge(i, bb, result_order, bb_rename) for i in ir.cfg.blocks[bb].succs if haskey(bb_rename, i)]
end
new_bbs[new_bb] = BasicBlock(inst_range, new_preds, new_succs)
end
result_stmts = Any[renumber_ssa!(result_stmts[i], inst_rename, true) for i in 1:length(result_stmts)]
cfg = CFG(new_bbs, Int[first(bb.stmts) for bb in new_bbs[2:end]])
new_new_nodes = Vector{NewNode}(undef, length(ir.new_nodes))
for i = 1:length(ir.new_nodes)
entry = ir.new_nodes[i]
new_new_nodes[i] = NewNode(inst_rename[entry.pos].id, entry.attach_after, entry.typ,
renumber_ssa!(isa(entry.node, PhiNode) ?
rename_phinode_edges(entry.node, block_for_inst(ir.cfg, entry.pos), result_order, bb_rename) : entry.node,
inst_rename, true),
entry.line)
end
new_ir = IRCode(ir, result_stmts, result_types, result_ltable, result_flags, cfg, new_new_nodes)
return new_ir
end
function compute_live_ins(cfg::CFG, defuse)
# We remove from `uses` any block where all uses are dominated
# by a def. This prevents insertion of dead phi nodes at the top
# of such a block if that block happens to be in a loop
ordered = Tuple{Int, Int, Bool}[(x, block_for_inst(cfg, x), true) for x in defuse.uses]
for x in defuse.defs
push!(ordered, (x, block_for_inst(cfg, x), false))
end
ordered = sort(ordered, by=x->x[1])
bb_defs = Int[]
bb_uses = Int[]
last_bb = last_def_bb = 0
for (_, bb, is_use) in ordered
if bb != last_bb && is_use
push!(bb_uses, bb)
end
last_bb = bb
if last_def_bb != bb && !is_use
push!(bb_defs, bb)
last_def_bb = bb
end
end
# To obtain live ins from bb_uses, recursively add predecessors
extra_liveins = BitSet()
worklist = Int[]
for bb in bb_uses
append!(worklist, filter(p->p != 0 && !(p in bb_defs), cfg.blocks[bb].preds))
end
while !isempty(worklist)
elem = pop!(worklist)
(elem in bb_uses || elem in extra_liveins) && continue
push!(extra_liveins, elem)
append!(worklist, filter(p->p != 0 && !(p in bb_defs), cfg.blocks[elem].preds))
end
append!(bb_uses, extra_liveins)
BlockLiveness(bb_defs, bb_uses)
end
function recompute_type(node::Union{PhiNode, PhiCNode}, ci::CodeInfo, ir::IRCode, spvals::SimpleVector, slottypes::Vector{Any})
new_typ = Union{}
for i = 1:length(node.values)
if isa(node, PhiNode) && !isassigned(node.values, i)
if !isa(new_typ, MaybeUndef)
new_typ = MaybeUndef(new_typ)
end
continue
end
typ = typ_for_val(node.values[i], ci, spvals, -1, slottypes)
was_maybe_undef = false
if isa(typ, MaybeUndef)
typ = typ.typ
was_maybe_undef = true
end
@assert !isa(typ, MaybeUndef)
while isa(typ, DelayedTyp)
typ = types(ir)[typ.phi::NewSSAValue]
end
new_typ = tmerge(new_typ, was_maybe_undef ? MaybeUndef(typ) : typ)
end
return new_typ
end
function construct_ssa!(ci::CodeInfo, code::Vector{Any}, ir::IRCode, domtree::DomTree, defuse, nargs::Int, spvals::SimpleVector,
slottypes::Vector{Any})
cfg = ir.cfg
left = Int[]
catch_entry_blocks = Tuple{Int, Int}[]
for (idx, stmt) in pairs(code)
if isexpr(stmt, :enter)
push!(catch_entry_blocks, (block_for_inst(cfg, idx), block_for_inst(cfg, stmt.args[1])))
end
end
exc_handlers = IdDict{Int, Int}()
# Record the correct exception handler for all cricitcal sections
for (enter_block, exc) in catch_entry_blocks
exc_handlers[enter_block+1] = exc
# TODO: Cut off here if the terminator is a leave corresponding to this enter
for block in dominated(domtree, enter_block+1)
exc_handlers[block] = exc
end
end
phi_slots = Vector{Int}[Vector{Int}() for _ = 1:length(ir.cfg.blocks)]
phi_nodes = Vector{Pair{NewSSAValue,PhiNode}}[Vector{Pair{NewSSAValue,PhiNode}}() for _ = 1:length(cfg.blocks)]
phi_ssas = SSAValue[]
phicnodes = IdDict{Int, Vector{Tuple{SlotNumber, NewSSAValue, PhiCNode}}}()
for (_, exc) in catch_entry_blocks
phicnodes[exc] = Vector{Tuple{SlotNumber, NewSSAValue, PhiCNode}}()
end
@timeit "idf" for (idx, slot) in Iterators.enumerate(defuse)
# No uses => no need for phi nodes
isempty(slot.uses) && continue
# TODO: Restore this optimization
if false # length(slot.defs) == 1 && slot.any_newvar
if slot.defs[] == 0
typ = slottypes[idx]
ssaval = Argument(idx)
fixup_uses!(ir, ci, code, slot.uses, idx, ssaval)
elseif isa(code[slot.defs[]], NewvarNode)
typ = MaybeUndef(Union{})
ssaval = nothing
for use in slot.uses[]
insert_node!(ir, use, Union{}, Expr(:throw_undef_if_not, ci.slotnames[idx], false))
end
fixup_uses!(ir, ci, code, slot.uses, idx, nothing)
else
val = code[slot.defs[]].args[2]
typ = typ_for_val(val, ci, spvals, slot.defs[], slottypes)
ssaval = SSAValue(make_ssa!(ci, code, slot.defs[], idx, typ))
fixup_uses!(ir, ci, code, slot.uses, idx, ssaval)
end
continue
end
@timeit "liveness" (live = compute_live_ins(cfg, slot))
for li in live.live_in_bbs
cidx = findfirst(x->x[2] == li, catch_entry_blocks)
if cidx !== nothing
# The slot is live-in into this block. We need to
# Create a PhiC node in the catch entry block and
# an upsilon node in the corresponding enter block
node = PhiCNode(Any[])
phic_ssa = NewSSAValue(insert_node!(ir, first_insert_for_bb(code, cfg, li), Union{}, node).id - length(ir.stmts))
push!(phicnodes[li], (SlotNumber(idx), phic_ssa, node))
# Inform IDF that we now have a def in the catch block
if !(li in live.def_bbs)
push!(live.def_bbs, li)
end
end
end
phiblocks = idf(cfg, live, domtree)
for block in phiblocks
push!(phi_slots[block], idx)
node = PhiNode()
ssa = NewSSAValue(insert_node!(ir, first_insert_for_bb(code, cfg, block), Union{}, node).id - length(ir.stmts))
push!(phi_nodes[block], ssa=>node)
end
push!(left, idx)
end
# Perform SSA renaming
initial_incoming_vals = Any[
if 0 in defuse[x].defs
Argument(x)
elseif !defuse[x].any_newvar
undef_token
else
SSAValue(-1)
end for x in 1:length(ci.slotnames)
]
worklist = Tuple{Int, Int, Vector{Any}}[(1, 0, initial_incoming_vals)]
visited = BitSet()
type_refine_phi = BitSet()
@timeit "SSA Rename" while !isempty(worklist)
(item, pred, incoming_vals) = pop!(worklist)
# Rename existing phi nodes first, because their uses occur on the edge
# TODO: This isn't necessary if inlining stops replacing arguments by slots.
for idx in cfg.blocks[item].stmts
stmt = code[idx]
if isexpr(stmt, :(=))
stmt = stmt.args[2]
end
isa(stmt, PhiNode) || continue
for (edgeidx, edge) in pairs(stmt.edges)
from_bb = edge == 0 ? 0 : block_for_inst(cfg, edge)
from_bb == pred || continue
isassigned(stmt.values, edgeidx) || break
stmt.values[edgeidx] = rename_uses!(ir, ci, edge, stmt.values[edgeidx], incoming_vals)
break
end
end
# Insert phi nodes if necessary
for (idx, slot) in Iterators.enumerate(phi_slots[item])
ssaval, node = phi_nodes[item][idx]
incoming_val = incoming_vals[slot]
if incoming_val == SSAValue(-1)
# Optimistically omit this path.
# Liveness analysis would probably have prevented us from inserting this phi node
continue
end
push!(node.edges, pred)
if incoming_val == undef_token
resize!(node.values, length(node.values)+1)
else
push!(node.values, incoming_val)
end
# TODO: Remove the next line, it shouldn't be necessary
push!(type_refine_phi, ssaval.id)
if isa(incoming_val, NewSSAValue)
push!(type_refine_phi, ssaval.id)
end
typ = incoming_val == undef_token ? MaybeUndef(Union{}) : typ_for_val(incoming_val, ci, spvals, -1, slottypes)
old_entry = ir.new_nodes[ssaval.id]
if isa(typ, DelayedTyp)
push!(type_refine_phi, ssaval.id)
end
new_typ = isa(typ, DelayedTyp) ? Union{} : tmerge(old_entry.typ, typ)
ir.new_nodes[ssaval.id] = NewNode(old_entry.pos, old_entry.attach_after, new_typ, node, old_entry.line)
incoming_vals[slot] = ssaval
end
(item in visited) && continue
# Record phi_C nodes if necessary
if haskey(phicnodes, item)
for (slot, ssa, _) in phicnodes[item]
incoming_vals[slot_id(slot)] = ssa
end
end
# Record initial upsilon nodes if necessary
eidx = findfirst(x->x[1] == item, catch_entry_blocks)
if eidx !== nothing
for (slot, _, node) in phicnodes[catch_entry_blocks[eidx][2]]
ivalundef = incoming_vals[slot_id(slot)] === undef_token
unode = ivalundef ? UpsilonNode() : UpsilonNode(incoming_vals[slot_id(slot)])
typ = ivalundef ? MaybeUndef(Union{}) : slottypes[slot_id(slot)]
push!(node.values,
NewSSAValue(insert_node!(ir, first_insert_for_bb(code, cfg, item),
typ, unode, true).id - length(ir.stmts)))
end
end
push!(visited, item)
for idx in cfg.blocks[item].stmts
stmt = code[idx]
(isa(stmt, PhiNode) || (isexpr(stmt, :(=)) && isa(stmt.args[2], PhiNode))) && continue
if isa(stmt, NewvarNode)
incoming_vals[slot_id(stmt.slot)] = undef_token
code[idx] = nothing
else
stmt = rename_uses!(ir, ci, idx, stmt, incoming_vals)
if stmt === nothing && isa(code[idx], Union{ReturnNode, GotoIfNot}) && idx == last(cfg.blocks[item].stmts)
# preserve the CFG
stmt = ReturnNode()
end
code[idx] = stmt
# Record a store
if isexpr(stmt, :(=)) && isa(stmt.args[1], SlotNumber)
id = slot_id(stmt.args[1])
val = stmt.args[2]
typ = typ_for_val(val, ci, spvals, idx, slottypes)
# Having undef_token appear on the RHS is possible if we're on a dead branch.
# Do something reasonable here, by marking the LHS as undef as well.
if val !== undef_token
incoming_vals[id] = SSAValue(make_ssa!(ci, code, idx, id, typ))
else
code[idx] = nothing
incoming_vals[id] = undef_token
end
if haskey(exc_handlers, item)
exc = exc_handlers[item]
cidx = findfirst(x->slot_id(x[1]) == id, phicnodes[exc])
if cidx !== nothing
node = UpsilonNode(incoming_vals[id])
if incoming_vals[id] === undef_token
node = UpsilonNode()
typ = MaybeUndef(Union{})
end
push!(phicnodes[exc][cidx][3].values,
NewSSAValue(insert_node!(ir, idx, typ, node, true).id - length(ir.stmts)))
end
end
end
end
end
for succ in cfg.blocks[item].succs
push!(worklist, (succ, item, copy(incoming_vals)))
end
end
# Delete any instruction in unreachable blocks (except for terminators)
for bb in setdiff(BitSet(1:length(cfg.blocks)), visited)
for idx in cfg.blocks[bb].stmts
if isa(code[idx], Union{GotoNode, GotoIfNot, ReturnNode})
code[idx] = ReturnNode()
else
code[idx] = nothing
end
end
end
# Convert into IRCode form
new_code = ir.stmts
ssavalmap = Any[SSAValue(-1) for _ in 1:(length(ci.ssavaluetypes)+1)]
result_types = Any[Any for _ in 1:length(new_code)]
# Detect statement positions for assignments and construct array
for (bb, idx) in bbidxiter(ir)
stmt = code[idx]
# Convert GotoNode/GotoIfNot/PhiNode to BB addressing
if isa(stmt, GotoNode)
new_code[idx] = GotoNode(block_for_inst(cfg, stmt.label))
elseif isa(stmt, GotoIfNot)
new_dest = block_for_inst(cfg, stmt.dest)
if new_dest == bb+1
# Drop this node - it's a noop
new_code[idx] = stmt.cond
else
new_code[idx] = GotoIfNot(stmt.cond, new_dest)
end
elseif isexpr(stmt, :enter)
new_code[idx] = Expr(:enter, block_for_inst(cfg, stmt.args[1]))
elseif isexpr(stmt, :leave) || isexpr(stmt, :(=)) || isexpr(stmt, :return) ||
isexpr(stmt, :meta) || isa(stmt, NewvarNode)
new_code[idx] = stmt
else
ssavalmap[idx] = SSAValue(idx)
result_types[idx] = ci.ssavaluetypes[idx]
if isa(stmt, PhiNode)
edges = Any[edge == 0 ? 0 : block_for_inst(cfg, edge) for edge in stmt.edges]
new_code[idx] = PhiNode(edges, stmt.values)
else
new_code[idx] = stmt
end
end
end
for (_, nodes) in phicnodes
for (_, ssa, node) in nodes
new_typ = Union{}
# TODO: This could just be the ones that depend on other phis
push!(type_refine_phi, ssa.id)
new_idx = ssa.id
node = ir.new_nodes[new_idx]
for i = 1:length(node.node.values)
orig_typ = typ = typ_for_val(node.node.values[i], ci, spvals, -1, slottypes)
@assert !isa(typ, MaybeUndef)
while isa(typ, DelayedTyp)
typ = types(ir)[typ.phi::NewSSAValue]
end
new_typ = tmerge(new_typ, typ)
end
ir.new_nodes[new_idx] = NewNode(node.pos, node.attach_after, new_typ, node.node, node.line)
end
end
# This is a bit awkward, because it basically duplicates what type
# inference does. Ideally, we'd just use this representation earlier
# to make sure phi nodes have accurate types
changed = true
while changed
changed = false
for new_idx in type_refine_phi
node = ir.new_nodes[new_idx]
new_typ = recompute_type(node.node, ci, ir, spvals, slottypes)
if !(node.typ ⊑ new_typ) || !(new_typ ⊑ node.typ)
ir.new_nodes[new_idx] = NewNode(node.pos, node.attach_after, new_typ, node.node, node.line)
changed = true
end
end
end
result_types = Any[isa(result_types[i], DelayedTyp) ? types(ir)[result_types[i].phi::NewSSAValue] : result_types[i] for i in 1:length(result_types)]
new_nodes = NewNode[let node = ir.new_nodes[i]
typ = isa(node.typ, DelayedTyp) ? types(ir)[node.typ.phi::NewSSAValue] : node.typ
NewNode(node.pos, node.attach_after, typ, node.node, node.line)
end for i in 1:length(ir.new_nodes)]
# Renumber SSA values
new_code = Any[new_to_regular(renumber_ssa!(new_code[i], ssavalmap), length(ir.stmts)) for i in 1:length(new_code)]
new_nodes = NewNode[let node = new_nodes[i]
NewNode(node.pos, node.attach_after, node.typ,
new_to_regular(renumber_ssa!(node.node, ssavalmap), length(ir.stmts)),
node.line)
end for i in 1:length(new_nodes)]
ir = IRCode(ir, new_code, result_types, ir.lines, ir.flags, ir.cfg, new_nodes)
@timeit "domsort" ir = domsort_ssa!(ir, domtree)
return ir
end
|