File: typelimits.jl

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (461 lines) | stat: -rw-r--r-- 20,211 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# This file is a part of Julia. License is MIT: https://julialang.org/license

#########################
# limitation parameters #
#########################

const MAX_TYPEUNION_COMPLEXITY = 3
const MAX_INLINE_CONST_SIZE = 256

#########################
# limitation heuristics #
#########################

# limit the complexity of type `t` to be simpler than the comparison type `compare`
# no new values may be introduced, so the parameter `source` encodes the set of all values already present
# the outermost tuple type is permitted to have up to `allowed_tuplelen` parameters
function limit_type_size(@nospecialize(t), @nospecialize(compare), @nospecialize(source), allowed_tupledepth::Int, allowed_tuplelen::Int)
    source = svec(unwrap_unionall(compare), unwrap_unionall(source))
    source[1] === source[2] && (source = svec(source[1]))
    type_more_complex(t, compare, source, 1, allowed_tupledepth, allowed_tuplelen) || return t
    r = _limit_type_size(t, compare, source, 1, allowed_tuplelen)
    @assert t <: r
    #@assert r === _limit_type_size(r, t, source) # this monotonicity constraint is slightly stronger than actually required,
      # since we only actually need to demonstrate that repeated application would reaches a fixed point,
      #not that it is already at the fixed point
    return r
end

# try to find `type` somewhere in `comparison` type
# at a minimum nesting depth of `mindepth`
function is_derived_type(@nospecialize(t), @nospecialize(c), mindepth::Int)
    if t === c
        return mindepth <= 1
    end
    if isa(c, Union)
        # see if it is one of the elements of the union
        return is_derived_type(t, c.a, mindepth) || is_derived_type(t, c.b, mindepth)
    elseif isa(c, UnionAll)
        # see if it is derived from the body
        # also handle the var here, since this construct bounds the mindepth to the smallest possible value
        return is_derived_type(t, c.var.ub, mindepth) || is_derived_type(t, c.body, mindepth)
    elseif isa(c, DataType)
        if mindepth > 0
            mindepth -= 1
        end
        if isa(t, DataType)
            # see if it is one of the supertypes of a parameter
            super = supertype(c)
            while super !== Any
                t === super && return true
                super = supertype(super)
            end
        end
        # see if it was extracted from a type parameter
        cP = c.parameters
        for p in cP
            is_derived_type(t, p, mindepth) && return true
        end
        if isconcretetype(c) && isbitstype(c)
            # see if it was extracted from a fieldtype
            # however, only look through types that can be inlined
            # to ensure monotonicity of derivation
            # since we know that for immutable, concrete, bits types,
            # the field types must have been constructed prior to the type,
            # it cannot have a reference cycle in the type graph
            cF = c.types
            for f in cF
                is_derived_type(t, f, mindepth) && return true
            end
        end
    end
    return false
end

function is_derived_type_from_any(@nospecialize(t), sources::SimpleVector, mindepth::Int)
    for s in sources
        is_derived_type(t, s, mindepth) && return true
    end
    return false
end

# The goal of this function is to return a type of greater "size" and less "complexity" than
# both `t` or `c` over the lattice defined by `sources`, `depth`, and `allowed_tuplelen`.
function _limit_type_size(@nospecialize(t), @nospecialize(c), sources::SimpleVector, depth::Int, allowed_tuplelen::Int)
    if t === c
        return t # quick egal test
    elseif t === Union{}
        return t # easy case
    elseif isa(t, DataType) && isempty(t.parameters)
        return t # fast path: unparameterized are always simple
    elseif isa(unwrap_unionall(t), DataType) && isa(c, Type) && c !== Union{} && c <: t
        return t # t is already wider than the comparison in the type lattice
    elseif is_derived_type_from_any(unwrap_unionall(t), sources, depth)
        return t # t isn't something new
    end
    # peel off (and ignore) wrappers - they contribute no useful information, so we don't need to consider their size
    # first attempt to turn `c` into a type that contributes meaningful information
    # by peeling off meaningless non-matching wrappers of comparison one at a time
    # then unwrap `t`
    if isa(c, TypeVar)
        if isa(t, TypeVar) && t.ub === c.ub && (t.lb === Union{} || t.lb === c.lb)
            return t # it's ok to change the name, or widen `lb` to Union{}, so we can handle this immediately here
        end
        return _limit_type_size(t, c.ub, sources, depth, allowed_tuplelen)
    end
    if isa(c, UnionAll)
        return _limit_type_size(t, c.body, sources, depth, allowed_tuplelen)
    end
    if isa(t, UnionAll)
        tbody = _limit_type_size(t.body, c, sources, depth, allowed_tuplelen)
        tbody === t.body && return t
        return UnionAll(t.var, tbody)
    elseif isa(t, TypeVar)
        # don't have a matching TypeVar in comparison, so we keep just the upper bound
        return _limit_type_size(t.ub, c, sources, depth, allowed_tuplelen)
    elseif isa(t, Union)
        if isa(c, Union)
            a = _limit_type_size(t.a, c.a, sources, depth, allowed_tuplelen)
            b = _limit_type_size(t.b, c.b, sources, depth, allowed_tuplelen)
            return Union{a, b}
        end
    elseif isa(t, DataType)
        if isa(c, DataType)
            tP = t.parameters
            cP = c.parameters
            if t.name === c.name && !isempty(cP)
                if isvarargtype(t)
                    VaT = _limit_type_size(tP[1], cP[1], sources, depth + 1, 0)
                    N = tP[2]
                    if isa(N, TypeVar) || N === cP[2]
                        return Vararg{VaT, N}
                    end
                    return Vararg{VaT}
                elseif t.name === Tuple.name
                    # for covariant datatypes (Tuple),
                    # apply type-size limit element-wise
                    ltP = length(tP)
                    lcP = length(cP)
                    np = min(ltP, max(lcP, allowed_tuplelen))
                    Q = Any[ tP[i] for i in 1:np ]
                    if ltP > np
                        # combine tp[np:end] into tP[np] using Vararg
                        Q[np] = tuple_tail_elem(Bottom, Any[ tP[i] for i in np:ltP ])
                    end
                    for i = 1:np
                        # now apply limit element-wise to Q
                        # padding out the comparison as needed to allowed_tuplelen elements
                        if i <= lcP
                            cPi = cP[i]
                        elseif isvarargtype(cP[lcP])
                            cPi = cP[lcP]
                        else
                            cPi = Any
                        end
                        Q[i] = _limit_type_size(Q[i], cPi, sources, depth + 1, 0)
                    end
                    return Tuple{Q...}
                end
            elseif isvarargtype(c)
                # Tuple{Vararg{T}} --> Tuple{T} is OK
                return _limit_type_size(t, cP[1], sources, depth, 0)
            end
        end
        if isType(t) # allow taking typeof as Type{...}, but ensure it doesn't start nesting
            tt = unwrap_unionall(t.parameters[1])
            if isa(tt, DataType) && !isType(tt)
                is_derived_type_from_any(tt, sources, depth) && return t
            end
        end
        if isvarargtype(t)
            # never replace Vararg with non-Vararg
            return Vararg
        end
        if allowed_tuplelen < 1 && t.name === Tuple.name
            return Any
        end
        widert = t.name.wrapper
        if !(t <: widert)
            # This can happen when a typevar has bounds too wide for its context, e.g.
            # `Complex{T} where T` is not a subtype of `Complex`. In that case widen even
            # faster to something safe to ensure the result is a supertype of the input.
            return Any
        end
        return widert
    end
    return Any
end

function type_more_complex(@nospecialize(t), @nospecialize(c), sources::SimpleVector, depth::Int, tupledepth::Int, allowed_tuplelen::Int)
    # detect cases where the comparison is trivial
    if t === c
        return false
    elseif t === Union{}
        return false # Bottom is as simple as they come
    elseif isa(t, DataType) && isempty(t.parameters)
        return false # fastpath: unparameterized types are always finite
    elseif tupledepth > 0 && isa(unwrap_unionall(t), DataType) && isa(c, Type) && c !== Union{} && c <: t
        return false # t is already wider than the comparison in the type lattice
    elseif tupledepth > 0 && is_derived_type_from_any(unwrap_unionall(t), sources, depth)
        return false # t isn't something new
    end
    # peel off wrappers
    if isa(c, UnionAll)
        # allow wrapping type with fewer UnionAlls than comparison if in a covariant context
        if !isa(t, UnionAll) && tupledepth == 0
            return true
        end
        t = unwrap_unionall(t)
        c = unwrap_unionall(c)
    end
    # rules for various comparison types
    if isa(c, TypeVar)
        tupledepth = 1 # allow replacing a TypeVar with a concrete value (since we know the UnionAll must be in covariant position)
        if isa(t, TypeVar)
            return !(t.lb === Union{} || t.lb === c.lb) || # simplify lb towards Union{}
                   type_more_complex(t.ub, c.ub, sources, depth + 1, tupledepth, 0)
        end
        c.lb === Union{} || return true
        return type_more_complex(t, c.ub, sources, depth, tupledepth, 0)
    elseif isa(c, Union)
        if isa(t, Union)
            return type_more_complex(t.a, c.a, sources, depth, tupledepth, allowed_tuplelen) ||
                   type_more_complex(t.b, c.b, sources, depth, tupledepth, allowed_tuplelen)
        end
        return type_more_complex(t, c.a, sources, depth, tupledepth, allowed_tuplelen) &&
               type_more_complex(t, c.b, sources, depth, tupledepth, allowed_tuplelen)
    elseif isa(t, Int) && isa(c, Int)
        return t !== 1 && !(0 <= t < c) # alternatively, could use !(abs(t) <= abs(c) || abs(t) < n) for some n
    end
    # base case for data types
    if isa(t, DataType)
        tP = t.parameters
        if isa(c, DataType) && t.name === c.name
            cP = c.parameters
            length(cP) < length(tP) && return true
            ntail = length(cP) - length(tP) # assume parameters were dropped from the tuple head
            # allow creating variation within a nested tuple, but only so deep
            if t.name === Tuple.name && tupledepth > 0
                tupledepth -= 1
            elseif !isvarargtype(t)
                tupledepth = 0
            end
            isgenerator = (t.name.name === :Generator && t.name.module === _topmod(t.name.module))
            for i = 1:length(tP)
                tPi = tP[i]
                cPi = cP[i + ntail]
                if isgenerator
                    let tPi = unwrap_unionall(tPi),
                        cPi = unwrap_unionall(cPi)
                        if isa(tPi, DataType) && isa(cPi, DataType) &&
                                !tPi.abstract && !cPi.abstract &&
                                sym_isless(cPi.name.name, tPi.name.name)
                            # allow collect on (anonymous) Generators to nest, provided that their functions are appropriately ordered
                            # TODO: is there a better way?
                            continue
                        end
                    end
                end
                type_more_complex(tPi, cPi, sources, depth + 1, tupledepth, 0) && return true
            end
            return false
        elseif isvarargtype(c)
            return type_more_complex(t, unwrapva(c), sources, depth, tupledepth, 0)
        end
        if isType(t) # allow taking typeof any source type anywhere as Type{...}, as long as it isn't nesting Type{Type{...}}
            tt = unwrap_unionall(t.parameters[1])
            if isa(tt, DataType) && !isType(tt)
                is_derived_type_from_any(tt, sources, depth) || return true
                return false
            end
        end
    end
    return true
end

# pick a wider type that contains both typea and typeb,
# with some limits on how "large" it can get,
# but without losing too much precision in common cases
# and also trying to be mostly associative and commutative
function tmerge(@nospecialize(typea), @nospecialize(typeb))
    typea ⊑ typeb && return typeb
    typeb ⊑ typea && return typea
    # type-lattice for MaybeUndef wrapper
    if isa(typea, MaybeUndef) || isa(typeb, MaybeUndef)
        return MaybeUndef(tmerge(
            isa(typea, MaybeUndef) ? typea.typ : typea,
            isa(typeb, MaybeUndef) ? typeb.typ : typeb))
    end
    # type-lattice for Conditional wrapper
    if isa(typea, Conditional) && isa(typeb, Const)
        if typeb.val === true
            typeb = Conditional(typea.var, Any, Union{})
        elseif typeb.val === false
            typeb = Conditional(typea.var, Union{}, Any)
        end
    end
    if isa(typeb, Conditional) && isa(typea, Const)
        if typea.val === true
            typea = Conditional(typeb.var, Any, Union{})
        elseif typea.val === false
            typea = Conditional(typeb.var, Union{}, Any)
        end
    end
    if isa(typea, Conditional) && isa(typeb, Conditional)
        if typea.var === typeb.var
            vtype = tmerge(typea.vtype, typeb.vtype)
            elsetype = tmerge(typea.elsetype, typeb.elsetype)
            if vtype != elsetype
                return Conditional(typea.var, vtype, elsetype)
            end
        end
        val = maybe_extract_const_bool(typea)
        if val isa Bool && val === maybe_extract_const_bool(typeb)
            return Const(val)
        end
        return Bool
    end
    # no special type-inference lattice, join the types
    typea, typeb = widenconst(typea), widenconst(typeb)
    typea === typeb && return typea
    if !(isa(typea, Type) || isa(typea, TypeVar)) ||
       !(isa(typeb, Type) || isa(typeb, TypeVar))
        # XXX: this should never happen
        return Any
    end
    # it's always ok to form a Union of two concrete types
    if (isconcretetype(typea) || isType(typea)) && (isconcretetype(typeb) || isType(typeb))
        return Union{typea, typeb}
    end
    # collect the list of types from past tmerge calls returning Union
    # and then reduce over that list
    types = Any[]
    _uniontypes(typea, types)
    _uniontypes(typeb, types)
    typenames = Vector{Core.TypeName}(undef, length(types))
    for i in 1:length(types)
        # check that we will be able to analyze (and simplify) everything
        # bail if everything isn't a well-formed DataType
        ti = types[i]
        uw = unwrap_unionall(ti)
        (uw isa DataType && ti <: uw.name.wrapper) || return Any
        typenames[i] = uw.name
    end
    # see if any of the union elements have the same TypeName
    # in which case, simplify this tmerge by replacing it with
    # the widest possible version of itself (the wrapper)
    for i in 1:length(types)
        ti = types[i]
        for j in (i + 1):length(types)
            if typenames[i] === typenames[j]
                tj = types[j]
                if ti <: tj
                    types[i] = Union{}
                    break
                elseif tj <: ti
                    types[j] = Union{}
                    typenames[j] = Any.name
                else
                    if typenames[i] === Tuple.name
                        # try to widen Tuple slower: make a single non-concrete Tuple containing both
                        # converge the Tuple element-wise if they are the same length
                        # see 4ee2b41552a6bc95465c12ca66146d69b354317b, be59686f7613a2ccfd63491c7b354d0b16a95c05,
                        widen = tuplemerge(unwrap_unionall(ti)::DataType, unwrap_unionall(tj)::DataType)
                        widen = rewrap_unionall(rewrap_unionall(widen, ti), tj)
                    else
                        widen = typenames[i].wrapper
                    end
                    types[i] = Union{}
                    types[j] = widen
                    break
                end
            end
        end
    end
    u = Union{types...}
    if unioncomplexity(u) <= MAX_TYPEUNION_COMPLEXITY
        # don't let type unions get too big, if the above didn't reduce it enough
        return u
    end
    # finally, just return the widest possible type
    return Any
end

# the inverse of switchtupleunion, with limits on max element union size
function tuplemerge(a::DataType, b::DataType)
    @assert a.name === b.name === Tuple.name "assertion failure"
    ap, bp = a.parameters, b.parameters
    lar = length(ap)::Int
    lbr = length(bp)::Int
    va = lar > 0 && isvarargtype(ap[lar])
    vb = lbr > 0 && isvarargtype(bp[lbr])
    if lar == lbr && !va && !vb
        lt = lar
        vt = false
    else
        lt = 0 # or min(lar - va, lbr - vb)
        vt = true
    end
    # combine the common elements
    p = Vector{Any}(undef, lt + vt)
    for i = 1:lt
        ui = Union{ap[i], bp[i]}
        if unioncomplexity(ui) < MAX_TYPEUNION_COMPLEXITY
            p[i] = ui
        else
            p[i] = Any
        end
    end
    # merge the remaining tail into a single, simple Tuple{Vararg{T}} (#22120)
    if vt
        tail = Union{}
        for loop_b = (false, true)
            for i = (lt + 1):(loop_b ? lbr : lar)
                ti = unwrapva(loop_b ? bp[i] : ap[i])
                while ti isa TypeVar
                    ti = ti.ub
                end
                # compare (ti <-> tail), (wrapper ti <-> tail), (ti <-> wrapper tail), then (wrapper ti <-> wrapper tail)
                # until we find the first element that contains the other in the pair
                # TODO: this result would be more stable (and more associative and more commutative)
                #   if we either joined all of the element wrappers first into a wide-tail, then picked between that or an exact tail,
                #   or (equivalently?) iteratively took super-types until reaching a common wrapper
                #   e.g. consider the results of `tuplemerge(Tuple{Complex}, Tuple{Number, Int})` and of
                #   `tuplemerge(Tuple{Int}, Tuple{String}, Tuple{Int, String})`
                if !(ti <: tail)
                    if tail <: ti
                        tail = ti # widen to ti
                    else
                        uw = unwrap_unionall(tail)
                        if uw isa DataType && tail <: uw.name.wrapper
                            # widen tail to wrapper(tail)
                            tail = uw.name.wrapper
                            if !(ti <: tail)
                                #assert !(tail <: ti)
                                uw = unwrap_unionall(ti)
                                if uw isa DataType && ti <: uw.name.wrapper
                                    # widen ti to wrapper(ti)
                                    ti = uw.name.wrapper
                                    #assert !(ti <: tail)
                                    if tail <: ti
                                        tail = ti
                                    else
                                        tail = Any # couldn't find common super-type
                                    end
                                else
                                    tail = Any # couldn't analyze type
                                end
                            end
                        else
                            tail = Any # couldn't analyze type
                        end
                    end
                end
                tail === Any && return Tuple # short-circuit loop
            end
        end
        @assert !(tail === Union{})
        p[lt + 1] = Vararg{tail}
    end
    return Tuple{p...}
end