1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Complex{T<:Real} <: Number
Complex number type with real and imaginary part of type `T`.
`ComplexF16`, `ComplexF32` and `ComplexF64` are aliases for
`Complex{Float16}`, `Complex{Float32}` and `Complex{Float64}` respectively.
"""
struct Complex{T<:Real} <: Number
re::T
im::T
end
Complex(x::Real, y::Real) = Complex(promote(x,y)...)
Complex(x::Real) = Complex(x, zero(x))
"""
im
The imaginary unit.
# Examples
```jldoctest
julia> im * im
-1 + 0im
```
"""
const im = Complex(false, true)
const ComplexF64 = Complex{Float64}
const ComplexF32 = Complex{Float32}
const ComplexF16 = Complex{Float16}
Complex{T}(x::Real) where {T<:Real} = Complex{T}(x,0)
Complex{T}(z::Complex) where {T<:Real} = Complex{T}(real(z),imag(z))
(::Type{T})(z::Complex) where {T<:Real} =
isreal(z) ? T(real(z))::T : throw(InexactError(Symbol(string(T)), T, z))
Complex(z::Complex) = z
promote_rule(::Type{Complex{T}}, ::Type{S}) where {T<:Real,S<:Real} =
Complex{promote_type(T,S)}
promote_rule(::Type{Complex{T}}, ::Type{Complex{S}}) where {T<:Real,S<:Real} =
Complex{promote_type(T,S)}
widen(::Type{Complex{T}}) where {T} = Complex{widen(T)}
float(::Type{Complex{T}}) where {T<:AbstractFloat} = Complex{T}
float(::Type{Complex{T}}) where {T} = Complex{float(T)}
"""
real(z)
Return the real part of the complex number `z`.
# Examples
```jldoctest
julia> real(1 + 3im)
1
```
"""
real(z::Complex) = z.re
"""
imag(z)
Return the imaginary part of the complex number `z`.
# Examples
```jldoctest
julia> imag(1 + 3im)
3
```
"""
imag(z::Complex) = z.im
real(x::Real) = x
imag(x::Real) = zero(x)
"""
reim(z)
Return both the real and imaginary parts of the complex number `z`.
# Examples
```jldoctest
julia> reim(1 + 3im)
(1, 3)
```
"""
reim(z) = (real(z), imag(z))
"""
real(T::Type)
Return the type that represents the real part of a value of type `T`.
e.g: for `T == Complex{R}`, returns `R`.
Equivalent to `typeof(real(zero(T)))`.
# Examples
```jldoctest
julia> real(Complex{Int})
Int64
julia> real(Float64)
Float64
```
"""
real(T::Type) = typeof(real(zero(T)))
real(::Type{T}) where {T<:Real} = T
real(::Type{Complex{T}}) where {T<:Real} = T
"""
isreal(x) -> Bool
Test whether `x` or all its elements are numerically equal to some real number
including infinities and NaNs. `isreal(x)` is true if `isequal(x, real(x))`
is true.
# Examples
```jldoctest
julia> isreal(5.)
true
julia> isreal(Inf + 0im)
true
julia> isreal([4.; complex(0,1)])
false
```
"""
isreal(x::Real) = true
isreal(z::Complex) = iszero(imag(z))
isinteger(z::Complex) = isreal(z) & isinteger(real(z))
isfinite(z::Complex) = isfinite(real(z)) & isfinite(imag(z))
isnan(z::Complex) = isnan(real(z)) | isnan(imag(z))
isinf(z::Complex) = isinf(real(z)) | isinf(imag(z))
iszero(z::Complex) = iszero(real(z)) & iszero(imag(z))
isone(z::Complex) = isone(real(z)) & iszero(imag(z))
"""
complex(r, [i])
Convert real numbers or arrays to complex. `i` defaults to zero.
# Examples
```jldoctest
julia> complex(7)
7 + 0im
julia> complex([1, 2, 3])
3-element Array{Complex{Int64},1}:
1 + 0im
2 + 0im
3 + 0im
```
"""
complex(z::Complex) = z
complex(x::Real) = Complex(x)
complex(x::Real, y::Real) = Complex(x, y)
"""
complex(T::Type)
Return an appropriate type which can represent a value of type `T` as a complex number.
Equivalent to `typeof(complex(zero(T)))`.
# Examples
```jldoctest
julia> complex(Complex{Int})
Complex{Int64}
julia> complex(Int)
Complex{Int64}
```
"""
complex(::Type{T}) where {T<:Real} = Complex{T}
complex(::Type{Complex{T}}) where {T<:Real} = Complex{T}
flipsign(x::Complex, y::Real) = ifelse(signbit(y), -x, x)
function show(io::IO, z::Complex)
r, i = reim(z)
compact = get(io, :compact, false)
show(io, r)
if signbit(i) && !isnan(i)
i = -i
print(io, compact ? "-" : " - ")
else
print(io, compact ? "+" : " + ")
end
show(io, i)
if !(isa(i,Integer) && !isa(i,Bool) || isa(i,AbstractFloat) && isfinite(i))
print(io, "*")
end
print(io, "im")
end
show(io::IO, z::Complex{Bool}) =
print(io, z == im ? "im" : "Complex($(z.re),$(z.im))")
function show_unquoted(io::IO, z::Complex, ::Int, prec::Int)
if operator_precedence(:+) <= prec
print(io, "(")
show(io, z)
print(io, ")")
else
show(io, z)
end
end
function read(s::IO, ::Type{Complex{T}}) where T<:Real
r = read(s,T)
i = read(s,T)
Complex{T}(r,i)
end
function write(s::IO, z::Complex)
write(s,real(z),imag(z))
end
## byte order swaps: real and imaginary part are swapped individually
bswap(z::Complex) = Complex(bswap(real(z)), bswap(imag(z)))
## equality and hashing of complex numbers ##
==(z::Complex, w::Complex) = (real(z) == real(w)) & (imag(z) == imag(w))
==(z::Complex, x::Real) = isreal(z) && real(z) == x
==(x::Real, z::Complex) = isreal(z) && real(z) == x
isequal(z::Complex, w::Complex) = isequal(real(z),real(w)) & isequal(imag(z),imag(w))
in(x::Complex, r::AbstractRange{<:Real}) = isreal(x) && real(x) in r
if UInt === UInt64
const h_imag = 0x32a7a07f3e7cd1f9
else
const h_imag = 0x3e7cd1f9
end
const hash_0_imag = hash(0, h_imag)
function hash(z::Complex, h::UInt)
# TODO: with default argument specialization, this would be better:
# hash(real(z), h ⊻ hash(imag(z), h ⊻ h_imag) ⊻ hash(0, h ⊻ h_imag))
hash(real(z), h ⊻ hash(imag(z), h_imag) ⊻ hash_0_imag)
end
## generic functions of complex numbers ##
"""
conj(z)
Compute the complex conjugate of a complex number `z`.
# Examples
```jldoctest
julia> conj(1 + 3im)
1 - 3im
```
"""
conj(z::Complex) = Complex(real(z),-imag(z))
abs(z::Complex) = hypot(real(z), imag(z))
abs2(z::Complex) = real(z)*real(z) + imag(z)*imag(z)
inv(z::Complex) = conj(z)/abs2(z)
inv(z::Complex{<:Integer}) = inv(float(z))
-(z::Complex) = Complex(-real(z), -imag(z))
+(z::Complex, w::Complex) = Complex(real(z) + real(w), imag(z) + imag(w))
-(z::Complex, w::Complex) = Complex(real(z) - real(w), imag(z) - imag(w))
*(z::Complex, w::Complex) = Complex(real(z) * real(w) - imag(z) * imag(w),
real(z) * imag(w) + imag(z) * real(w))
muladd(z::Complex, w::Complex, x::Complex) =
Complex(muladd(real(z), real(w), real(x)) - imag(z)*imag(w), # TODO: use mulsub given #15985
muladd(real(z), imag(w), muladd(imag(z), real(w), imag(x))))
# handle Bool and Complex{Bool}
# avoid type signature ambiguity warnings
+(x::Bool, z::Complex{Bool}) = Complex(x + real(z), imag(z))
+(z::Complex{Bool}, x::Bool) = Complex(real(z) + x, imag(z))
-(x::Bool, z::Complex{Bool}) = Complex(x - real(z), - imag(z))
-(z::Complex{Bool}, x::Bool) = Complex(real(z) - x, imag(z))
*(x::Bool, z::Complex{Bool}) = Complex(x * real(z), x * imag(z))
*(z::Complex{Bool}, x::Bool) = Complex(real(z) * x, imag(z) * x)
+(x::Bool, z::Complex) = Complex(x + real(z), imag(z))
+(z::Complex, x::Bool) = Complex(real(z) + x, imag(z))
-(x::Bool, z::Complex) = Complex(x - real(z), - imag(z))
-(z::Complex, x::Bool) = Complex(real(z) - x, imag(z))
*(x::Bool, z::Complex) = Complex(x * real(z), x * imag(z))
*(z::Complex, x::Bool) = Complex(real(z) * x, imag(z) * x)
+(x::Real, z::Complex{Bool}) = Complex(x + real(z), imag(z))
+(z::Complex{Bool}, x::Real) = Complex(real(z) + x, imag(z))
function -(x::Real, z::Complex{Bool})
# we don't want the default type for -(Bool)
re = x-real(z)
Complex(re, - oftype(re, imag(z)))
end
-(z::Complex{Bool}, x::Real) = Complex(real(z) - x, imag(z))
*(x::Real, z::Complex{Bool}) = Complex(x * real(z), x * imag(z))
*(z::Complex{Bool}, x::Real) = Complex(real(z) * x, imag(z) * x)
# adding or multiplying real & complex is common
+(x::Real, z::Complex) = Complex(x + real(z), imag(z))
+(z::Complex, x::Real) = Complex(x + real(z), imag(z))
function -(x::Real, z::Complex)
# we don't want the default type for -(Bool)
re = x - real(z)
Complex(re, - oftype(re, imag(z)))
end
-(z::Complex, x::Real) = Complex(real(z) - x, imag(z))
*(x::Real, z::Complex) = Complex(x * real(z), x * imag(z))
*(z::Complex, x::Real) = Complex(x * real(z), x * imag(z))
muladd(x::Real, z::Complex, y::Number) = muladd(z, x, y)
muladd(z::Complex, x::Real, y::Real) = Complex(muladd(real(z),x,y), imag(z)*x)
muladd(z::Complex, x::Real, w::Complex) =
Complex(muladd(real(z),x,real(w)), muladd(imag(z),x,imag(w)))
muladd(x::Real, y::Real, z::Complex) = Complex(muladd(x,y,real(z)), imag(z))
muladd(z::Complex, w::Complex, x::Real) =
Complex(muladd(real(z), real(w), x) - imag(z)*imag(w), # TODO: use mulsub given #15985
muladd(real(z), imag(w), imag(z) * real(w)))
/(a::R, z::S) where {R<:Real,S<:Complex} = (T = promote_type(R,S); a*inv(T(z)))
/(z::Complex, x::Real) = Complex(real(z)/x, imag(z)/x)
function /(a::Complex{T}, b::Complex{T}) where T<:Real
are = real(a); aim = imag(a); bre = real(b); bim = imag(b)
if abs(bre) <= abs(bim)
if isinf(bre) && isinf(bim)
r = sign(bre)/sign(bim)
else
r = bre / bim
end
den = bim + r*bre
Complex((are*r + aim)/den, (aim*r - are)/den)
else
if isinf(bre) && isinf(bim)
r = sign(bim)/sign(bre)
else
r = bim / bre
end
den = bre + r*bim
Complex((are + aim*r)/den, (aim - are*r)/den)
end
end
inv(z::Complex{<:Union{Float16,Float32}}) =
oftype(z, conj(widen(z))/abs2(widen(z)))
/(z::Complex{T}, w::Complex{T}) where {T<:Union{Float16,Float32}} =
oftype(z, widen(z)*inv(widen(w)))
# robust complex division for double precision
# the first step is to scale variables if appropriate ,then do calculations
# in a way that avoids over/underflow (subfuncs 1 and 2), then undo the scaling.
# scaling variable s and other techniques
# based on arxiv.1210.4539
# a + i*b
# p + i*q = ---------
# c + i*d
function /(z::ComplexF64, w::ComplexF64)
a, b = reim(z); c, d = reim(w)
half = 0.5
two = 2.0
ab = max(abs(a), abs(b))
cd = max(abs(c), abs(d))
ov = floatmax(a)
un = floatmin(a)
ϵ = eps(Float64)
bs = two/(ϵ*ϵ)
s = 1.0
ab >= half*ov && (a=half*a; b=half*b; s=two*s ) # scale down a,b
cd >= half*ov && (c=half*c; d=half*d; s=s*half) # scale down c,d
ab <= un*two/ϵ && (a=a*bs; b=b*bs; s=s/bs ) # scale up a,b
cd <= un*two/ϵ && (c=c*bs; d=d*bs; s=s*bs ) # scale up c,d
abs(d)<=abs(c) ? ((p,q)=robust_cdiv1(a,b,c,d) ) : ((p,q)=robust_cdiv1(b,a,d,c); q=-q)
return ComplexF64(p*s,q*s) # undo scaling
end
function robust_cdiv1(a::Float64, b::Float64, c::Float64, d::Float64)
r = d/c
t = 1.0/(c+d*r)
p = robust_cdiv2(a,b,c,d,r,t)
q = robust_cdiv2(b,-a,c,d,r,t)
return p,q
end
function robust_cdiv2(a::Float64, b::Float64, c::Float64, d::Float64, r::Float64, t::Float64)
if r != 0
br = b*r
return (br != 0 ? (a+br)*t : a*t + (b*t)*r)
else
return (a + d*(b/c)) * t
end
end
function inv(w::ComplexF64)
c, d = reim(w)
half = 0.5
two = 2.0
cd = max(abs(c), abs(d))
ov = floatmax(c)
un = floatmin(c)
ϵ = eps(Float64)
bs = two/(ϵ*ϵ)
s = 1.0
cd >= half*ov && (c=half*c; d=half*d; s=s*half) # scale down c,d
cd <= un*two/ϵ && (c=c*bs; d=d*bs; s=s*bs ) # scale up c,d
if abs(d)<=abs(c)
r = d/c
t = 1.0/(c+d*r)
p = t
q = -r * t
else
c, d = d, c
r = d/c
t = 1.0/(c+d*r)
p = r * t
q = -t
end
return ComplexF64(p*s,q*s) # undo scaling
end
function ssqs(x::T, y::T) where T<:AbstractFloat
k::Int = 0
ρ = x*x + y*y
if !isfinite(ρ) && (isinf(x) || isinf(y))
ρ = convert(T, Inf)
elseif isinf(ρ) || (ρ==0 && (x!=0 || y!=0)) || ρ<nextfloat(zero(T))/(2*eps(T)^2)
m::T = max(abs(x), abs(y))
k = m==0 ? m : exponent(m)
xk, yk = ldexp(x,-k), ldexp(y,-k)
ρ = xk*xk + yk*yk
end
ρ, k
end
function sqrt(z::Complex{<:AbstractFloat})
x, y = reim(z)
if x==y==0
return Complex(zero(x),y)
end
ρ, k::Int = ssqs(x, y)
if isfinite(x) ρ=ldexp(abs(x),-k)+sqrt(ρ) end
if isodd(k)
k = div(k-1,2)
else
k = div(k,2)-1
ρ += ρ
end
ρ = ldexp(sqrt(ρ),k) #sqrt((abs(z)+abs(x))/2) without over/underflow
ξ = ρ
η = y
if ρ != 0
if isfinite(η) η=(η/ρ)/2 end
if x<0
ξ = abs(η)
η = copysign(ρ,y)
end
end
Complex(ξ,η)
end
sqrt(z::Complex) = sqrt(float(z))
# function sqrt(z::Complex)
# rz = float(real(z))
# iz = float(imag(z))
# r = sqrt((hypot(rz,iz)+abs(rz))/2)
# if r == 0
# return Complex(zero(iz), iz)
# end
# if rz >= 0
# return Complex(r, iz/r/2)
# end
# return Complex(abs(iz)/r/2, copysign(r,iz))
# end
# compute exp(im*theta)
function cis(theta::Real)
s, c = sincos(theta)
Complex(c, s)
end
"""
cis(z)
Return ``\\exp(iz)``.
# Examples
```jldoctest
julia> cis(π) ≈ -1
true
```
"""
function cis(z::Complex)
v = exp(-imag(z))
s, c = sincos(real(z))
Complex(v * c, v * s)
end
"""
angle(z)
Compute the phase angle in radians of a complex number `z`.
# Examples
```jldoctest
julia> rad2deg(angle(1 + im))
45.0
julia> rad2deg(angle(1 - im))
-45.0
julia> rad2deg(angle(-1 - im))
-135.0
```
"""
angle(z::Complex) = atan(imag(z), real(z))
function log(z::Complex{T}) where T<:AbstractFloat
T1::T = 1.25
T2::T = 3
ln2::T = log(convert(T,2)) #0.6931471805599453
x, y = reim(z)
ρ, k = ssqs(x,y)
ax = abs(x)
ay = abs(y)
if ax < ay
θ, β = ax, ay
else
θ, β = ay, ax
end
if k==0 && (0.5 < β*β) && (β <= T1 || ρ < T2)
ρρ = log1p((β-1)*(β+1)+θ*θ)/2
else
ρρ = log(ρ)/2 + k*ln2
end
Complex(ρρ, angle(z))
end
log(z::Complex) = log(float(z))
# function log(z::Complex)
# ar = abs(real(z))
# ai = abs(imag(z))
# if ar < ai
# r = ar/ai
# re = log(ai) + log1p(r*r)/2
# else
# if ar == 0
# re = isnan(ai) ? ai : -inv(ar)
# elseif isinf(ai)
# re = oftype(ar,Inf)
# else
# r = ai/ar
# re = log(ar) + log1p(r*r)/2
# end
# end
# Complex(re, angle(z))
# end
function log10(z::Complex)
a = log(z)
a/log(oftype(real(a),10))
end
function log2(z::Complex)
a = log(z)
a/log(oftype(real(a),2))
end
function exp(z::Complex)
zr, zi = reim(z)
if isnan(zr)
Complex(zr, zi==0 ? zi : zr)
elseif !isfinite(zi)
if zr == Inf
Complex(-zr, oftype(zr,NaN))
elseif zr == -Inf
Complex(-zero(zr), copysign(zero(zi), zi))
else
Complex(oftype(zr,NaN), oftype(zi,NaN))
end
else
er = exp(zr)
if iszero(zi)
Complex(er, zi)
else
s, c = sincos(zi)
Complex(er * c, er * s)
end
end
end
function expm1(z::Complex{T}) where T<:Real
Tf = float(T)
zr,zi = reim(z)
if isnan(zr)
Complex(zr, zi==0 ? zi : zr)
elseif !isfinite(zi)
if zr == Inf
Complex(-zr, oftype(zr,NaN))
elseif zr == -Inf
Complex(-one(zr), copysign(zero(zi), zi))
else
Complex(oftype(zr,NaN), oftype(zi,NaN))
end
else
erm1 = expm1(zr)
if zi == 0
Complex(erm1, zi)
else
er = erm1+one(erm1)
if isfinite(er)
wr = erm1 - 2 * er * (sin(convert(Tf, 0.5) * zi))^2
return Complex(wr, er * sin(zi))
else
s, c = sincos(zi)
return Complex(er * c, er * s)
end
end
end
end
function log1p(z::Complex{T}) where T
zr,zi = reim(z)
if isfinite(zr)
isinf(zi) && return log(z)
# This is based on a well-known trick for log1p of real z,
# allegedly due to Kahan, only modified to handle real(u) <= 0
# differently to avoid inaccuracy near z==-2 and for correct branch cut
u = one(float(T)) + z
u == 1 ? convert(typeof(u), z) : real(u) <= 0 ? log(u) : log(u)*z/(u-1)
elseif isnan(zr)
Complex(zr, zr)
elseif isfinite(zi)
Complex(T(Inf), copysign(zr > 0 ? zero(T) : convert(T, pi), zi))
else
Complex(T(Inf), T(NaN))
end
end
function exp2(z::Complex{T}) where T<:AbstractFloat
er = exp2(real(z))
theta = imag(z) * log(convert(T, 2))
s, c = sincos(theta)
Complex(er * c, er * s)
end
exp2(z::Complex) = exp2(float(z))
function exp10(z::Complex{T}) where T<:AbstractFloat
er = exp10(real(z))
theta = imag(z) * log(convert(T, 10))
s, c = sincos(theta)
Complex(er * c, er * s)
end
exp10(z::Complex) = exp10(float(z))
# _cpow helper function to avoid method ambiguity with ^(::Complex,::Real)
function _cpow(z::Union{T,Complex{T}}, p::Union{T,Complex{T}}) where {T<:AbstractFloat}
if isreal(p)
pᵣ = real(p)
if isinteger(pᵣ) && abs(pᵣ) < typemax(Int32)
# |p| < typemax(Int32) serves two purposes: it prevents overflow
# when converting p to Int, and it also turns out to be roughly
# the crossover point for exp(p*log(z)) or similar to be faster.
if iszero(pᵣ) # fix signs of imaginary part for z^0
zer = flipsign(copysign(zero(T),pᵣ), imag(z))
return Complex(one(T), zer)
end
ip = convert(Int, pᵣ)
if isreal(z)
zᵣ = real(z)
if ip < 0
iszero(z) && return Complex(T(NaN),T(NaN))
re = power_by_squaring(inv(zᵣ), -ip)
im = -imag(z)
else
re = power_by_squaring(zᵣ, ip)
im = imag(z)
end
# slightly tricky to get the correct sign of zero imag. part
return Complex(re, ifelse(iseven(ip) & signbit(zᵣ), -im, im))
else
return ip < 0 ? power_by_squaring(inv(z), -ip) : power_by_squaring(z, ip)
end
elseif isreal(z)
# (note: if both z and p are complex with ±0.0 imaginary parts,
# the sign of the ±0.0 imaginary part of the result is ambiguous)
if iszero(real(z))
return pᵣ > 0 ? complex(z) : Complex(T(NaN),T(NaN)) # 0 or NaN+NaN*im
elseif real(z) > 0
return Complex(real(z)^pᵣ, z isa Real ? ifelse(real(z) < 1, -imag(p), imag(p)) : flipsign(imag(z), pᵣ))
else
zᵣ = real(z)
rᵖ = (-zᵣ)^pᵣ
if isfinite(pᵣ)
# figuring out the sign of 0.0 when p is a complex number
# with zero imaginary part and integer/2 real part could be
# improved here, but it's not clear if it's worth it…
return rᵖ * complex(cospi(pᵣ), flipsign(sinpi(pᵣ),imag(z)))
else
iszero(rᵖ) && return zero(Complex{T}) # no way to get correct signs of 0.0
return Complex(T(NaN),T(NaN)) # non-finite phase angle or NaN input
end
end
else
rᵖ = abs(z)^pᵣ
ϕ = pᵣ*angle(z)
end
elseif isreal(z)
iszero(z) && return real(p) > 0 ? complex(z) : Complex(T(NaN),T(NaN)) # 0 or NaN+NaN*im
zᵣ = real(z)
pᵣ, pᵢ = reim(p)
if zᵣ > 0
rᵖ = zᵣ^pᵣ
ϕ = pᵢ*log(zᵣ)
else
r = -zᵣ
θ = copysign(T(π),imag(z))
rᵖ = r^pᵣ * exp(-pᵢ*θ)
ϕ = pᵣ*θ + pᵢ*log(r)
end
else
pᵣ, pᵢ = reim(p)
r = abs(z)
θ = angle(z)
rᵖ = r^pᵣ * exp(-pᵢ*θ)
ϕ = pᵣ*θ + pᵢ*log(r)
end
if isfinite(ϕ)
return rᵖ * cis(ϕ)
else
iszero(rᵖ) && return zero(Complex{T}) # no way to get correct signs of 0.0
return Complex(T(NaN),T(NaN)) # non-finite phase angle or NaN input
end
end
_cpow(z, p) = _cpow(float(z), float(p))
^(z::Complex{T}, p::Complex{T}) where T<:Real = _cpow(z, p)
^(z::Complex{T}, p::T) where T<:Real = _cpow(z, p)
^(z::T, p::Complex{T}) where T<:Real = _cpow(z, p)
^(z::Complex, n::Bool) = n ? z : one(z)
^(z::Complex, n::Integer) = z^Complex(n)
^(z::Complex{<:AbstractFloat}, n::Bool) = n ? z : one(z) # to resolve ambiguity
^(z::Complex{<:Integer}, n::Bool) = n ? z : one(z) # to resolve ambiguity
^(z::Complex{<:AbstractFloat}, n::Integer) =
n>=0 ? power_by_squaring(z,n) : power_by_squaring(inv(z),-n)
^(z::Complex{<:Integer}, n::Integer) = power_by_squaring(z,n) # DomainError for n<0
function ^(z::Complex{T}, p::S) where {T<:Real,S<:Real}
P = promote_type(T,S)
return Complex{P}(z) ^ P(p)
end
function ^(z::T, p::Complex{S}) where {T<:Real,S<:Real}
P = promote_type(T,S)
return P(z) ^ Complex{P}(p)
end
function sin(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if zr == 0
Complex(F(zr), sinh(zi))
elseif !isfinite(zr)
if zi == 0 || isinf(zi)
Complex(F(NaN), F(zi))
else
Complex(F(NaN), F(NaN))
end
else
s, c = sincos(zr)
Complex(s * cosh(zi), c * sinh(zi))
end
end
function cos(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if zr == 0
Complex(cosh(zi), isnan(zi) ? F(zr) : -flipsign(F(zr),zi))
elseif !isfinite(zr)
if zi == 0
Complex(F(NaN), isnan(zr) ? zero(F) : -flipsign(F(zi),zr))
elseif isinf(zi)
Complex(F(Inf), F(NaN))
else
Complex(F(NaN), F(NaN))
end
else
s, c = sincos(zr)
Complex(c * cosh(zi), -s * sinh(zi))
end
end
function tan(z::Complex)
zr, zi = reim(z)
w = tanh(Complex(-zi, zr))
Complex(imag(w), -real(w))
end
function asin(z::Complex)
zr, zi = reim(z)
if isinf(zr) && isinf(zi)
return Complex(copysign(oftype(zr,pi)/4, zr),zi)
elseif isnan(zi) && isinf(zr)
return Complex(zi, oftype(zr, Inf))
end
ξ = zr == 0 ? zr :
!isfinite(zr) ? oftype(zr,pi)/2 * sign(zr) :
atan(zr, real(sqrt(1-z)*sqrt(1+z)))
η = asinh(copysign(imag(sqrt(conj(1-z))*sqrt(1+z)), imag(z)))
Complex(ξ,η)
end
function acos(z::Complex{<:AbstractFloat})
zr, zi = reim(z)
if isnan(zr)
if isinf(zi) return Complex(zr, -zi)
else return Complex(zr, zr) end
elseif isnan(zi)
if isinf(zr) return Complex(zi, abs(zr))
elseif zr==0 return Complex(oftype(zr,pi)/2, zi)
else return Complex(zi, zi) end
elseif zr==zi==0
return Complex(oftype(zr,pi)/2, -zi)
elseif zr==Inf && zi===0.0
return Complex(zi, -zr)
elseif zr==-Inf && zi===-0.0
return Complex(oftype(zi,pi), -zr)
end
ξ = 2*atan(real(sqrt(1-z)), real(sqrt(1+z)))
η = asinh(imag(sqrt(conj(1+z))*sqrt(1-z)))
if isinf(zr) && isinf(zi) ξ -= oftype(η,pi)/4 * sign(zr) end
Complex(ξ,η)
end
acos(z::Complex) = acos(float(z))
function atan(z::Complex)
w = atanh(Complex(-imag(z),real(z)))
Complex(imag(w),-real(w))
end
function sinh(z::Complex)
zr, zi = reim(z)
w = sin(Complex(zi, zr))
Complex(imag(w),real(w))
end
function cosh(z::Complex)
zr, zi = reim(z)
cos(Complex(zi,-zr))
end
function tanh(z::Complex{T}) where T<:AbstractFloat
Ω = prevfloat(typemax(T))
ξ, η = reim(z)
if isnan(ξ) && η==0 return Complex(ξ, η) end
if 4*abs(ξ) > asinh(Ω) #Overflow?
Complex(copysign(one(T),ξ),
copysign(zero(T),η*(isfinite(η) ? sin(2*abs(η)) : one(η))))
else
t = tan(η)
β = 1+t*t #sec(η)^2
s = sinh(ξ)
ρ = sqrt(1 + s*s) #cosh(ξ)
if isinf(t)
Complex(ρ/s,1/t)
else
Complex(β*ρ*s,t)/(1+β*s*s)
end
end
end
tanh(z::Complex) = tanh(float(z))
function asinh(z::Complex)
w = asin(Complex(-imag(z),real(z)))
Complex(imag(w),-real(w))
end
function acosh(z::Complex)
zr, zi = reim(z)
if isnan(zr) || isnan(zi)
if isinf(zr) || isinf(zi)
return Complex(oftype(zr, Inf), oftype(zi, NaN))
else
return Complex(oftype(zr, NaN), oftype(zi, NaN))
end
elseif zr==-Inf && zi===-0.0 #Edge case is wrong - WHY?
return Complex(oftype(zr,Inf), oftype(zi, -pi))
end
ξ = asinh(real(sqrt(conj(z-1))*sqrt(z+1)))
η = 2*atan(imag(sqrt(z-1)),real(sqrt(z+1)))
if isinf(zr) && isinf(zi)
η -= oftype(η,pi)/4 * sign(zi) * sign(zr)
end
Complex(ξ, η)
end
function atanh(z::Complex{T}) where T<:AbstractFloat
Ω = prevfloat(typemax(T))
θ = sqrt(Ω)/4
ρ = 1/θ
x, y = reim(z)
ax = abs(x)
ay = abs(y)
if ax > θ || ay > θ #Prevent overflow
if isnan(y)
if isinf(x)
return Complex(copysign(zero(x),x), y)
else
return Complex(real(1/z), y)
end
end
if isinf(y)
return Complex(copysign(zero(x),x), copysign(oftype(y,pi)/2, y))
end
return Complex(real(1/z), copysign(oftype(y,pi)/2, y))
elseif ax==1
if y == 0
ξ = copysign(oftype(x,Inf),x)
η = zero(y)
else
ym = ay+ρ
ξ = log(sqrt(sqrt(4+y*y))/sqrt(ym))
η = copysign(oftype(y,pi)/2 + atan(ym/2), y)/2
end
else #Normal case
ysq = (ay+ρ)^2
if x == 0
ξ = x
else
ξ = log1p(4x/((1-x)^2 + ysq))/4
end
η = angle(Complex((1-x)*(1+x)-ysq, 2y))/2
end
Complex(ξ, η)
end
atanh(z::Complex) = atanh(float(z))
#Rounding complex numbers
#Requires two different RoundingModes for the real and imaginary components
"""
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10)
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)
Return the nearest integral value of the same type as the complex-valued `z` to `z`,
breaking ties using the specified [`RoundingMode`](@ref)s. The first
[`RoundingMode`](@ref) is used for rounding the real components while the
second is used for rounding the imaginary components.
# Example
```jldoctest
julia> round(3.14 + 4.5im)
3.0 + 4.0im
```
"""
function round(z::Complex, rr::RoundingMode=RoundNearest, ri::RoundingMode=rr; kwargs...)
Complex(round(real(z), rr; kwargs...),
round(imag(z), ri; kwargs...))
end
float(z::Complex{<:AbstractFloat}) = z
float(z::Complex) = Complex(float(real(z)), float(imag(z)))
big(::Type{Complex{T}}) where {T<:Real} = Complex{big(T)}
big(z::Complex{T}) where {T<:Real} = Complex{big(T)}(z)
## Array operations on complex numbers ##
complex(A::AbstractArray{<:Complex}) = A
function complex(A::AbstractArray{T}) where T
if !isconcretetype(T)
error("`complex` not defined on abstractly-typed arrays; please convert to a more specific type")
end
convert(AbstractArray{typeof(complex(zero(T)))}, A)
end
## promotion to complex ##
_default_type(T::Type{Complex}) = Complex{Int}
|