File: basedocs.jl

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (1921 lines) | stat: -rw-r--r-- 40,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
# This file is a part of Julia. License is MIT: https://julialang.org/license

module BaseDocs

@nospecialize # don't specialize on any arguments of the methods declared herein

struct Keyword
    name::Symbol
end
macro kw_str(text)
    return Keyword(Symbol(text))
end

"""
**Welcome to Julia $(string(VERSION)).** The full manual is available at

    https://docs.julialang.org/

as well as many great tutorials and learning resources:

    https://julialang.org/learning/

For help on a specific function or macro, type `?` followed
by its name, e.g. `?cos`, or `?@time`, and press enter.
Type `;` to enter shell mode, `]` to enter package mode.
"""
kw"help", kw"?", kw"julia", kw""

"""
    using

`using Foo` will load the module or package `Foo` and make its [`export`](@ref)ed names
available for direct use. Names can also be used via dot syntax (e.g. `Foo.foo` to access
the name `foo`), whether they are `export`ed or not.
See the [manual section about modules](@ref modules) for details.
"""
kw"using"

"""
    import

`import Foo` will load the module or package `Foo`.
Names from the imported `Foo` module can be accessed with dot syntax
(e.g. `Foo.foo` to access the name `foo`).
See the [manual section about modules](@ref modules) for details.
"""
kw"import"

"""
    export

`export` is used within modules to tell Julia which functions should be
made available to the user. For example: `export foo` makes the name
`foo` available when [`using`](@ref) the module.
See the [manual section about modules](@ref modules) for details.
"""
kw"export"

"""
    abstract type

`abstract type` declares a type that cannot be instantiated, and serves only as a node in the
type graph, thereby describing sets of related concrete types: those concrete types
which are their descendants. Abstract types form the conceptual hierarchy which makes
Julia’s type system more than just a collection of object implementations. For example:

```julia
abstract type Number end
abstract type Real <: Number end
```
[`Number`](@ref) has no supertype, whereas [`Real`](@ref) is an abstract subtype of `Number`.
"""
kw"abstract type"

"""
    module

`module` declares a `Module`, which is a separate global variable workspace. Within a
module, you can control which names from other modules are visible (via importing), and
specify which of your names are intended to be public (via exporting).
Modules allow you to create top-level definitions without worrying about name conflicts
when your code is used together with somebody else’s.
See the [manual section about modules](@ref modules) for more details.

# Examples
```julia
module Foo
import Base.show
export MyType, foo

struct MyType
    x
end

bar(x) = 2x
foo(a::MyType) = bar(a.x) + 1
show(io::IO, a::MyType) = print(io, "MyType \$(a.x)")
end
```
"""
kw"module"

"""
    baremodule

`baremodule` declares a module that does not contain `using Base`
or a definition of `eval`. It does still import `Core`.
"""
kw"baremodule"

"""
    primitive type

`primitive type` declares a concrete type whose data consists only of a series of bits. Classic
examples of primitive types are integers and floating-point values. Some example built-in
primitive type declarations:

```julia
primitive type Char 32 end
primitive type Bool <: Integer 8 end
```
The number after the name indicates how many bits of storage the type requires. Currently,
only sizes that are multiples of 8 bits are supported.
The [`Bool`](@ref) declaration shows how a primitive type can be optionally
declared to be a subtype of some supertype.
"""
kw"primitive type"

"""
    macro

`macro` defines a method to include generated code in the final body of a program. A
macro maps a tuple of arguments to a returned expression, and the resulting expression
is compiled directly rather than requiring a runtime `eval` call. Macro arguments may
include expressions, literal values, and symbols. For example:

# Examples
```jldoctest
julia> macro sayhello(name)
           return :( println("Hello, ", \$name, "!") )
       end
@sayhello (macro with 1 method)

julia> @sayhello "Charlie"
Hello, Charlie!
```
"""
kw"macro"

"""
    local

`local` introduces a new local variable.
See the [manual section on variable scoping](@ref scope-of-variables) for more information.

# Examples
```jldoctest
julia> function foo(n)
           x = 0
           for i = 1:n
               local x # introduce a loop-local x
               x = i
           end
           x
       end
foo (generic function with 1 method)

julia> foo(10)
0
```
"""
kw"local"

"""
    global

`global x` makes `x` in the current scope and its inner scopes refer to the global
variable of that name.
See the [manual section on variable scoping](@ref scope-of-variables) for more information.

# Examples
```jldoctest
julia> z = 3
3

julia> function foo()
           global z = 6 # use the z variable defined outside foo
       end
foo (generic function with 1 method)

julia> foo()
6

julia> z
6
```
"""
kw"global"

"""
    let

`let` statements allocate new variable bindings each time they run. Whereas an
assignment modifies an existing value location, `let` creates new locations. This
difference is only detectable in the case of variables that outlive their scope via
closures. The `let` syntax accepts a comma-separated series of assignments and variable
names:

```julia
let var1 = value1, var2, var3 = value3
    code
end
```
The assignments are evaluated in order, with each right-hand side evaluated in the scope
before the new variable on the left-hand side has been introduced. Therefore it makes
sense to write something like `let x = x`, since the two `x` variables are distinct and
have separate storage.
"""
kw"let"

"""
    quote

`quote` creates multiple expression objects in a block without using the explicit `Expr`
constructor. For example:

```julia
ex = quote
    x = 1
    y = 2
    x + y
end
```
Unlike the other means of quoting, `:( ... )`, this form introduces `QuoteNode` elements
to the expression tree, which must be considered when directly manipulating the tree.
For other purposes, `:( ... )` and `quote .. end` blocks are treated identically.
"""
kw"quote"

"""
    '

The conjugate transposition operator, see [`adjoint`](@ref).

# Examples
```jldoctest
julia> A = [1.0 -2.0im; 4.0im 2.0]
2×2 Array{Complex{Float64},2}:
 1.0+0.0im  -0.0-2.0im
 0.0+4.0im   2.0+0.0im

julia> A'
2×2 Array{Complex{Float64},2}:
  1.0-0.0im  0.0-4.0im
 -0.0+2.0im  2.0-0.0im
```
"""
kw"'"

"""
    const

`const` is used to declare global variables whose values will not change. In almost all code
(and particularly performance sensitive code) global variables should be declared
constant in this way.

```julia
const x = 5
```

Multiple variables can be declared within a single `const`:
```julia
const y, z = 7, 11
```

Note that `const` only applies to one `=` operation, therefore `const x = y = 1`
declares `x` to be constant but not `y`. On the other hand, `const x = const y = 1`
declares both `x` and `y` constant.

Note that "constant-ness" does not extend into mutable containers; only the
association between a variable and its value is constant.
If `x` is an array or dictionary (for example) you can still modify, add, or remove elements.

In some cases changing the value of a `const` variable gives a warning instead of
an error.
However, this can produce unpredictable behavior or corrupt the state of your program,
and so should be avoided.
This feature is intended only for convenience during interactive use.
"""
kw"const"

"""
    function

Functions are defined with the `function` keyword:

```julia
function add(a, b)
    return a + b
end
```
Or the short form notation:

```julia
add(a, b) = a + b
```

The use of the [`return`](@ref) keyword is exactly the same as in other languages,
but is often optional. A function without an explicit `return` statement will return
the last expression in the function body.
"""
kw"function"

"""
    return

`return` can be used in function bodies to exit early and return a given value, e.g.

```julia
function compare(a, b)
    a == b && return "equal to"
    a < b ? "less than" : "greater than"
end
```
In general you can place a `return` statement anywhere within a function body, including
within deeply nested loops or conditionals, but be careful with `do` blocks. For
example:

```julia
function test1(xs)
    for x in xs
        iseven(x) && return 2x
    end
end

function test2(xs)
    map(xs) do x
        iseven(x) && return 2x
        x
    end
end
```
In the first example, the return breaks out of its enclosing function as soon as it hits
an even number, so `test1([5,6,7])` returns `12`.

You might expect the second example to behave the same way, but in fact the `return`
there only breaks out of the *inner* function (inside the `do` block) and gives a value
back to `map`. `test2([5,6,7])` then returns `[5,12,7]`.
"""
kw"return"

"""
    if/elseif/else

`if`/`elseif`/`else` performs conditional evaluation, which allows portions of code to
be evaluated or not evaluated depending on the value of a boolean expression. Here is
the anatomy of the `if`/`elseif`/`else` conditional syntax:

```julia
if x < y
    println("x is less than y")
elseif x > y
    println("x is greater than y")
else
    println("x is equal to y")
end
```
If the condition expression `x < y` is true, then the corresponding block is evaluated;
otherwise the condition expression `x > y` is evaluated, and if it is true, the
corresponding block is evaluated; if neither expression is true, the `else` block is
evaluated. The `elseif` and `else` blocks are optional, and as many `elseif` blocks as
desired can be used.
"""
kw"if", kw"elseif", kw"else"

"""
    for

`for` loops repeatedly evaluate the body of the loop by
iterating over a sequence of values.

# Examples
```jldoctest
julia> for i in [1, 4, 0]
           println(i)
       end
1
4
0
```
"""
kw"for"

"""
    while

`while` loops repeatedly evaluate a conditional expression, and continues evaluating the
body of the while loop so long as the expression remains `true`. If the condition
expression is false when the while loop is first reached, the body is never evaluated.

# Examples
```jldoctest
julia> i = 1
1

julia> while i < 5
           println(i)
           global i += 1
       end
1
2
3
4
```
"""
kw"while"

"""
    end

`end` marks the conclusion of a block of expressions, for example
[`module`](@ref), [`struct`](@ref), [`mutable struct`](@ref),
[`begin`](@ref), [`let`](@ref), [`for`](@ref) etc.
`end` may also be used when indexing into an array to represent
the last index of a dimension.

# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
 1  2
 3  4

julia> A[end, :]
2-element Array{Int64,1}:
 3
 4
```
"""
kw"end"

"""
    try/catch

A `try`/`catch` statement allows for `Exception`s to be tested for. For example, a
customized square root function can be written to automatically call either the real or
complex square root method on demand using `Exception`s:

```julia
f(x) = try
    sqrt(x)
catch
    sqrt(complex(x, 0))
end
```

`try`/`catch` statements also allow the `Exception` to be saved in a variable, e.g. `catch y`.

The power of the `try`/`catch` construct lies in the ability to unwind a deeply
nested computation immediately to a much higher level in the stack of calling functions.
"""
kw"try", kw"catch"

"""
    finally

Run some code when a given block of code exits, regardless
of how it exits. For example, here is how we can guarantee that an opened file is
closed:

```julia
f = open("file")
try
    operate_on_file(f)
finally
    close(f)
end
```

When control leaves the [`try`](@ref) block (for example, due to a [`return`](@ref), or just finishing
normally), [`close(f)`](@ref) will be executed. If the `try` block exits due to an exception,
the exception will continue propagating. A `catch` block may be combined with `try` and
`finally` as well. In this case the `finally` block will run after `catch` has handled
the error.
"""
kw"finally"

"""
    break

Break out of a loop immediately.

# Examples
```jldoctest
julia> i = 0
0

julia> while true
           global i += 1
           i > 5 && break
           println(i)
       end
1
2
3
4
5
```
"""
kw"break"

"""
    continue

Skip the rest of the current loop iteration.

# Examples
```jldoctest
julia> for i = 1:6
           iseven(i) && continue
           println(i)
       end
1
3
5
```
"""
kw"continue"

"""
    do

Create an anonymous function. For example:

```julia
map(1:10) do x
    2x
end
```

is equivalent to `map(x->2x, 1:10)`.

Use multiple arguments like so:

```julia
map(1:10, 11:20) do x, y
    x + y
end
```
"""
kw"do"

"""
    ...

The "splat" operator, `...`, represents a sequence of arguments.
`...` can be used in function definitions, to indicate that the function
accepts an arbitrary number of arguments.
`...` can also be used to apply a function to a sequence of arguments.

# Examples
```jldoctest
julia> add(xs...) = reduce(+, xs)
add (generic function with 1 method)

julia> add(1, 2, 3, 4, 5)
15

julia> add([1, 2, 3]...)
6

julia> add(7, 1:100..., 1000:1100...)
111107
```
"""
kw"..."

"""
    ;

`;` has a similar role in Julia as in many C-like languages, and is used to delimit the
end of the previous statement. `;` is not necessary after new lines, but can be used to
separate statements on a single line or to join statements into a single expression.
`;` is also used to suppress output printing in the REPL and similar interfaces.

# Examples
```julia
julia> function foo()
           x = "Hello, "; x *= "World!"
           return x
       end
foo (generic function with 1 method)

julia> bar() = (x = "Hello, Mars!"; return x)
bar (generic function with 1 method)

julia> foo();

julia> bar()
"Hello, Mars!"
```
"""
kw";"

"""
    x && y

Short-circuiting boolean AND.
"""
kw"&&"

"""
    x || y

Short-circuiting boolean OR.
"""
kw"||"

"""
    ccall((function_name, library), returntype, (argtype1, ...), argvalue1, ...)
    ccall(function_pointer, returntype, (argtype1, ...), argvalue1, ...)

Call a function in a C-exported shared library, specified by the tuple `(function_name, library)`,
where each component is either a string or symbol. Alternatively, `ccall` may
also be used to call a function pointer `function_pointer`, such as one returned by `dlsym`.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued
variable or expression.

Each `argvalue` to the `ccall` will be converted to the corresponding
`argtype`, by automatic insertion of calls to `unsafe_convert(argtype,
cconvert(argtype, argvalue))`. (See also the documentation for
[`unsafe_convert`](@ref Base.unsafe_convert) and [`cconvert`](@ref Base.cconvert) for further details.)
In most cases, this simply results in a call to `convert(argtype, argvalue)`.
"""
kw"ccall"

"""
    llvmcall(IR::String, ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)
    llvmcall((declarations::String, IR::String), ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)

Call LLVM IR string in the first argument. Similar to an LLVM function `define` block,
arguments are available as consecutive unnamed SSA variables (%0, %1, etc.).

The optional declarations string contains external functions declarations that are
necessary for llvm to compile the IR string. Multiple declarations can be passed in by
separating them with line breaks.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued
variable or expression.

Each `ArgumentValue` to `llvmcall` will be converted to the corresponding
`ArgumentType`, by automatic insertion of calls to `unsafe_convert(ArgumentType,
cconvert(ArgumentType, ArgumentValue))`. (See also the documentation for
[`unsafe_convert`](@ref Base.unsafe_convert) and [`cconvert`](@ref Base.cconvert) for further details.)
In most cases, this simply results in a call to `convert(ArgumentType, ArgumentValue)`.

See `test/llvmcall.jl` for usage examples.
"""
Core.Intrinsics.llvmcall

"""
    begin

`begin...end` denotes a block of code.

```julia
begin
    println("Hello, ")
    println("World!")
end
```

Usually `begin` will not be necessary, since keywords such as [`function`](@ref) and [`let`](@ref)
implicitly begin blocks of code. See also [`;`](@ref).
"""
kw"begin"

"""
    struct

The most commonly used kind of type in Julia is a struct, specified as a name and a
set of fields.

```julia
struct Point
    x
    y
end
```

Fields can have type restrictions, which may be parameterized:

```julia
    struct Point{X}
        x::X
        y::Float64
    end
```

A struct can also declare an abstract super type via `<:` syntax:

```julia
struct Point <: AbstractPoint
    x
    y
end
```

`struct`s are immutable by default; an instance of one of these types cannot
be modified after construction. Use [`mutable struct`](@ref) instead to declare a
type whose instances can be modified.

See the manual section on [Composite Types](@ref) for more details,
such as how to define constructors.
"""
kw"struct"

"""
    mutable struct

`mutable struct` is similar to [`struct`](@ref), but additionally allows the
fields of the type to be set after construction. See the manual section on
[Composite Types](@ref) for more information.
"""
kw"mutable struct"

"""
    new

Special function available to inner constructors which created a new object
of the type.
See the manual section on [Inner Constructor Methods](@ref) for more information.
"""
kw"new"

"""
    where

The `where` keyword creates a type that is an iterated union of other types, over all
values of some variable. For example `Vector{T} where T<:Real` includes all [`Vector`](@ref)s
where the element type is some kind of `Real` number.

The variable bound defaults to `Any` if it is omitted:

```julia
Vector{T} where T    # short for `where T<:Any`
```
Variables can also have lower bounds:

```julia
Vector{T} where T>:Int
Vector{T} where Int<:T<:Real
```
There is also a concise syntax for nested `where` expressions. For example, this:

```julia
Pair{T, S} where S<:Array{T} where T<:Number
```
can be shortened to:

```julia
Pair{T, S} where {T<:Number, S<:Array{T}}
```
This form is often found on method signatures.

Note that in this form, the variables are listed outermost-first. This matches the
order in which variables are substituted when a type is "applied" to parameter values
using the syntax `T{p1, p2, ...}`.
"""
kw"where"

"""
    ans

A variable referring to the last computed value, automatically set at the interactive prompt.
"""
kw"ans"

"""
    devnull

Used in a stream redirect to discard all data written to it. Essentially equivalent to
/dev/null on Unix or NUL on Windows. Usage:

```julia
run(pipeline(`cat test.txt`, devnull))
```
"""
devnull

# doc strings for code in boot.jl and built-ins

"""
    Nothing

A type with no fields that is the type of [`nothing`](@ref).
"""
Nothing

"""
    nothing

The singleton instance of type [`Nothing`](@ref), used by convention when there is no value to return
(as in a C `void` function) or when a variable or field holds no value.
"""
nothing

"""
    Core.TypeofBottom

The singleton type containing only the value `Union{}`.
"""
Core.TypeofBottom

"""
    Function

Abstract type of all functions.

```jldoctest
julia> isa(+, Function)
true

julia> typeof(sin)
typeof(sin)

julia> ans <: Function
true
```
"""
Function

"""
    ReadOnlyMemoryError()

An operation tried to write to memory that is read-only.
"""
ReadOnlyMemoryError

"""
    ErrorException(msg)

Generic error type. The error message, in the `.msg` field, may provide more specific details.

# Example
```jldoctest
julia> ex = ErrorException("I've done a bad thing");

julia> ex.msg
"I've done a bad thing"
```
"""
ErrorException

"""
    WrappedException(msg)

Generic type for `Exception`s wrapping another `Exception`, such as `LoadError` and
`InitError`. Those exceptions contain information about the root cause of an
exception. Subtypes define a field `error` containing the causing `Exception`.
"""
Core.WrappedException

"""
    UndefRefError()

The item or field is not defined for the given object.
"""
UndefRefError

"""
    Float32(x [, mode::RoundingMode])

Create a `Float32` from `x`. If `x` is not exactly representable then `mode` determines how
`x` is rounded.

# Examples
```jldoctest
julia> Float32(1/3, RoundDown)
0.3333333f0

julia> Float32(1/3, RoundUp)
0.33333334f0
```

See [`RoundingMode`](@ref) for available rounding modes.
"""
Float32(x)

"""
    Float64(x [, mode::RoundingMode])

Create a `Float64` from `x`. If `x` is not exactly representable then `mode` determines how
`x` is rounded.

# Examples
```jldoctest
julia> Float64(pi, RoundDown)
3.141592653589793

julia> Float64(pi, RoundUp)
3.1415926535897936
```

See [`RoundingMode`](@ref) for available rounding modes.
"""
Float64(x)

"""
    OutOfMemoryError()

An operation allocated too much memory for either the system or the garbage collector to
handle properly.
"""
OutOfMemoryError

"""
    BoundsError([a],[i])

An indexing operation into an array, `a`, tried to access an out-of-bounds element at index `i`.

# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> A = fill(1.0, 7);

julia> A[8]
ERROR: BoundsError: attempt to access 7-element Array{Float64,1} at index [8]
Stacktrace:
 [1] getindex(::Array{Float64,1}, ::Int64) at ./array.jl:660
 [2] top-level scope

julia> B = fill(1.0, (2,3));

julia> B[2, 4]
ERROR: BoundsError: attempt to access 2×3 Array{Float64,2} at index [2, 4]
Stacktrace:
 [1] getindex(::Array{Float64,2}, ::Int64, ::Int64) at ./array.jl:661
 [2] top-level scope

julia> B[9]
ERROR: BoundsError: attempt to access 2×3 Array{Float64,2} at index [9]
Stacktrace:
 [1] getindex(::Array{Float64,2}, ::Int64) at ./array.jl:660
 [2] top-level scope
```
"""
BoundsError

"""
    InexactError(name::Symbol, T, val)

Cannot exactly convert `val` to type `T` in a method of function `name`.

# Examples
```jldoctest
julia> convert(Float64, 1+2im)
ERROR: InexactError: Float64(Float64, 1 + 2im)
Stacktrace:
[...]
```
"""
InexactError

"""
    DomainError(val)
    DomainError(val, msg)

The argument `val` to a function or constructor is outside the valid domain.

# Examples
```jldoctest
julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
```
"""
DomainError

"""
    Task(func)

Create a `Task` (i.e. coroutine) to execute the given function `func` (which must be
callable with no arguments). The task exits when this function returns.

# Examples
```jldoctest
julia> a() = sum(i for i in 1:1000);

julia> b = Task(a);
```

In this example, `b` is a runnable `Task` that hasn't started yet.
"""
Task

"""
    StackOverflowError()

The function call grew beyond the size of the call stack. This usually happens when a call
recurses infinitely.
"""
StackOverflowError

"""
    nfields(x) -> Int

Get the number of fields in the given object.

# Examples
```jldoctest
julia> a = 1//2;

julia> nfields(a)
2

julia> b = 1
1

julia> nfields(b)
0

julia> ex = ErrorException("I've done a bad thing");

julia> nfields(ex)
1
```

In these examples, `a` is a [`Rational`](@ref), which has two fields.
`b` is an `Int`, which is a primitive bitstype with no fields at all.
`ex` is an [`ErrorException`](@ref), which has one field.
"""
nfields

"""
    UndefVarError(var::Symbol)

A symbol in the current scope is not defined.

# Examples
```jldoctest
julia> a
ERROR: UndefVarError: a not defined

julia> a = 1;

julia> a
1
```
"""
UndefVarError

"""
    UndefKeywordError(var::Symbol)

The required keyword argument `var` was not assigned in a function call.
"""
UndefKeywordError

"""
    OverflowError(msg)

The result of an expression is too large for the specified type and will cause a wraparound.
"""
OverflowError

"""
    TypeError(func::Symbol, context::AbstractString, expected::Type, got)

A type assertion failure, or calling an intrinsic function with an incorrect argument type.
"""
TypeError

"""
    InterruptException()

The process was stopped by a terminal interrupt (CTRL+C).
"""
InterruptException

"""
    applicable(f, args...) -> Bool

Determine whether the given generic function has a method applicable to the given arguments.

See also [`hasmethod`](@ref).

# Examples
```jldoctest
julia> function f(x, y)
           x + y
       end;

julia> applicable(f, 1)
false

julia> applicable(f, 1, 2)
true
```
"""
applicable

"""
    invoke(f, argtypes::Type, args...; kwargs...)

Invoke a method for the given generic function `f` matching the specified types `argtypes` on the
specified arguments `args` and passing the keyword arguments `kwargs`. The arguments `args` must
conform with the specified types in `argtypes`, i.e. conversion is not automatically performed.
This method allows invoking a method other than the most specific matching method, which is useful
when the behavior of a more general definition is explicitly needed (often as part of the
implementation of a more specific method of the same function).

# Examples
```jldoctest
julia> f(x::Real) = x^2;

julia> f(x::Integer) = 1 + invoke(f, Tuple{Real}, x);

julia> f(2)
5
```
"""
invoke

"""
    isa(x, type) -> Bool

Determine whether `x` is of the given `type`. Can also be used as an infix operator, e.g.
`x isa type`.

# Examples
```jldoctest
julia> isa(1, Int)
true

julia> isa(1, Matrix)
false

julia> isa(1, Char)
false

julia> isa(1, Number)
true

julia> 1 isa Number
true
```
"""
isa

"""
    DivideError()

Integer division was attempted with a denominator value of 0.

# Examples
```jldoctest
julia> 2/0
Inf

julia> div(2, 0)
ERROR: DivideError: integer division error
Stacktrace:
[...]
```
"""
DivideError

"""
    Number

Abstract supertype for all number types.
"""
Number

"""
    Real <: Number

Abstract supertype for all real numbers.
"""
Real

"""
    AbstractFloat <: Real

Abstract supertype for all floating point numbers.
"""
AbstractFloat

"""
    Integer <: Real

Abstract supertype for all integers.
"""
Integer

"""
    Signed <: Integer

Abstract supertype for all signed integers.
"""
Signed

"""
    Unsigned <: Integer

Abstract supertype for all unsigned integers.
"""
Unsigned

"""
    Bool <: Integer

Boolean type.
"""
Bool

for bit in (16, 32, 64)
    @eval begin
        """
            Float$($bit) <: AbstractFloat

        $($bit)-bit floating point number type.
        """
        $(Symbol("Float", bit))
    end
end

for bit in (8, 16, 32, 64, 128)
    @eval begin
        """
            Int$($bit) <: Signed

        $($bit)-bit signed integer type.
        """
        $(Symbol("Int", bit))

        """
            UInt$($bit) <: Unsigned

        $($bit)-bit unsigned integer type.
        """
        $(Symbol("UInt", bit))
    end
end

"""
    Symbol(x...) -> Symbol

Create a `Symbol` by concatenating the string representations of the arguments together.

# Examples
```jldoctest
julia> Symbol("my", "name")
:myname

julia> Symbol("day", 4)
:day4
```
"""
Symbol

"""
    tuple(xs...)

Construct a tuple of the given objects.

# Examples
```jldoctest
julia> tuple(1, 'a', pi)
(1, 'a', π = 3.1415926535897...)
```
"""
tuple

"""
    getfield(value, name::Symbol)

Extract a named field from a `value` of composite type.
See also [`getproperty`](@ref Base.getproperty).

# Examples
```jldoctest
julia> a = 1//2
1//2

julia> getfield(a, :num)
1

julia> a.num
1
```
"""
getfield

"""
    setfield!(value, name::Symbol, x)

Assign `x` to a named field in `value` of composite type.
The `value` must be mutable and `x` must be a subtype of `fieldtype(typeof(value), name)`.
See also [`setproperty!`](@ref Base.setproperty!).

# Examples
```jldoctest
julia> mutable struct MyMutableStruct
           field::Int
       end

julia> a = MyMutableStruct(1);

julia> setfield!(a, :field, 2);

julia> getfield(a, :field)
2

julia> a = 1//2
1//2

julia> setfield!(a, :num, 3);
ERROR: type Rational is immutable
```
"""
setfield!

"""
    typeof(x)

Get the concrete type of `x`.

# Examples
```jldoctest
julia> a = 1//2;

julia> typeof(a)
Rational{Int64}

julia> M = [1 2; 3.5 4];

julia> typeof(M)
Array{Float64,2}
```
"""
typeof

"""
    isdefined(m::Module, s::Symbol)
    isdefined(object, s::Symbol)
    isdefined(object, index::Int)

Tests whether an assignable location is defined. The arguments can be a module and a symbol
or a composite object and field name (as a symbol) or index.

# Examples
```jldoctest
julia> isdefined(Base, :sum)
true

julia> isdefined(Base, :NonExistentMethod)
false

julia> a = 1//2;

julia> isdefined(a, 2)
true

julia> isdefined(a, 3)
false

julia> isdefined(a, :num)
true

julia> isdefined(a, :numerator)
false
```
"""
isdefined


"""
    Vector{T}(undef, n)

Construct an uninitialized [`Vector{T}`](@ref) of length `n`. See [`undef`](@ref).

# Examples
```julia-repl
julia> Vector{Float64}(undef, 3)
3-element Array{Float64,1}:
 6.90966e-310
 6.90966e-310
 6.90966e-310
```
"""
Vector{T}(::UndefInitializer, n)

"""
    Vector{T}(nothing, m)

Construct a [`Vector{T}`](@ref) of length `m`, initialized with
[`nothing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Nothing <: T`.

# Examples
```jldoctest
julia> Vector{Union{Nothing, String}}(nothing, 2)
2-element Array{Union{Nothing, String},1}:
 nothing
 nothing
```
"""
Vector{T}(::Nothing, n)

"""
    Vector{T}(missing, m)

Construct a [`Vector{T}`](@ref) of length `m`, initialized with
[`missing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Missing <: T`.

# Examples
```jldoctest
julia> Vector{Union{Missing, String}}(missing, 2)
2-element Array{Union{Missing, String},1}:
 missing
 missing
```
"""
Vector{T}(::Missing, n)

"""
    Matrix{T}(undef, m, n)

Construct an uninitialized [`Matrix{T}`](@ref) of size `m`×`n`. See [`undef`](@ref).

# Examples
```julia-repl
julia> Matrix{Float64}(undef, 2, 3)
2×3 Array{Float64,2}:
 6.93517e-310  6.93517e-310  6.93517e-310
 6.93517e-310  6.93517e-310  1.29396e-320
```
"""
Matrix{T}(::UndefInitializer, m, n)

"""
    Matrix{T}(nothing, m, n)

Construct a [`Matrix{T}`](@ref) of size `m`×`n`, initialized with
[`nothing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Nothing <: T`.

# Examples
```jldoctest
julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)
2×3 Array{Union{Nothing, String},2}:
 nothing  nothing  nothing
 nothing  nothing  nothing
```
"""
Matrix{T}(::Nothing, m, n)

"""
    Matrix{T}(missing, m, n)

Construct a [`Matrix{T}`](@ref) of size `m`×`n`, initialized with
[`missing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Missing <: T`.

# Examples
```jldoctest
julia> Matrix{Union{Missing, String}}(missing, 2, 3)
2×3 Array{Union{Missing, String},2}:
 missing  missing  missing
 missing  missing  missing
```
"""
Matrix{T}(::Missing, m, n)

"""
    Array{T}(undef, dims)
    Array{T,N}(undef, dims)

Construct an uninitialized `N`-dimensional [`Array`](@ref)
containing elements of type `T`. `N` can either be supplied explicitly,
as in `Array{T,N}(undef, dims)`, or be determined by the length or number of `dims`.
`dims` may be a tuple or a series of integer arguments corresponding to the lengths
in each dimension. If the rank `N` is supplied explicitly, then it must
match the length or number of `dims`. See [`undef`](@ref).

# Examples
```julia-repl
julia> A = Array{Float64,2}(undef, 2, 3) # N given explicitly
2×3 Array{Float64,2}:
 6.90198e-310  6.90198e-310  6.90198e-310
 6.90198e-310  6.90198e-310  0.0

julia> B = Array{Float64}(undef, 2) # N determined by the input
2-element Array{Float64,1}:
 1.87103e-320
 0.0
```
"""
Array{T,N}(::UndefInitializer, dims)

"""
    Array{T}(nothing, dims)
    Array{T,N}(nothing, dims)

Construct an `N`-dimensional [`Array`](@ref) containing elements of type `T`,
initialized with [`nothing`](@ref) entries. Element type `T` must be able
to hold these values, i.e. `Nothing <: T`.

# Examples
```jldoctest
julia> Array{Union{Nothing, String}}(nothing, 2)
2-element Array{Union{Nothing, String},1}:
 nothing
 nothing

julia> Array{Union{Nothing, Int}}(nothing, 2, 3)
2×3 Array{Union{Nothing, Int64},2}:
 nothing  nothing  nothing
 nothing  nothing  nothing
```
"""
Array{T,N}(::Nothing, dims)


"""
    Array{T}(missing, dims)
    Array{T,N}(missing, dims)

Construct an `N`-dimensional [`Array`](@ref) containing elements of type `T`,
initialized with [`missing`](@ref) entries. Element type `T` must be able
to hold these values, i.e. `Missing <: T`.

# Examples
```jldoctest
julia> Array{Union{Missing, String}}(missing, 2)
2-element Array{Union{Missing, String},1}:
 missing
 missing

julia> Array{Union{Missing, Int}}(missing, 2, 3)
2×3 Array{Union{Missing, Int64},2}:
 missing  missing  missing
 missing  missing  missing
```
"""
Array{T,N}(::Missing, dims)

"""
    UndefInitializer

Singleton type used in array initialization, indicating the array-constructor-caller
would like an uninitialized array. See also [`undef`](@ref),
an alias for `UndefInitializer()`.

# Examples
```julia-repl
julia> Array{Float64,1}(UndefInitializer(), 3)
3-element Array{Float64,1}:
 2.2752528595e-314
 2.202942107e-314
 2.275252907e-314
```
"""
UndefInitializer

"""
    undef

Alias for `UndefInitializer()`, which constructs an instance of the singleton type
[`UndefInitializer`](@ref), used in array initialization to indicate the
array-constructor-caller would like an uninitialized array.

# Examples
```julia-repl
julia> Array{Float64,1}(undef, 3)
3-element Array{Float64,1}:
 2.2752528595e-314
 2.202942107e-314
 2.275252907e-314
```
"""
undef

"""
    +(x, y...)

Addition operator. `x+y+z+...` calls this function with all arguments, i.e. `+(x, y, z, ...)`.

# Examples
```jldoctest
julia> 1 + 20 + 4
25

julia> +(1, 20, 4)
25
```
"""
(+)(x, y...)

"""
    -(x)

Unary minus operator.

# Examples
```jldoctest
julia> -1
-1

julia> -(2)
-2

julia> -[1 2; 3 4]
2×2 Array{Int64,2}:
 -1  -2
 -3  -4
```
"""
-(x)

"""
    -(x, y)

Subtraction operator.

# Examples
```jldoctest
julia> 2 - 3
-1

julia> -(2, 4.5)
-2.5
```
"""
-(x, y)

"""
    *(x, y...)

Multiplication operator. `x*y*z*...` calls this function with all arguments, i.e. `*(x, y, z, ...)`.

# Examples
```jldoctest
julia> 2 * 7 * 8
112

julia> *(2, 7, 8)
112
```
"""
(*)(x, y...)

"""
    /(x, y)

Right division operator: multiplication of `x` by the inverse of `y` on the right. Gives
floating-point results for integer arguments.

# Examples
```jldoctest
julia> 1/2
0.5

julia> 4/2
2.0

julia> 4.5/2
2.25
```
"""
/(x, y)

"""
    ArgumentError(msg)

The parameters to a function call do not match a valid signature. Argument `msg` is a
descriptive error string.
"""
ArgumentError

"""
    MethodError(f, args)

A method with the required type signature does not exist in the given generic function.
Alternatively, there is no unique most-specific method.
"""
MethodError

"""
    AssertionError([msg])

The asserted condition did not evaluate to `true`.
Optional argument `msg` is a descriptive error string.

# Examples
```jldoctest
julia> @assert false "this is not true"
ERROR: AssertionError: this is not true
```

`AssertionError` is usually thrown from [`@assert`](@ref).
"""
AssertionError

"""
    LoadError(file::AbstractString, line::Int, error)

An error occurred while `include`ing, `require`ing, or [`using`](@ref) a file. The error specifics
should be available in the `.error` field.
"""
LoadError

"""
    InitError(mod::Symbol, error)

An error occurred when running a module's `__init__` function. The actual error thrown is
available in the `.error` field.
"""
InitError

"""
    Any::DataType

`Any` is the union of all types. It has the defining property `isa(x, Any) == true` for any `x`. `Any` therefore
describes the entire universe of possible values. For example `Integer` is a subset of `Any` that includes `Int`,
`Int8`, and other integer types.
"""
Any

"""
    Union{}

`Union{}`, the empty [`Union`](@ref) of types, is the type that has no values. That is, it has the defining
property `isa(x, Union{}) == false` for any `x`. `Base.Bottom` is defined as its alias and the type of `Union{}`
is `Core.TypeofBottom`.

# Examples
```jldoctest
julia> isa(nothing, Union{})
false
```
"""
kw"Union{}", Base.Bottom

"""
    Union{Types...}

A type union is an abstract type which includes all instances of any of its argument types. The empty
union [`Union{}`](@ref) is the bottom type of Julia.

# Examples
```jldoctest
julia> IntOrString = Union{Int,AbstractString}
Union{Int64, AbstractString}

julia> 1 :: IntOrString
1

julia> "Hello!" :: IntOrString
"Hello!"

julia> 1.0 :: IntOrString
ERROR: TypeError: in typeassert, expected Union{Int64, AbstractString}, got Float64
```
"""
Union


"""
    UnionAll

A union of types over all values of a type parameter. `UnionAll` is used to describe parametric types
where the values of some parameters are not known.

# Examples
```jldoctest
julia> typeof(Vector)
UnionAll

julia> typeof(Vector{Int})
DataType
```
"""
UnionAll

"""
    ::

With the `::`-operator type annotations are attached to expressions and variables in programs.
See the manual section on [Type Declarations](@ref).

Outside of declarations `::` is used to assert that expressions and variables in programs have a given type.

# Examples
```jldoctest
julia> (1+2)::AbstractFloat
ERROR: TypeError: typeassert: expected AbstractFloat, got Int64

julia> (1+2)::Int
3
```
"""
kw"::"

"""
    Vararg{T,N}

The last parameter of a tuple type [`Tuple`](@ref) can be the special type `Vararg`, which denotes any
number of trailing elements. The type `Vararg{T,N}` corresponds to exactly `N` elements of type `T`.
`Vararg{T}` corresponds to zero or more elements of type `T`. `Vararg` tuple types are used to represent the
arguments accepted by varargs methods (see the section on [Varargs Functions](@ref) in the manual.)

# Examples
```jldoctest
julia> mytupletype = Tuple{AbstractString,Vararg{Int}}
Tuple{AbstractString,Vararg{Int64,N} where N}

julia> isa(("1",), mytupletype)
true

julia> isa(("1",1), mytupletype)
true

julia> isa(("1",1,2), mytupletype)
true

julia> isa(("1",1,2,3.0), mytupletype)
false
```
"""
Vararg

"""
    Tuple{Types...}

Tuples are an abstraction of the arguments of a function – without the function itself. The salient aspects of
a function's arguments are their order and their types. Therefore a tuple type is similar to a parameterized
immutable type where each parameter is the type of one field. Tuple types may have any number of parameters.

Tuple types are covariant in their parameters: `Tuple{Int}` is a subtype of `Tuple{Any}`. Therefore `Tuple{Any}`
is considered an abstract type, and tuple types are only concrete if their parameters are. Tuples do not have
field names; fields are only accessed by index.

See the manual section on [Tuple Types](@ref).
"""
Tuple

"""
The base library of Julia.
"""
kw"Base"

"""
    typeassert(x, type)

Throw a TypeError unless `x isa type`.
The syntax `x::type` calls this function.
"""
typeassert

"""
    getproperty(value, name::Symbol)

The syntax `a.b` calls `getproperty(a, :b)`.

See also [`propertynames`](@ref Base.propertynames) and
[`setproperty!`](@ref Base.setproperty!).
"""
Base.getproperty

"""
    setproperty!(value, name::Symbol, x)

The syntax `a.b = c` calls `setproperty!(a, :b, c)`.

See also [`propertynames`](@ref Base.propertynames) and
[`getproperty`](@ref Base.getproperty).
"""
Base.setproperty!

"""
    StridedArray{T, N}

An `N` dimensional *strided* array with elements of type `T`. These arrays follow
the [strided array interface](@ref man-interface-strided-arrays). If `A` is a
`StridedArray`, then its elements are stored in memory with offsets, which may
vary between dimensions but are constant within a dimension. For example, `A` could
have stride 2 in dimension 1, and stride 3 in dimension 2. Incrementing `A` along
dimension `d` jumps in memory by [`strides(A, d)`] slots. Strided arrays are
particularly important and useful because they can sometimes be passed directly
as pointers to foreign language libraries like BLAS.
"""
StridedArray

"""
    StridedVector{T}

One dimensional [`StridedArray`](@ref) with elements of type `T`.
"""
StridedVector

"""
    StridedMatrix{T}

Two dimensional [`StridedArray`](@ref) with elements of type `T`.
"""
StridedMatrix

"""
    StridedVecOrMat{T}

Union type of [`StridedVector`](@ref) and [`StridedMatrix`](@ref) with elements of type `T`.
"""
StridedVecOrMat

end