1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module BaseDocs
@nospecialize # don't specialize on any arguments of the methods declared herein
struct Keyword
name::Symbol
end
macro kw_str(text)
return Keyword(Symbol(text))
end
"""
**Welcome to Julia $(string(VERSION)).** The full manual is available at
https://docs.julialang.org/
as well as many great tutorials and learning resources:
https://julialang.org/learning/
For help on a specific function or macro, type `?` followed
by its name, e.g. `?cos`, or `?@time`, and press enter.
Type `;` to enter shell mode, `]` to enter package mode.
"""
kw"help", kw"?", kw"julia", kw""
"""
using
`using Foo` will load the module or package `Foo` and make its [`export`](@ref)ed names
available for direct use. Names can also be used via dot syntax (e.g. `Foo.foo` to access
the name `foo`), whether they are `export`ed or not.
See the [manual section about modules](@ref modules) for details.
"""
kw"using"
"""
import
`import Foo` will load the module or package `Foo`.
Names from the imported `Foo` module can be accessed with dot syntax
(e.g. `Foo.foo` to access the name `foo`).
See the [manual section about modules](@ref modules) for details.
"""
kw"import"
"""
export
`export` is used within modules to tell Julia which functions should be
made available to the user. For example: `export foo` makes the name
`foo` available when [`using`](@ref) the module.
See the [manual section about modules](@ref modules) for details.
"""
kw"export"
"""
abstract type
`abstract type` declares a type that cannot be instantiated, and serves only as a node in the
type graph, thereby describing sets of related concrete types: those concrete types
which are their descendants. Abstract types form the conceptual hierarchy which makes
Julia’s type system more than just a collection of object implementations. For example:
```julia
abstract type Number end
abstract type Real <: Number end
```
[`Number`](@ref) has no supertype, whereas [`Real`](@ref) is an abstract subtype of `Number`.
"""
kw"abstract type"
"""
module
`module` declares a `Module`, which is a separate global variable workspace. Within a
module, you can control which names from other modules are visible (via importing), and
specify which of your names are intended to be public (via exporting).
Modules allow you to create top-level definitions without worrying about name conflicts
when your code is used together with somebody else’s.
See the [manual section about modules](@ref modules) for more details.
# Examples
```julia
module Foo
import Base.show
export MyType, foo
struct MyType
x
end
bar(x) = 2x
foo(a::MyType) = bar(a.x) + 1
show(io::IO, a::MyType) = print(io, "MyType \$(a.x)")
end
```
"""
kw"module"
"""
baremodule
`baremodule` declares a module that does not contain `using Base`
or a definition of `eval`. It does still import `Core`.
"""
kw"baremodule"
"""
primitive type
`primitive type` declares a concrete type whose data consists only of a series of bits. Classic
examples of primitive types are integers and floating-point values. Some example built-in
primitive type declarations:
```julia
primitive type Char 32 end
primitive type Bool <: Integer 8 end
```
The number after the name indicates how many bits of storage the type requires. Currently,
only sizes that are multiples of 8 bits are supported.
The [`Bool`](@ref) declaration shows how a primitive type can be optionally
declared to be a subtype of some supertype.
"""
kw"primitive type"
"""
macro
`macro` defines a method to include generated code in the final body of a program. A
macro maps a tuple of arguments to a returned expression, and the resulting expression
is compiled directly rather than requiring a runtime `eval` call. Macro arguments may
include expressions, literal values, and symbols. For example:
# Examples
```jldoctest
julia> macro sayhello(name)
return :( println("Hello, ", \$name, "!") )
end
@sayhello (macro with 1 method)
julia> @sayhello "Charlie"
Hello, Charlie!
```
"""
kw"macro"
"""
local
`local` introduces a new local variable.
See the [manual section on variable scoping](@ref scope-of-variables) for more information.
# Examples
```jldoctest
julia> function foo(n)
x = 0
for i = 1:n
local x # introduce a loop-local x
x = i
end
x
end
foo (generic function with 1 method)
julia> foo(10)
0
```
"""
kw"local"
"""
global
`global x` makes `x` in the current scope and its inner scopes refer to the global
variable of that name.
See the [manual section on variable scoping](@ref scope-of-variables) for more information.
# Examples
```jldoctest
julia> z = 3
3
julia> function foo()
global z = 6 # use the z variable defined outside foo
end
foo (generic function with 1 method)
julia> foo()
6
julia> z
6
```
"""
kw"global"
"""
let
`let` statements allocate new variable bindings each time they run. Whereas an
assignment modifies an existing value location, `let` creates new locations. This
difference is only detectable in the case of variables that outlive their scope via
closures. The `let` syntax accepts a comma-separated series of assignments and variable
names:
```julia
let var1 = value1, var2, var3 = value3
code
end
```
The assignments are evaluated in order, with each right-hand side evaluated in the scope
before the new variable on the left-hand side has been introduced. Therefore it makes
sense to write something like `let x = x`, since the two `x` variables are distinct and
have separate storage.
"""
kw"let"
"""
quote
`quote` creates multiple expression objects in a block without using the explicit `Expr`
constructor. For example:
```julia
ex = quote
x = 1
y = 2
x + y
end
```
Unlike the other means of quoting, `:( ... )`, this form introduces `QuoteNode` elements
to the expression tree, which must be considered when directly manipulating the tree.
For other purposes, `:( ... )` and `quote .. end` blocks are treated identically.
"""
kw"quote"
"""
'
The conjugate transposition operator, see [`adjoint`](@ref).
# Examples
```jldoctest
julia> A = [1.0 -2.0im; 4.0im 2.0]
2×2 Array{Complex{Float64},2}:
1.0+0.0im -0.0-2.0im
0.0+4.0im 2.0+0.0im
julia> A'
2×2 Array{Complex{Float64},2}:
1.0-0.0im 0.0-4.0im
-0.0+2.0im 2.0-0.0im
```
"""
kw"'"
"""
const
`const` is used to declare global variables whose values will not change. In almost all code
(and particularly performance sensitive code) global variables should be declared
constant in this way.
```julia
const x = 5
```
Multiple variables can be declared within a single `const`:
```julia
const y, z = 7, 11
```
Note that `const` only applies to one `=` operation, therefore `const x = y = 1`
declares `x` to be constant but not `y`. On the other hand, `const x = const y = 1`
declares both `x` and `y` constant.
Note that "constant-ness" does not extend into mutable containers; only the
association between a variable and its value is constant.
If `x` is an array or dictionary (for example) you can still modify, add, or remove elements.
In some cases changing the value of a `const` variable gives a warning instead of
an error.
However, this can produce unpredictable behavior or corrupt the state of your program,
and so should be avoided.
This feature is intended only for convenience during interactive use.
"""
kw"const"
"""
function
Functions are defined with the `function` keyword:
```julia
function add(a, b)
return a + b
end
```
Or the short form notation:
```julia
add(a, b) = a + b
```
The use of the [`return`](@ref) keyword is exactly the same as in other languages,
but is often optional. A function without an explicit `return` statement will return
the last expression in the function body.
"""
kw"function"
"""
return
`return` can be used in function bodies to exit early and return a given value, e.g.
```julia
function compare(a, b)
a == b && return "equal to"
a < b ? "less than" : "greater than"
end
```
In general you can place a `return` statement anywhere within a function body, including
within deeply nested loops or conditionals, but be careful with `do` blocks. For
example:
```julia
function test1(xs)
for x in xs
iseven(x) && return 2x
end
end
function test2(xs)
map(xs) do x
iseven(x) && return 2x
x
end
end
```
In the first example, the return breaks out of its enclosing function as soon as it hits
an even number, so `test1([5,6,7])` returns `12`.
You might expect the second example to behave the same way, but in fact the `return`
there only breaks out of the *inner* function (inside the `do` block) and gives a value
back to `map`. `test2([5,6,7])` then returns `[5,12,7]`.
"""
kw"return"
"""
if/elseif/else
`if`/`elseif`/`else` performs conditional evaluation, which allows portions of code to
be evaluated or not evaluated depending on the value of a boolean expression. Here is
the anatomy of the `if`/`elseif`/`else` conditional syntax:
```julia
if x < y
println("x is less than y")
elseif x > y
println("x is greater than y")
else
println("x is equal to y")
end
```
If the condition expression `x < y` is true, then the corresponding block is evaluated;
otherwise the condition expression `x > y` is evaluated, and if it is true, the
corresponding block is evaluated; if neither expression is true, the `else` block is
evaluated. The `elseif` and `else` blocks are optional, and as many `elseif` blocks as
desired can be used.
"""
kw"if", kw"elseif", kw"else"
"""
for
`for` loops repeatedly evaluate the body of the loop by
iterating over a sequence of values.
# Examples
```jldoctest
julia> for i in [1, 4, 0]
println(i)
end
1
4
0
```
"""
kw"for"
"""
while
`while` loops repeatedly evaluate a conditional expression, and continues evaluating the
body of the while loop so long as the expression remains `true`. If the condition
expression is false when the while loop is first reached, the body is never evaluated.
# Examples
```jldoctest
julia> i = 1
1
julia> while i < 5
println(i)
global i += 1
end
1
2
3
4
```
"""
kw"while"
"""
end
`end` marks the conclusion of a block of expressions, for example
[`module`](@ref), [`struct`](@ref), [`mutable struct`](@ref),
[`begin`](@ref), [`let`](@ref), [`for`](@ref) etc.
`end` may also be used when indexing into an array to represent
the last index of a dimension.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> A[end, :]
2-element Array{Int64,1}:
3
4
```
"""
kw"end"
"""
try/catch
A `try`/`catch` statement allows for `Exception`s to be tested for. For example, a
customized square root function can be written to automatically call either the real or
complex square root method on demand using `Exception`s:
```julia
f(x) = try
sqrt(x)
catch
sqrt(complex(x, 0))
end
```
`try`/`catch` statements also allow the `Exception` to be saved in a variable, e.g. `catch y`.
The power of the `try`/`catch` construct lies in the ability to unwind a deeply
nested computation immediately to a much higher level in the stack of calling functions.
"""
kw"try", kw"catch"
"""
finally
Run some code when a given block of code exits, regardless
of how it exits. For example, here is how we can guarantee that an opened file is
closed:
```julia
f = open("file")
try
operate_on_file(f)
finally
close(f)
end
```
When control leaves the [`try`](@ref) block (for example, due to a [`return`](@ref), or just finishing
normally), [`close(f)`](@ref) will be executed. If the `try` block exits due to an exception,
the exception will continue propagating. A `catch` block may be combined with `try` and
`finally` as well. In this case the `finally` block will run after `catch` has handled
the error.
"""
kw"finally"
"""
break
Break out of a loop immediately.
# Examples
```jldoctest
julia> i = 0
0
julia> while true
global i += 1
i > 5 && break
println(i)
end
1
2
3
4
5
```
"""
kw"break"
"""
continue
Skip the rest of the current loop iteration.
# Examples
```jldoctest
julia> for i = 1:6
iseven(i) && continue
println(i)
end
1
3
5
```
"""
kw"continue"
"""
do
Create an anonymous function. For example:
```julia
map(1:10) do x
2x
end
```
is equivalent to `map(x->2x, 1:10)`.
Use multiple arguments like so:
```julia
map(1:10, 11:20) do x, y
x + y
end
```
"""
kw"do"
"""
...
The "splat" operator, `...`, represents a sequence of arguments.
`...` can be used in function definitions, to indicate that the function
accepts an arbitrary number of arguments.
`...` can also be used to apply a function to a sequence of arguments.
# Examples
```jldoctest
julia> add(xs...) = reduce(+, xs)
add (generic function with 1 method)
julia> add(1, 2, 3, 4, 5)
15
julia> add([1, 2, 3]...)
6
julia> add(7, 1:100..., 1000:1100...)
111107
```
"""
kw"..."
"""
;
`;` has a similar role in Julia as in many C-like languages, and is used to delimit the
end of the previous statement. `;` is not necessary after new lines, but can be used to
separate statements on a single line or to join statements into a single expression.
`;` is also used to suppress output printing in the REPL and similar interfaces.
# Examples
```julia
julia> function foo()
x = "Hello, "; x *= "World!"
return x
end
foo (generic function with 1 method)
julia> bar() = (x = "Hello, Mars!"; return x)
bar (generic function with 1 method)
julia> foo();
julia> bar()
"Hello, Mars!"
```
"""
kw";"
"""
x && y
Short-circuiting boolean AND.
"""
kw"&&"
"""
x || y
Short-circuiting boolean OR.
"""
kw"||"
"""
ccall((function_name, library), returntype, (argtype1, ...), argvalue1, ...)
ccall(function_pointer, returntype, (argtype1, ...), argvalue1, ...)
Call a function in a C-exported shared library, specified by the tuple `(function_name, library)`,
where each component is either a string or symbol. Alternatively, `ccall` may
also be used to call a function pointer `function_pointer`, such as one returned by `dlsym`.
Note that the argument type tuple must be a literal tuple, and not a tuple-valued
variable or expression.
Each `argvalue` to the `ccall` will be converted to the corresponding
`argtype`, by automatic insertion of calls to `unsafe_convert(argtype,
cconvert(argtype, argvalue))`. (See also the documentation for
[`unsafe_convert`](@ref Base.unsafe_convert) and [`cconvert`](@ref Base.cconvert) for further details.)
In most cases, this simply results in a call to `convert(argtype, argvalue)`.
"""
kw"ccall"
"""
llvmcall(IR::String, ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)
llvmcall((declarations::String, IR::String), ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)
Call LLVM IR string in the first argument. Similar to an LLVM function `define` block,
arguments are available as consecutive unnamed SSA variables (%0, %1, etc.).
The optional declarations string contains external functions declarations that are
necessary for llvm to compile the IR string. Multiple declarations can be passed in by
separating them with line breaks.
Note that the argument type tuple must be a literal tuple, and not a tuple-valued
variable or expression.
Each `ArgumentValue` to `llvmcall` will be converted to the corresponding
`ArgumentType`, by automatic insertion of calls to `unsafe_convert(ArgumentType,
cconvert(ArgumentType, ArgumentValue))`. (See also the documentation for
[`unsafe_convert`](@ref Base.unsafe_convert) and [`cconvert`](@ref Base.cconvert) for further details.)
In most cases, this simply results in a call to `convert(ArgumentType, ArgumentValue)`.
See `test/llvmcall.jl` for usage examples.
"""
Core.Intrinsics.llvmcall
"""
begin
`begin...end` denotes a block of code.
```julia
begin
println("Hello, ")
println("World!")
end
```
Usually `begin` will not be necessary, since keywords such as [`function`](@ref) and [`let`](@ref)
implicitly begin blocks of code. See also [`;`](@ref).
"""
kw"begin"
"""
struct
The most commonly used kind of type in Julia is a struct, specified as a name and a
set of fields.
```julia
struct Point
x
y
end
```
Fields can have type restrictions, which may be parameterized:
```julia
struct Point{X}
x::X
y::Float64
end
```
A struct can also declare an abstract super type via `<:` syntax:
```julia
struct Point <: AbstractPoint
x
y
end
```
`struct`s are immutable by default; an instance of one of these types cannot
be modified after construction. Use [`mutable struct`](@ref) instead to declare a
type whose instances can be modified.
See the manual section on [Composite Types](@ref) for more details,
such as how to define constructors.
"""
kw"struct"
"""
mutable struct
`mutable struct` is similar to [`struct`](@ref), but additionally allows the
fields of the type to be set after construction. See the manual section on
[Composite Types](@ref) for more information.
"""
kw"mutable struct"
"""
new
Special function available to inner constructors which created a new object
of the type.
See the manual section on [Inner Constructor Methods](@ref) for more information.
"""
kw"new"
"""
where
The `where` keyword creates a type that is an iterated union of other types, over all
values of some variable. For example `Vector{T} where T<:Real` includes all [`Vector`](@ref)s
where the element type is some kind of `Real` number.
The variable bound defaults to `Any` if it is omitted:
```julia
Vector{T} where T # short for `where T<:Any`
```
Variables can also have lower bounds:
```julia
Vector{T} where T>:Int
Vector{T} where Int<:T<:Real
```
There is also a concise syntax for nested `where` expressions. For example, this:
```julia
Pair{T, S} where S<:Array{T} where T<:Number
```
can be shortened to:
```julia
Pair{T, S} where {T<:Number, S<:Array{T}}
```
This form is often found on method signatures.
Note that in this form, the variables are listed outermost-first. This matches the
order in which variables are substituted when a type is "applied" to parameter values
using the syntax `T{p1, p2, ...}`.
"""
kw"where"
"""
ans
A variable referring to the last computed value, automatically set at the interactive prompt.
"""
kw"ans"
"""
devnull
Used in a stream redirect to discard all data written to it. Essentially equivalent to
/dev/null on Unix or NUL on Windows. Usage:
```julia
run(pipeline(`cat test.txt`, devnull))
```
"""
devnull
# doc strings for code in boot.jl and built-ins
"""
Nothing
A type with no fields that is the type of [`nothing`](@ref).
"""
Nothing
"""
nothing
The singleton instance of type [`Nothing`](@ref), used by convention when there is no value to return
(as in a C `void` function) or when a variable or field holds no value.
"""
nothing
"""
Core.TypeofBottom
The singleton type containing only the value `Union{}`.
"""
Core.TypeofBottom
"""
Function
Abstract type of all functions.
```jldoctest
julia> isa(+, Function)
true
julia> typeof(sin)
typeof(sin)
julia> ans <: Function
true
```
"""
Function
"""
ReadOnlyMemoryError()
An operation tried to write to memory that is read-only.
"""
ReadOnlyMemoryError
"""
ErrorException(msg)
Generic error type. The error message, in the `.msg` field, may provide more specific details.
# Example
```jldoctest
julia> ex = ErrorException("I've done a bad thing");
julia> ex.msg
"I've done a bad thing"
```
"""
ErrorException
"""
WrappedException(msg)
Generic type for `Exception`s wrapping another `Exception`, such as `LoadError` and
`InitError`. Those exceptions contain information about the root cause of an
exception. Subtypes define a field `error` containing the causing `Exception`.
"""
Core.WrappedException
"""
UndefRefError()
The item or field is not defined for the given object.
"""
UndefRefError
"""
Float32(x [, mode::RoundingMode])
Create a `Float32` from `x`. If `x` is not exactly representable then `mode` determines how
`x` is rounded.
# Examples
```jldoctest
julia> Float32(1/3, RoundDown)
0.3333333f0
julia> Float32(1/3, RoundUp)
0.33333334f0
```
See [`RoundingMode`](@ref) for available rounding modes.
"""
Float32(x)
"""
Float64(x [, mode::RoundingMode])
Create a `Float64` from `x`. If `x` is not exactly representable then `mode` determines how
`x` is rounded.
# Examples
```jldoctest
julia> Float64(pi, RoundDown)
3.141592653589793
julia> Float64(pi, RoundUp)
3.1415926535897936
```
See [`RoundingMode`](@ref) for available rounding modes.
"""
Float64(x)
"""
OutOfMemoryError()
An operation allocated too much memory for either the system or the garbage collector to
handle properly.
"""
OutOfMemoryError
"""
BoundsError([a],[i])
An indexing operation into an array, `a`, tried to access an out-of-bounds element at index `i`.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> A = fill(1.0, 7);
julia> A[8]
ERROR: BoundsError: attempt to access 7-element Array{Float64,1} at index [8]
Stacktrace:
[1] getindex(::Array{Float64,1}, ::Int64) at ./array.jl:660
[2] top-level scope
julia> B = fill(1.0, (2,3));
julia> B[2, 4]
ERROR: BoundsError: attempt to access 2×3 Array{Float64,2} at index [2, 4]
Stacktrace:
[1] getindex(::Array{Float64,2}, ::Int64, ::Int64) at ./array.jl:661
[2] top-level scope
julia> B[9]
ERROR: BoundsError: attempt to access 2×3 Array{Float64,2} at index [9]
Stacktrace:
[1] getindex(::Array{Float64,2}, ::Int64) at ./array.jl:660
[2] top-level scope
```
"""
BoundsError
"""
InexactError(name::Symbol, T, val)
Cannot exactly convert `val` to type `T` in a method of function `name`.
# Examples
```jldoctest
julia> convert(Float64, 1+2im)
ERROR: InexactError: Float64(Float64, 1 + 2im)
Stacktrace:
[...]
```
"""
InexactError
"""
DomainError(val)
DomainError(val, msg)
The argument `val` to a function or constructor is outside the valid domain.
# Examples
```jldoctest
julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
```
"""
DomainError
"""
Task(func)
Create a `Task` (i.e. coroutine) to execute the given function `func` (which must be
callable with no arguments). The task exits when this function returns.
# Examples
```jldoctest
julia> a() = sum(i for i in 1:1000);
julia> b = Task(a);
```
In this example, `b` is a runnable `Task` that hasn't started yet.
"""
Task
"""
StackOverflowError()
The function call grew beyond the size of the call stack. This usually happens when a call
recurses infinitely.
"""
StackOverflowError
"""
nfields(x) -> Int
Get the number of fields in the given object.
# Examples
```jldoctest
julia> a = 1//2;
julia> nfields(a)
2
julia> b = 1
1
julia> nfields(b)
0
julia> ex = ErrorException("I've done a bad thing");
julia> nfields(ex)
1
```
In these examples, `a` is a [`Rational`](@ref), which has two fields.
`b` is an `Int`, which is a primitive bitstype with no fields at all.
`ex` is an [`ErrorException`](@ref), which has one field.
"""
nfields
"""
UndefVarError(var::Symbol)
A symbol in the current scope is not defined.
# Examples
```jldoctest
julia> a
ERROR: UndefVarError: a not defined
julia> a = 1;
julia> a
1
```
"""
UndefVarError
"""
UndefKeywordError(var::Symbol)
The required keyword argument `var` was not assigned in a function call.
"""
UndefKeywordError
"""
OverflowError(msg)
The result of an expression is too large for the specified type and will cause a wraparound.
"""
OverflowError
"""
TypeError(func::Symbol, context::AbstractString, expected::Type, got)
A type assertion failure, or calling an intrinsic function with an incorrect argument type.
"""
TypeError
"""
InterruptException()
The process was stopped by a terminal interrupt (CTRL+C).
"""
InterruptException
"""
applicable(f, args...) -> Bool
Determine whether the given generic function has a method applicable to the given arguments.
See also [`hasmethod`](@ref).
# Examples
```jldoctest
julia> function f(x, y)
x + y
end;
julia> applicable(f, 1)
false
julia> applicable(f, 1, 2)
true
```
"""
applicable
"""
invoke(f, argtypes::Type, args...; kwargs...)
Invoke a method for the given generic function `f` matching the specified types `argtypes` on the
specified arguments `args` and passing the keyword arguments `kwargs`. The arguments `args` must
conform with the specified types in `argtypes`, i.e. conversion is not automatically performed.
This method allows invoking a method other than the most specific matching method, which is useful
when the behavior of a more general definition is explicitly needed (often as part of the
implementation of a more specific method of the same function).
# Examples
```jldoctest
julia> f(x::Real) = x^2;
julia> f(x::Integer) = 1 + invoke(f, Tuple{Real}, x);
julia> f(2)
5
```
"""
invoke
"""
isa(x, type) -> Bool
Determine whether `x` is of the given `type`. Can also be used as an infix operator, e.g.
`x isa type`.
# Examples
```jldoctest
julia> isa(1, Int)
true
julia> isa(1, Matrix)
false
julia> isa(1, Char)
false
julia> isa(1, Number)
true
julia> 1 isa Number
true
```
"""
isa
"""
DivideError()
Integer division was attempted with a denominator value of 0.
# Examples
```jldoctest
julia> 2/0
Inf
julia> div(2, 0)
ERROR: DivideError: integer division error
Stacktrace:
[...]
```
"""
DivideError
"""
Number
Abstract supertype for all number types.
"""
Number
"""
Real <: Number
Abstract supertype for all real numbers.
"""
Real
"""
AbstractFloat <: Real
Abstract supertype for all floating point numbers.
"""
AbstractFloat
"""
Integer <: Real
Abstract supertype for all integers.
"""
Integer
"""
Signed <: Integer
Abstract supertype for all signed integers.
"""
Signed
"""
Unsigned <: Integer
Abstract supertype for all unsigned integers.
"""
Unsigned
"""
Bool <: Integer
Boolean type.
"""
Bool
for bit in (16, 32, 64)
@eval begin
"""
Float$($bit) <: AbstractFloat
$($bit)-bit floating point number type.
"""
$(Symbol("Float", bit))
end
end
for bit in (8, 16, 32, 64, 128)
@eval begin
"""
Int$($bit) <: Signed
$($bit)-bit signed integer type.
"""
$(Symbol("Int", bit))
"""
UInt$($bit) <: Unsigned
$($bit)-bit unsigned integer type.
"""
$(Symbol("UInt", bit))
end
end
"""
Symbol(x...) -> Symbol
Create a `Symbol` by concatenating the string representations of the arguments together.
# Examples
```jldoctest
julia> Symbol("my", "name")
:myname
julia> Symbol("day", 4)
:day4
```
"""
Symbol
"""
tuple(xs...)
Construct a tuple of the given objects.
# Examples
```jldoctest
julia> tuple(1, 'a', pi)
(1, 'a', π = 3.1415926535897...)
```
"""
tuple
"""
getfield(value, name::Symbol)
Extract a named field from a `value` of composite type.
See also [`getproperty`](@ref Base.getproperty).
# Examples
```jldoctest
julia> a = 1//2
1//2
julia> getfield(a, :num)
1
julia> a.num
1
```
"""
getfield
"""
setfield!(value, name::Symbol, x)
Assign `x` to a named field in `value` of composite type.
The `value` must be mutable and `x` must be a subtype of `fieldtype(typeof(value), name)`.
See also [`setproperty!`](@ref Base.setproperty!).
# Examples
```jldoctest
julia> mutable struct MyMutableStruct
field::Int
end
julia> a = MyMutableStruct(1);
julia> setfield!(a, :field, 2);
julia> getfield(a, :field)
2
julia> a = 1//2
1//2
julia> setfield!(a, :num, 3);
ERROR: type Rational is immutable
```
"""
setfield!
"""
typeof(x)
Get the concrete type of `x`.
# Examples
```jldoctest
julia> a = 1//2;
julia> typeof(a)
Rational{Int64}
julia> M = [1 2; 3.5 4];
julia> typeof(M)
Array{Float64,2}
```
"""
typeof
"""
isdefined(m::Module, s::Symbol)
isdefined(object, s::Symbol)
isdefined(object, index::Int)
Tests whether an assignable location is defined. The arguments can be a module and a symbol
or a composite object and field name (as a symbol) or index.
# Examples
```jldoctest
julia> isdefined(Base, :sum)
true
julia> isdefined(Base, :NonExistentMethod)
false
julia> a = 1//2;
julia> isdefined(a, 2)
true
julia> isdefined(a, 3)
false
julia> isdefined(a, :num)
true
julia> isdefined(a, :numerator)
false
```
"""
isdefined
"""
Vector{T}(undef, n)
Construct an uninitialized [`Vector{T}`](@ref) of length `n`. See [`undef`](@ref).
# Examples
```julia-repl
julia> Vector{Float64}(undef, 3)
3-element Array{Float64,1}:
6.90966e-310
6.90966e-310
6.90966e-310
```
"""
Vector{T}(::UndefInitializer, n)
"""
Vector{T}(nothing, m)
Construct a [`Vector{T}`](@ref) of length `m`, initialized with
[`nothing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Nothing <: T`.
# Examples
```jldoctest
julia> Vector{Union{Nothing, String}}(nothing, 2)
2-element Array{Union{Nothing, String},1}:
nothing
nothing
```
"""
Vector{T}(::Nothing, n)
"""
Vector{T}(missing, m)
Construct a [`Vector{T}`](@ref) of length `m`, initialized with
[`missing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Missing <: T`.
# Examples
```jldoctest
julia> Vector{Union{Missing, String}}(missing, 2)
2-element Array{Union{Missing, String},1}:
missing
missing
```
"""
Vector{T}(::Missing, n)
"""
Matrix{T}(undef, m, n)
Construct an uninitialized [`Matrix{T}`](@ref) of size `m`×`n`. See [`undef`](@ref).
# Examples
```julia-repl
julia> Matrix{Float64}(undef, 2, 3)
2×3 Array{Float64,2}:
6.93517e-310 6.93517e-310 6.93517e-310
6.93517e-310 6.93517e-310 1.29396e-320
```
"""
Matrix{T}(::UndefInitializer, m, n)
"""
Matrix{T}(nothing, m, n)
Construct a [`Matrix{T}`](@ref) of size `m`×`n`, initialized with
[`nothing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Nothing <: T`.
# Examples
```jldoctest
julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)
2×3 Array{Union{Nothing, String},2}:
nothing nothing nothing
nothing nothing nothing
```
"""
Matrix{T}(::Nothing, m, n)
"""
Matrix{T}(missing, m, n)
Construct a [`Matrix{T}`](@ref) of size `m`×`n`, initialized with
[`missing`](@ref) entries. Element type `T` must be able to hold
these values, i.e. `Missing <: T`.
# Examples
```jldoctest
julia> Matrix{Union{Missing, String}}(missing, 2, 3)
2×3 Array{Union{Missing, String},2}:
missing missing missing
missing missing missing
```
"""
Matrix{T}(::Missing, m, n)
"""
Array{T}(undef, dims)
Array{T,N}(undef, dims)
Construct an uninitialized `N`-dimensional [`Array`](@ref)
containing elements of type `T`. `N` can either be supplied explicitly,
as in `Array{T,N}(undef, dims)`, or be determined by the length or number of `dims`.
`dims` may be a tuple or a series of integer arguments corresponding to the lengths
in each dimension. If the rank `N` is supplied explicitly, then it must
match the length or number of `dims`. See [`undef`](@ref).
# Examples
```julia-repl
julia> A = Array{Float64,2}(undef, 2, 3) # N given explicitly
2×3 Array{Float64,2}:
6.90198e-310 6.90198e-310 6.90198e-310
6.90198e-310 6.90198e-310 0.0
julia> B = Array{Float64}(undef, 2) # N determined by the input
2-element Array{Float64,1}:
1.87103e-320
0.0
```
"""
Array{T,N}(::UndefInitializer, dims)
"""
Array{T}(nothing, dims)
Array{T,N}(nothing, dims)
Construct an `N`-dimensional [`Array`](@ref) containing elements of type `T`,
initialized with [`nothing`](@ref) entries. Element type `T` must be able
to hold these values, i.e. `Nothing <: T`.
# Examples
```jldoctest
julia> Array{Union{Nothing, String}}(nothing, 2)
2-element Array{Union{Nothing, String},1}:
nothing
nothing
julia> Array{Union{Nothing, Int}}(nothing, 2, 3)
2×3 Array{Union{Nothing, Int64},2}:
nothing nothing nothing
nothing nothing nothing
```
"""
Array{T,N}(::Nothing, dims)
"""
Array{T}(missing, dims)
Array{T,N}(missing, dims)
Construct an `N`-dimensional [`Array`](@ref) containing elements of type `T`,
initialized with [`missing`](@ref) entries. Element type `T` must be able
to hold these values, i.e. `Missing <: T`.
# Examples
```jldoctest
julia> Array{Union{Missing, String}}(missing, 2)
2-element Array{Union{Missing, String},1}:
missing
missing
julia> Array{Union{Missing, Int}}(missing, 2, 3)
2×3 Array{Union{Missing, Int64},2}:
missing missing missing
missing missing missing
```
"""
Array{T,N}(::Missing, dims)
"""
UndefInitializer
Singleton type used in array initialization, indicating the array-constructor-caller
would like an uninitialized array. See also [`undef`](@ref),
an alias for `UndefInitializer()`.
# Examples
```julia-repl
julia> Array{Float64,1}(UndefInitializer(), 3)
3-element Array{Float64,1}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314
```
"""
UndefInitializer
"""
undef
Alias for `UndefInitializer()`, which constructs an instance of the singleton type
[`UndefInitializer`](@ref), used in array initialization to indicate the
array-constructor-caller would like an uninitialized array.
# Examples
```julia-repl
julia> Array{Float64,1}(undef, 3)
3-element Array{Float64,1}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314
```
"""
undef
"""
+(x, y...)
Addition operator. `x+y+z+...` calls this function with all arguments, i.e. `+(x, y, z, ...)`.
# Examples
```jldoctest
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
```
"""
(+)(x, y...)
"""
-(x)
Unary minus operator.
# Examples
```jldoctest
julia> -1
-1
julia> -(2)
-2
julia> -[1 2; 3 4]
2×2 Array{Int64,2}:
-1 -2
-3 -4
```
"""
-(x)
"""
-(x, y)
Subtraction operator.
# Examples
```jldoctest
julia> 2 - 3
-1
julia> -(2, 4.5)
-2.5
```
"""
-(x, y)
"""
*(x, y...)
Multiplication operator. `x*y*z*...` calls this function with all arguments, i.e. `*(x, y, z, ...)`.
# Examples
```jldoctest
julia> 2 * 7 * 8
112
julia> *(2, 7, 8)
112
```
"""
(*)(x, y...)
"""
/(x, y)
Right division operator: multiplication of `x` by the inverse of `y` on the right. Gives
floating-point results for integer arguments.
# Examples
```jldoctest
julia> 1/2
0.5
julia> 4/2
2.0
julia> 4.5/2
2.25
```
"""
/(x, y)
"""
ArgumentError(msg)
The parameters to a function call do not match a valid signature. Argument `msg` is a
descriptive error string.
"""
ArgumentError
"""
MethodError(f, args)
A method with the required type signature does not exist in the given generic function.
Alternatively, there is no unique most-specific method.
"""
MethodError
"""
AssertionError([msg])
The asserted condition did not evaluate to `true`.
Optional argument `msg` is a descriptive error string.
# Examples
```jldoctest
julia> @assert false "this is not true"
ERROR: AssertionError: this is not true
```
`AssertionError` is usually thrown from [`@assert`](@ref).
"""
AssertionError
"""
LoadError(file::AbstractString, line::Int, error)
An error occurred while `include`ing, `require`ing, or [`using`](@ref) a file. The error specifics
should be available in the `.error` field.
"""
LoadError
"""
InitError(mod::Symbol, error)
An error occurred when running a module's `__init__` function. The actual error thrown is
available in the `.error` field.
"""
InitError
"""
Any::DataType
`Any` is the union of all types. It has the defining property `isa(x, Any) == true` for any `x`. `Any` therefore
describes the entire universe of possible values. For example `Integer` is a subset of `Any` that includes `Int`,
`Int8`, and other integer types.
"""
Any
"""
Union{}
`Union{}`, the empty [`Union`](@ref) of types, is the type that has no values. That is, it has the defining
property `isa(x, Union{}) == false` for any `x`. `Base.Bottom` is defined as its alias and the type of `Union{}`
is `Core.TypeofBottom`.
# Examples
```jldoctest
julia> isa(nothing, Union{})
false
```
"""
kw"Union{}", Base.Bottom
"""
Union{Types...}
A type union is an abstract type which includes all instances of any of its argument types. The empty
union [`Union{}`](@ref) is the bottom type of Julia.
# Examples
```jldoctest
julia> IntOrString = Union{Int,AbstractString}
Union{Int64, AbstractString}
julia> 1 :: IntOrString
1
julia> "Hello!" :: IntOrString
"Hello!"
julia> 1.0 :: IntOrString
ERROR: TypeError: in typeassert, expected Union{Int64, AbstractString}, got Float64
```
"""
Union
"""
UnionAll
A union of types over all values of a type parameter. `UnionAll` is used to describe parametric types
where the values of some parameters are not known.
# Examples
```jldoctest
julia> typeof(Vector)
UnionAll
julia> typeof(Vector{Int})
DataType
```
"""
UnionAll
"""
::
With the `::`-operator type annotations are attached to expressions and variables in programs.
See the manual section on [Type Declarations](@ref).
Outside of declarations `::` is used to assert that expressions and variables in programs have a given type.
# Examples
```jldoctest
julia> (1+2)::AbstractFloat
ERROR: TypeError: typeassert: expected AbstractFloat, got Int64
julia> (1+2)::Int
3
```
"""
kw"::"
"""
Vararg{T,N}
The last parameter of a tuple type [`Tuple`](@ref) can be the special type `Vararg`, which denotes any
number of trailing elements. The type `Vararg{T,N}` corresponds to exactly `N` elements of type `T`.
`Vararg{T}` corresponds to zero or more elements of type `T`. `Vararg` tuple types are used to represent the
arguments accepted by varargs methods (see the section on [Varargs Functions](@ref) in the manual.)
# Examples
```jldoctest
julia> mytupletype = Tuple{AbstractString,Vararg{Int}}
Tuple{AbstractString,Vararg{Int64,N} where N}
julia> isa(("1",), mytupletype)
true
julia> isa(("1",1), mytupletype)
true
julia> isa(("1",1,2), mytupletype)
true
julia> isa(("1",1,2,3.0), mytupletype)
false
```
"""
Vararg
"""
Tuple{Types...}
Tuples are an abstraction of the arguments of a function – without the function itself. The salient aspects of
a function's arguments are their order and their types. Therefore a tuple type is similar to a parameterized
immutable type where each parameter is the type of one field. Tuple types may have any number of parameters.
Tuple types are covariant in their parameters: `Tuple{Int}` is a subtype of `Tuple{Any}`. Therefore `Tuple{Any}`
is considered an abstract type, and tuple types are only concrete if their parameters are. Tuples do not have
field names; fields are only accessed by index.
See the manual section on [Tuple Types](@ref).
"""
Tuple
"""
The base library of Julia.
"""
kw"Base"
"""
typeassert(x, type)
Throw a TypeError unless `x isa type`.
The syntax `x::type` calls this function.
"""
typeassert
"""
getproperty(value, name::Symbol)
The syntax `a.b` calls `getproperty(a, :b)`.
See also [`propertynames`](@ref Base.propertynames) and
[`setproperty!`](@ref Base.setproperty!).
"""
Base.getproperty
"""
setproperty!(value, name::Symbol, x)
The syntax `a.b = c` calls `setproperty!(a, :b, c)`.
See also [`propertynames`](@ref Base.propertynames) and
[`getproperty`](@ref Base.getproperty).
"""
Base.setproperty!
"""
StridedArray{T, N}
An `N` dimensional *strided* array with elements of type `T`. These arrays follow
the [strided array interface](@ref man-interface-strided-arrays). If `A` is a
`StridedArray`, then its elements are stored in memory with offsets, which may
vary between dimensions but are constant within a dimension. For example, `A` could
have stride 2 in dimension 1, and stride 3 in dimension 2. Incrementing `A` along
dimension `d` jumps in memory by [`strides(A, d)`] slots. Strided arrays are
particularly important and useful because they can sometimes be passed directly
as pointers to foreign language libraries like BLAS.
"""
StridedArray
"""
StridedVector{T}
One dimensional [`StridedArray`](@ref) with elements of type `T`.
"""
StridedVector
"""
StridedMatrix{T}
Two dimensional [`StridedArray`](@ref) with elements of type `T`.
"""
StridedMatrix
"""
StridedVecOrMat{T}
Union type of [`StridedVector`](@ref) and [`StridedMatrix`](@ref) with elements of type `T`.
"""
StridedVecOrMat
end
|