1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Dims{N}
An `NTuple` of `N` `Int`s used to represent the dimensions
of an [`AbstractArray`](@ref).
"""
Dims{N} = NTuple{N,Int}
DimsInteger{N} = NTuple{N,Integer}
Indices{N} = NTuple{N,AbstractUnitRange}
## Traits for array types ##
abstract type IndexStyle end
"""
IndexLinear()
Subtype of [`IndexStyle`](@ref) used to describe arrays which
are optimally indexed by one linear index.
A linear indexing style uses one integer to describe the position in the array
(even if it's a multidimensional array) and column-major
ordering is used to access the elements. For example,
if `A` were a `(2, 3)` custom matrix type with linear indexing,
and we referenced `A[5]` (using linear style), this would
be equivalent to referencing `A[1, 3]` (since `2*1 + 3 = 5`).
See also [`IndexCartesian`](@ref).
"""
struct IndexLinear <: IndexStyle end
"""
IndexCartesian()
Subtype of [`IndexStyle`](@ref) used to describe arrays which
are optimally indexed by a Cartesian index.
A cartesian indexing style uses multiple integers/indices to describe the position in the array.
For example, if `A` were a `(2, 3, 4)` custom matrix type with cartesian indexing,
we could reference `A[2, 1, 3]` and Julia would automatically convert this into the
correct location in the underlying memory. See also [`IndexLinear`](@ref).
"""
struct IndexCartesian <: IndexStyle end
"""
IndexStyle(A)
IndexStyle(typeof(A))
`IndexStyle` specifies the "native indexing style" for array `A`. When
you define a new [`AbstractArray`](@ref) type, you can choose to implement
either linear indexing (with [`IndexLinear`](@ref)) or cartesian indexing.
If you decide to implement linear indexing, then you must set this trait for your array
type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()
The default is [`IndexCartesian()`](@ref).
Julia's internal indexing machinery will automatically (and invisibly)
convert all indexing operations into the preferred style. This allows users
to access elements of your array using any indexing style, even when explicit
methods have not been provided.
If you define both styles of indexing for your `AbstractArray`, this
trait can be used to select the most performant indexing style. Some
methods check this trait on their inputs, and dispatch to different
algorithms depending on the most efficient access pattern. In
particular, [`eachindex`](@ref) creates an iterator whose type depends
on the setting of this trait.
"""
IndexStyle(A::AbstractArray) = IndexStyle(typeof(A))
IndexStyle(::Type{Union{}}) = IndexLinear()
IndexStyle(::Type{<:AbstractArray}) = IndexCartesian()
IndexStyle(::Type{<:Array}) = IndexLinear()
IndexStyle(::Type{<:AbstractRange}) = IndexLinear()
IndexStyle(A::AbstractArray, B::AbstractArray) = IndexStyle(IndexStyle(A), IndexStyle(B))
IndexStyle(A::AbstractArray, B::AbstractArray...) = IndexStyle(IndexStyle(A), IndexStyle(B...))
IndexStyle(::IndexLinear, ::IndexLinear) = IndexLinear()
IndexStyle(::IndexStyle, ::IndexStyle) = IndexCartesian()
# array shape rules
promote_shape(::Tuple{}, ::Tuple{}) = ()
function promote_shape(a::Tuple{Int,}, b::Tuple{Int,})
if a[1] != b[1]
throw(DimensionMismatch("dimensions must match"))
end
return a
end
function promote_shape(a::Tuple{Int,Int}, b::Tuple{Int,})
if a[1] != b[1] || a[2] != 1
throw(DimensionMismatch("dimensions must match"))
end
return a
end
promote_shape(a::Tuple{Int,}, b::Tuple{Int,Int}) = promote_shape(b, a)
function promote_shape(a::Tuple{Int, Int}, b::Tuple{Int, Int})
if a[1] != b[1] || a[2] != b[2]
throw(DimensionMismatch("dimensions must match"))
end
return a
end
"""
promote_shape(s1, s2)
Check two array shapes for compatibility, allowing trailing singleton dimensions, and return
whichever shape has more dimensions.
# Examples
```jldoctest
julia> a = fill(1, (3,4,1,1,1));
julia> b = fill(1, (3,4));
julia> promote_shape(a,b)
(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))
julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))
(2, 3, 1, 4, 1)
```
"""
function promote_shape(a::Dims, b::Dims)
if length(a) < length(b)
return promote_shape(b, a)
end
for i=1:length(b)
if a[i] != b[i]
throw(DimensionMismatch("dimensions must match"))
end
end
for i=length(b)+1:length(a)
if a[i] != 1
throw(DimensionMismatch("dimensions must match"))
end
end
return a
end
function promote_shape(a::AbstractArray, b::AbstractArray)
promote_shape(axes(a), axes(b))
end
function promote_shape(a::Indices, b::Indices)
if length(a) < length(b)
return promote_shape(b, a)
end
for i=1:length(b)
if a[i] != b[i]
throw(DimensionMismatch("dimensions must match"))
end
end
for i=length(b)+1:length(a)
if a[i] != 1:1
throw(DimensionMismatch("dimensions must match"))
end
end
return a
end
function throw_setindex_mismatch(X, I)
if length(I) == 1
throw(DimensionMismatch("tried to assign $(length(X)) elements to $(I[1]) destinations"))
else
throw(DimensionMismatch("tried to assign $(dims2string(size(X))) array to $(dims2string(I)) destination"))
end
end
# check for valid sizes in A[I...] = X where X <: AbstractArray
# we want to allow dimensions that are equal up to permutation, but only
# for permutations that leave array elements in the same linear order.
# those are the permutations that preserve the order of the non-singleton
# dimensions.
function setindex_shape_check(X::AbstractArray, I::Integer...)
li = ndims(X)
lj = length(I)
i = j = 1
while true
ii = length(axes(X,i))
jj = I[j]
if i == li || j == lj
while i < li
i += 1
ii *= length(axes(X,i))
end
while j < lj
j += 1
jj *= I[j]
end
if ii != jj
throw_setindex_mismatch(X, I)
end
return
end
if ii == jj
i += 1
j += 1
elseif ii == 1
i += 1
elseif jj == 1
j += 1
else
throw_setindex_mismatch(X, I)
end
end
end
setindex_shape_check(X::AbstractArray) =
(length(X)==1 || throw_setindex_mismatch(X,()))
setindex_shape_check(X::AbstractArray, i::Integer) =
(length(X)==i || throw_setindex_mismatch(X, (i,)))
setindex_shape_check(X::AbstractArray{<:Any,1}, i::Integer) =
(length(X)==i || throw_setindex_mismatch(X, (i,)))
setindex_shape_check(X::AbstractArray{<:Any,1}, i::Integer, j::Integer) =
(length(X)==i*j || throw_setindex_mismatch(X, (i,j)))
function setindex_shape_check(X::AbstractArray{<:Any,2}, i::Integer, j::Integer)
if length(X) != i*j
throw_setindex_mismatch(X, (i,j))
end
sx1 = length(axes(X,1))
if !(i == 1 || i == sx1 || sx1 == 1)
throw_setindex_mismatch(X, (i,j))
end
end
# convert to a supported index type (array or Int)
"""
to_index(A, i)
Convert index `i` to an `Int` or array of indices to be used as an index into array `A`.
Custom array types may specialize `to_index(::CustomArray, i)` to provide
special indexing behaviors. Note that some index types (like `Colon`) require
more context in order to transform them into an array of indices; those get
converted in the more complicated `to_indices` function. By default, this
simply calls the generic `to_index(i)`. This must return either an `Int` or an
`AbstractArray` of scalar indices that are supported by `A`.
"""
to_index(A, i) = to_index(i)
"""
to_index(i)
Convert index `i` to an `Int` or array of `Int`s to be used as an index for all arrays.
Custom index types may specialize `to_index(::CustomIndex)` to provide special
indexing behaviors. This must return either an `Int` or an `AbstractArray` of
`Int`s.
"""
to_index(i::Integer) = convert(Int,i)::Int
to_index(i::Bool) = throw(ArgumentError("invalid index: $i of type $(typeof(i))"))
to_index(I::AbstractArray{Bool}) = LogicalIndex(I)
to_index(I::AbstractArray) = I
to_index(I::AbstractArray{Union{}}) = I
to_index(I::AbstractArray{<:Union{AbstractArray, Colon}}) =
throw(ArgumentError("invalid index: $I of type $(typeof(I))"))
to_index(::Colon) = throw(ArgumentError("colons must be converted by to_indices(...)"))
to_index(i) = throw(ArgumentError("invalid index: $i of type $(typeof(i))"))
# The general to_indices is mostly defined in multidimensional.jl, but this
# definition is required for bootstrap:
"""
to_indices(A, I::Tuple)
Convert the tuple `I` to a tuple of indices for use in indexing into array `A`.
The returned tuple must only contain either `Int`s or `AbstractArray`s of
scalar indices that are supported by array `A`. It will error upon encountering
a novel index type that it does not know how to process.
For simple index types, it defers to the unexported `Base.to_index(A, i)` to
process each index `i`. While this internal function is not intended to be
called directly, `Base.to_index` may be extended by custom array or index types
to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into
which they index. To support those cases, `to_indices(A, I)` calls
`to_indices(A, axes(A), I)`, which then recursively walks through both the
given tuple of indices and the dimensional indices of `A` in tandem. As such,
not all index types are guaranteed to propagate to `Base.to_index`.
"""
to_indices(A, I::Tuple) = (@_inline_meta; to_indices(A, axes(A), I))
to_indices(A, I::Tuple{Any}) = (@_inline_meta; to_indices(A, (eachindex(IndexLinear(), A),), I))
to_indices(A, inds, ::Tuple{}) = ()
to_indices(A, inds, I::Tuple{Any, Vararg{Any}}) =
(@_inline_meta; (to_index(A, I[1]), to_indices(A, _maybetail(inds), tail(I))...))
_maybetail(::Tuple{}) = ()
_maybetail(t::Tuple) = tail(t)
"""
Slice(indices)
Represent an AbstractUnitRange of indices as a vector of the indices themselves.
Upon calling `to_indices`, Colons are converted to Slice objects to represent
the indices over which the Colon spans. Slice objects are themselves unit
ranges with the same indices as those they wrap. This means that indexing into
Slice objects with an integer always returns that exact integer, and they
iterate over all the wrapped indices, even supporting offset indices.
"""
struct Slice{T<:AbstractUnitRange} <: AbstractUnitRange{Int}
indices::T
end
Slice(S::Slice) = S
axes(S::Slice) = (S,)
unsafe_indices(S::Slice) = (S,)
axes1(S::Slice) = S
axes(S::Slice{<:OneTo}) = (S.indices,)
unsafe_indices(S::Slice{<:OneTo}) = (S.indices,)
axes1(S::Slice{<:OneTo}) = S.indices
first(S::Slice) = first(S.indices)
last(S::Slice) = last(S.indices)
size(S::Slice) = (length(S.indices),)
length(S::Slice) = length(S.indices)
unsafe_length(S::Slice) = unsafe_length(S.indices)
getindex(S::Slice, i::Int) = (@_inline_meta; @boundscheck checkbounds(S, i); i)
getindex(S::Slice, i::AbstractUnitRange{<:Integer}) = (@_inline_meta; @boundscheck checkbounds(S, i); i)
getindex(S::Slice, i::StepRange{<:Integer}) = (@_inline_meta; @boundscheck checkbounds(S, i); i)
show(io::IO, r::Slice) = print(io, "Base.Slice(", r.indices, ")")
iterate(S::Slice, s...) = iterate(S.indices, s...)
"""
LinearIndices(A::AbstractArray)
Return a `LinearIndices` array with the same shape and [`axes`](@ref) as `A`,
holding the linear index of each entry in `A`. Indexing this array with
cartesian indices allows mapping them to linear indices.
For arrays with conventional indexing (indices start at 1), or any multidimensional
array, linear indices range from 1 to `length(A)`. However, for `AbstractVector`s
linear indices are `axes(A, 1)`, and therefore do not start at 1 for vectors with
unconventional indexing.
Calling this function is the "safe" way to write algorithms that
exploit linear indexing.
# Examples
```jldoctest
julia> A = fill(1, (5,6,7));
julia> b = LinearIndices(A);
julia> extrema(b)
(1, 210)
```
LinearIndices(inds::CartesianIndices) -> R
LinearIndices(sz::Dims) -> R
LinearIndices((istart:istop, jstart:jstop, ...)) -> R
Return a `LinearIndices` array with the specified shape or [`axes`](@ref).
# Example
The main purpose of this constructor is intuitive conversion
from cartesian to linear indexing:
```jldoctest
julia> linear = LinearIndices((1:3, 1:2))
3×2 LinearIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}:
1 4
2 5
3 6
julia> linear[1,2]
4
```
"""
struct LinearIndices{N,R<:NTuple{N,AbstractUnitRange{Int}}} <: AbstractArray{Int,N}
indices::R
end
LinearIndices(::Tuple{}) = LinearIndices{0,typeof(())}(())
LinearIndices(inds::NTuple{N,AbstractUnitRange{<:Integer}}) where {N} =
LinearIndices(map(r->convert(AbstractUnitRange{Int}, r), inds))
LinearIndices(sz::NTuple{N,<:Integer}) where {N} = LinearIndices(map(Base.OneTo, sz))
LinearIndices(inds::NTuple{N,Union{<:Integer,AbstractUnitRange{<:Integer}}}) where {N} =
LinearIndices(map(i->first(i):last(i), inds))
LinearIndices(A::Union{AbstractArray,SimpleVector}) = LinearIndices(axes(A))
promote_rule(::Type{LinearIndices{N,R1}}, ::Type{LinearIndices{N,R2}}) where {N,R1,R2} =
LinearIndices{N,indices_promote_type(R1,R2)}
function indices_promote_type(::Type{Tuple{R1,Vararg{R1,N}}}, ::Type{Tuple{R2,Vararg{R2,N}}}) where {R1,R2,N}
R = promote_type(R1, R2)
Tuple{R,Vararg{R,N}}
end
convert(::Type{LinearIndices{N,R}}, inds::LinearIndices{N}) where {N,R} =
LinearIndices(convert(R, inds.indices))
# AbstractArray implementation
IndexStyle(::Type{<:LinearIndices}) = IndexLinear()
axes(iter::LinearIndices) = map(axes1, iter.indices)
size(iter::LinearIndices) = map(unsafe_length, iter.indices)
function getindex(iter::LinearIndices, i::Int)
@_inline_meta
@boundscheck checkbounds(iter, i)
i
end
function getindex(iter::LinearIndices, i::AbstractRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(iter, i)
@inbounds isa(iter, LinearIndices{1}) ? iter.indices[1][i] : (first(iter):last(iter))[i]
end
# More efficient iteration — predominantly for non-vector LinearIndices
# but one-dimensional LinearIndices must be special-cased to support OffsetArrays
iterate(iter::LinearIndices{1}, s...) = iterate(axes1(iter.indices[1]), s...)
iterate(iter::LinearIndices, i=1) = i > length(iter) ? nothing : (i, i+1)
# Needed since firstindex and lastindex are defined in terms of LinearIndices
first(iter::LinearIndices) = 1
first(iter::LinearIndices{1}) = (@_inline_meta; first(axes1(iter.indices[1])))
last(iter::LinearIndices) = (@_inline_meta; length(iter))
last(iter::LinearIndices{1}) = (@_inline_meta; last(axes1(iter.indices[1])))
|