1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## integer arithmetic ##
# The tuples and types that do not include 128 bit sizes are necessary to handle
# certain issues on 32-bit machines, and also to simplify promotion rules, as
# they are also used elsewhere where Int128/UInt128 support is separated out,
# such as in hashing2.jl
const BitSigned32_types = (Int8, Int16, Int32)
const BitUnsigned32_types = (UInt8, UInt16, UInt32)
const BitInteger32_types = (BitSigned32_types..., BitUnsigned32_types...)
const BitSigned64_types = (BitSigned32_types..., Int64)
const BitUnsigned64_types = (BitUnsigned32_types..., UInt64)
const BitInteger64_types = (BitSigned64_types..., BitUnsigned64_types...)
const BitSigned_types = (BitSigned64_types..., Int128)
const BitUnsigned_types = (BitUnsigned64_types..., UInt128)
const BitInteger_types = (BitSigned_types..., BitUnsigned_types...)
const BitSignedSmall_types = Int === Int64 ? ( Int8, Int16, Int32) : ( Int8, Int16)
const BitUnsignedSmall_types = Int === Int64 ? (UInt8, UInt16, UInt32) : (UInt8, UInt16)
const BitIntegerSmall_types = (BitSignedSmall_types..., BitUnsignedSmall_types...)
const BitSigned32 = Union{BitSigned32_types...}
const BitUnsigned32 = Union{BitUnsigned32_types...}
const BitInteger32 = Union{BitInteger32_types...}
const BitSigned64 = Union{BitSigned64_types...}
const BitUnsigned64 = Union{BitUnsigned64_types...}
const BitInteger64 = Union{BitInteger64_types...}
const BitSigned = Union{BitSigned_types...}
const BitUnsigned = Union{BitUnsigned_types...}
const BitInteger = Union{BitInteger_types...}
const BitSignedSmall = Union{BitSignedSmall_types...}
const BitUnsignedSmall = Union{BitUnsignedSmall_types...}
const BitIntegerSmall = Union{BitIntegerSmall_types...}
const BitSigned64T = Union{Type{Int8}, Type{Int16}, Type{Int32}, Type{Int64}}
const BitUnsigned64T = Union{Type{UInt8}, Type{UInt16}, Type{UInt32}, Type{UInt64}}
const BitIntegerType = Union{map(T->Type{T}, BitInteger_types)...}
## integer comparisons ##
(<)(x::T, y::T) where {T<:BitSigned} = slt_int(x, y)
(-)(x::BitInteger) = neg_int(x)
(-)(x::T, y::T) where {T<:BitInteger} = sub_int(x, y)
(+)(x::T, y::T) where {T<:BitInteger} = add_int(x, y)
(*)(x::T, y::T) where {T<:BitInteger} = mul_int(x, y)
inv(x::Integer) = float(one(x)) / float(x)
(/)(x::T, y::T) where {T<:Integer} = float(x) / float(y)
# skip promotion for system integer types
(/)(x::BitInteger, y::BitInteger) = float(x) / float(y)
"""
isodd(x::Integer) -> Bool
Return `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise.
# Examples
```jldoctest
julia> isodd(9)
true
julia> isodd(10)
false
```
"""
isodd(n::Integer) = rem(n, 2) != 0
"""
iseven(x::Integer) -> Bool
Return `true` is `x` is even (that is, divisible by 2), and `false` otherwise.
# Examples
```jldoctest
julia> iseven(9)
false
julia> iseven(10)
true
```
"""
iseven(n::Integer) = !isodd(n)
signbit(x::Integer) = x < 0
signbit(x::Unsigned) = false
flipsign(x::T, y::T) where {T<:BitSigned} = flipsign_int(x, y)
flipsign(x::BitSigned, y::BitSigned) = flipsign_int(promote(x, y)...) % typeof(x)
flipsign(x::Signed, y::Float16) = flipsign(x, bitcast(Int16, y))
flipsign(x::Signed, y::Float32) = flipsign(x, bitcast(Int32, y))
flipsign(x::Signed, y::Float64) = flipsign(x, bitcast(Int64, y))
flipsign(x::Signed, y::Real) = flipsign(x, -oftype(x, signbit(y)))
copysign(x::Signed, y::Signed) = flipsign(x, x ⊻ y)
copysign(x::Signed, y::Float16) = copysign(x, bitcast(Int16, y))
copysign(x::Signed, y::Float32) = copysign(x, bitcast(Int32, y))
copysign(x::Signed, y::Float64) = copysign(x, bitcast(Int64, y))
copysign(x::Signed, y::Real) = copysign(x, -oftype(x, signbit(y)))
"""
abs(x)
The absolute value of `x`.
When `abs` is applied to signed integers, overflow may occur,
resulting in the return of a negative value. This overflow occurs only
when `abs` is applied to the minimum representable value of a signed
integer. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,
not `-x` as might be expected.
# Examples
```jldoctest
julia> abs(-3)
3
julia> abs(1 + im)
1.4142135623730951
julia> abs(typemin(Int64))
-9223372036854775808
```
"""
function abs end
abs(x::Unsigned) = x
abs(x::Signed) = flipsign(x,x)
~(n::Integer) = -n-1
unsigned(x::BitSigned) = reinterpret(typeof(convert(Unsigned, zero(x))), x)
unsigned(x::Bool) = convert(Unsigned, x)
"""
unsigned(x) -> Unsigned
Convert a number to an unsigned integer. If the argument is signed, it is reinterpreted as
unsigned without checking for negative values.
# Examples
```jldoctest
julia> unsigned(-2)
0xfffffffffffffffe
julia> unsigned(2)
0x0000000000000002
julia> signed(unsigned(-2))
-2
```
"""
unsigned(x) = convert(Unsigned, x)
signed(x::Unsigned) = reinterpret(typeof(convert(Signed, zero(x))), x)
"""
signed(x)
Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as
signed without checking for overflow.
"""
signed(x) = convert(Signed, x)
div(x::BitSigned, y::Unsigned) = flipsign(signed(div(unsigned(abs(x)), y)), x)
div(x::Unsigned, y::BitSigned) = unsigned(flipsign(signed(div(x, unsigned(abs(y)))), y))
rem(x::BitSigned, y::Unsigned) = flipsign(signed(rem(unsigned(abs(x)), y)), x)
rem(x::Unsigned, y::BitSigned) = rem(x, unsigned(abs(y)))
fld(x::Signed, y::Unsigned) = div(x, y) - (signbit(x) & (rem(x, y) != 0))
fld(x::Unsigned, y::Signed) = div(x, y) - (signbit(y) & (rem(x, y) != 0))
"""
mod(x, y)
rem(x, y, RoundDown)
The reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored
division by `y`, i.e.
```julia
x - y*fld(x,y)
```
if computed without intermediate rounding.
The result will have the same sign as `y`, and magnitude less than `abs(y)` (with some
exceptions, see note below).
!!! note
When used with floating point values, the exact result may not be representable by the
type, and so rounding error may occur. In particular, if the exact result is very
close to `y`, then it may be rounded to `y`.
```jldoctest
julia> mod(8, 3)
2
julia> mod(9, 3)
0
julia> mod(8.9, 3)
2.9000000000000004
julia> mod(eps(), 3)
2.220446049250313e-16
julia> mod(-eps(), 3)
3.0
```
"""
function mod(x::T, y::T) where T<:Integer
y == -1 && return T(0) # avoid potential overflow in fld
return x - fld(x, y) * y
end
mod(x::BitSigned, y::Unsigned) = rem(y + unsigned(rem(x, y)), y)
mod(x::Unsigned, y::Signed) = rem(y + signed(rem(x, y)), y)
mod(x::T, y::T) where {T<:Unsigned} = rem(x, y)
cld(x::Signed, y::Unsigned) = div(x, y) + (!signbit(x) & (rem(x, y) != 0))
cld(x::Unsigned, y::Signed) = div(x, y) + (!signbit(y) & (rem(x, y) != 0))
# Don't promote integers for div/rem/mod since there is no danger of overflow,
# while there is a substantial performance penalty to 64-bit promotion.
div(x::T, y::T) where {T<:BitSigned64} = checked_sdiv_int(x, y)
rem(x::T, y::T) where {T<:BitSigned64} = checked_srem_int(x, y)
div(x::T, y::T) where {T<:BitUnsigned64} = checked_udiv_int(x, y)
rem(x::T, y::T) where {T<:BitUnsigned64} = checked_urem_int(x, y)
# fld(x,y) == div(x,y) - ((x>=0) != (y>=0) && rem(x,y) != 0 ? 1 : 0)
fld(x::T, y::T) where {T<:Unsigned} = div(x,y)
function fld(x::T, y::T) where T<:Integer
d = div(x, y)
return d - (signbit(x ⊻ y) & (d * y != x))
end
# cld(x,y) = div(x,y) + ((x>0) == (y>0) && rem(x,y) != 0 ? 1 : 0)
function cld(x::T, y::T) where T<:Unsigned
d = div(x, y)
return d + (d * y != x)
end
function cld(x::T, y::T) where T<:Integer
d = div(x, y)
return d + (((x > 0) == (y > 0)) & (d * y != x))
end
## integer bitwise operations ##
"""
~(x)
Bitwise not.
# Examples
```jldoctest
julia> ~4
-5
julia> ~10
-11
julia> ~true
false
```
"""
(~)(x::BitInteger) = not_int(x)
"""
&(x, y)
Bitwise and. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),
returning [`missing`](@ref) if one operand is `missing` and the other is `true`.
# Examples
```jldoctest
julia> 4 & 10
0
julia> 4 & 12
4
julia> true & missing
missing
julia> false & missing
false
```
"""
(&)(x::T, y::T) where {T<:BitInteger} = and_int(x, y)
"""
|(x, y)
Bitwise or. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),
returning [`missing`](@ref) if one operand is `missing` and the other is `false`.
# Examples
```jldoctest
julia> 4 | 10
14
julia> 4 | 1
5
julia> true | missing
true
julia> false | missing
missing
```
"""
(|)(x::T, y::T) where {T<:BitInteger} = or_int(x, y)
xor(x::T, y::T) where {T<:BitInteger} = xor_int(x, y)
"""
bswap(n)
Reverse the byte order of `n`.
# Examples
```jldoctest
julia> a = bswap(0x10203040)
0x40302010
julia> bswap(a)
0x10203040
julia> string(1, base = 2)
"1"
julia> string(bswap(1), base = 2)
"100000000000000000000000000000000000000000000000000000000"
```
"""
bswap(x::Union{Int8, UInt8}) = x
bswap(x::Union{Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128}) =
bswap_int(x)
"""
count_ones(x::Integer) -> Integer
Number of ones in the binary representation of `x`.
# Examples
```jldoctest
julia> count_ones(7)
3
```
"""
count_ones(x::BitInteger) = Int(ctpop_int(x))
"""
leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of `x`.
# Examples
```jldoctest
julia> leading_zeros(Int32(1))
31
```
"""
leading_zeros(x::BitInteger) = Int(ctlz_int(x))
"""
trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of `x`.
# Examples
```jldoctest
julia> trailing_zeros(2)
1
```
"""
trailing_zeros(x::BitInteger) = Int(cttz_int(x))
"""
count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of `x`.
# Examples
```jldoctest
julia> count_zeros(Int32(2 ^ 16 - 1))
16
```
"""
count_zeros(x::Integer) = count_ones(~x)
"""
leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of `x`.
# Examples
```jldoctest
julia> leading_ones(UInt32(2 ^ 32 - 2))
31
```
"""
leading_ones(x::Integer) = leading_zeros(~x)
"""
trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of `x`.
# Examples
```jldoctest
julia> trailing_ones(3)
2
```
"""
trailing_ones(x::Integer) = trailing_zeros(~x)
## integer comparisons ##
(< )(x::T, y::T) where {T<:BitUnsigned} = ult_int(x, y)
(<=)(x::T, y::T) where {T<:BitSigned} = sle_int(x, y)
(<=)(x::T, y::T) where {T<:BitUnsigned} = ule_int(x, y)
==(x::BitSigned, y::BitUnsigned) = (x >= 0) & (unsigned(x) == y)
==(x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x == unsigned(y))
<( x::BitSigned, y::BitUnsigned) = (x < 0) | (unsigned(x) < y)
<( x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x < unsigned(y))
<=(x::BitSigned, y::BitUnsigned) = (x < 0) | (unsigned(x) <= y)
<=(x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x <= unsigned(y))
## integer shifts ##
# unsigned shift counts always shift in the same direction
>>(x::BitSigned, y::BitUnsigned) = ashr_int(x, y)
>>(x::BitUnsigned, y::BitUnsigned) = lshr_int(x, y)
<<(x::BitInteger, y::BitUnsigned) = shl_int(x, y)
>>>(x::BitInteger, y::BitUnsigned) = lshr_int(x, y)
# signed shift counts can shift in either direction
# note: this early during bootstrap, `>=` is not yet available
# note: we only define Int shift counts here; the generic case is handled later
>>(x::BitInteger, y::Int) =
ifelse(0 <= y, x >> unsigned(y), x << unsigned(-y))
<<(x::BitInteger, y::Int) =
ifelse(0 <= y, x << unsigned(y), x >> unsigned(-y))
>>>(x::BitInteger, y::Int) =
ifelse(0 <= y, x >>> unsigned(y), x << unsigned(-y))
for to in BitInteger_types, from in (BitInteger_types..., Bool)
if !(to === from)
if to.size < from.size
@eval rem(x::($from), ::Type{$to}) = trunc_int($to, x)
elseif from === Bool
@eval rem(x::($from), ::Type{$to}) = convert($to, x)
elseif from.size < to.size
if from <: Signed
@eval rem(x::($from), ::Type{$to}) = sext_int($to, x)
else
@eval rem(x::($from), ::Type{$to}) = convert($to, x)
end
else
@eval rem(x::($from), ::Type{$to}) = bitcast($to, x)
end
end
end
# @doc isn't available when running in Core at this point.
# Tuple syntax for documentation two function signatures at the same time
# doesn't work either at this point.
if nameof(@__MODULE__) === :Base
for fname in (:mod, :rem)
@eval @doc """
rem(x::Integer, T::Type{<:Integer}) -> T
mod(x::Integer, T::Type{<:Integer}) -> T
%(x::Integer, T::Type{<:Integer}) -> T
Find `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable
in `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.
If `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to
a conversion to `T`.
# Examples
```jldoctest
julia> 129 % Int8
-127
```
""" $fname(x::Integer, T::Type{<:Integer})
end
end
rem(x::T, ::Type{T}) where {T<:Integer} = x
rem(x::Integer, T::Type{<:Integer}) = convert(T, x) # `x % T` falls back to `convert`
rem(x::Integer, ::Type{Bool}) = ((x & 1) != 0)
mod(x::Integer, ::Type{T}) where {T<:Integer} = rem(x, T)
unsafe_trunc(::Type{T}, x::Integer) where {T<:Integer} = rem(x, T)
"""
trunc([T,] x)
trunc(x; digits::Integer= [, base = 10])
trunc(x; sigdigits::Integer= [, base = 10])
`trunc(x)` returns the nearest integral value of the same type as `x` whose absolute value
is less than or equal to `x`.
`trunc(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is
not representable.
`digits`, `sigdigits` and `base` work as for [`round`](@ref).
"""
function trunc end
"""
floor([T,] x)
floor(x; digits::Integer= [, base = 10])
floor(x; sigdigits::Integer= [, base = 10])
`floor(x)` returns the nearest integral value of the same type as `x` that is less than or
equal to `x`.
`floor(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is
not representable.
`digits`, `sigdigits` and `base` work as for [`round`](@ref).
"""
function floor end
"""
ceil([T,] x)
ceil(x; digits::Integer= [, base = 10])
ceil(x; sigdigits::Integer= [, base = 10])
`ceil(x)` returns the nearest integral value of the same type as `x` that is greater than or
equal to `x`.
`ceil(T, x)` converts the result to type `T`, throwing an `InexactError` if the value is not
representable.
`digits`, `sigdigits` and `base` work as for [`round`](@ref).
"""
function ceil end
round(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
trunc(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
floor(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
ceil(::Type{T}, x::Integer) where {T<:Integer} = convert(T, x)
## integer construction ##
"""
@int128_str str
@int128_str(str)
`@int128_str` parses a string into a Int128
Throws an `ArgumentError` if the string is not a valid integer
"""
macro int128_str(s)
return parse(Int128, s)
end
"""
@uint128_str str
@uint128_str(str)
`@uint128_str` parses a string into a UInt128
Throws an `ArgumentError` if the string is not a valid integer
"""
macro uint128_str(s)
return parse(UInt128, s)
end
"""
@big_str str
@big_str(str)
Parse a string into a [`BigInt`](@ref) or [`BigFloat`](@ref),
and throw an `ArgumentError` if the string is not a valid number.
For integers `_` is allowed in the string as a separator.
# Examples
```jldoctest
julia> big"123_456"
123456
julia> big"7891.5"
7.8915e+03
```
"""
macro big_str(s)
if '_' in s
# remove _ in s[2:end-1]
bf = IOBuffer(maxsize=lastindex(s))
print(bf, s[1])
for c in SubString(s, 2, lastindex(s)-1)
c != '_' && print(bf, c)
end
print(bf, s[end])
seekstart(bf)
n = tryparse(BigInt, String(take!(bf)))
n === nothing || return n
else
n = tryparse(BigInt, s)
n === nothing || return n
n = tryparse(BigFloat, s)
n === nothing || return n
end
message = "invalid number format $s for BigInt or BigFloat"
return :(throw(ArgumentError($message)))
end
## integer promotions ##
# with different sizes, promote to larger type
promote_rule(::Type{Int16}, ::Union{Type{Int8}, Type{UInt8}}) = Int16
promote_rule(::Type{Int32}, ::Union{Type{Int16}, Type{Int8}, Type{UInt16}, Type{UInt8}}) = Int32
promote_rule(::Type{Int64}, ::Union{Type{Int16}, Type{Int32}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt8}}) = Int64
promote_rule(::Type{Int128}, ::Union{Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}) = Int128
promote_rule(::Type{UInt16}, ::Union{Type{Int8}, Type{UInt8}}) = UInt16
promote_rule(::Type{UInt32}, ::Union{Type{Int16}, Type{Int8}, Type{UInt16}, Type{UInt8}}) = UInt32
promote_rule(::Type{UInt64}, ::Union{Type{Int16}, Type{Int32}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt8}}) = UInt64
promote_rule(::Type{UInt128}, ::Union{Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}) = UInt128
# with mixed signedness and same size, Unsigned wins
promote_rule(::Type{UInt8}, ::Type{Int8} ) = UInt8
promote_rule(::Type{UInt16}, ::Type{Int16} ) = UInt16
promote_rule(::Type{UInt32}, ::Type{Int32} ) = UInt32
promote_rule(::Type{UInt64}, ::Type{Int64} ) = UInt64
promote_rule(::Type{UInt128}, ::Type{Int128}) = UInt128
_default_type(::Type{Unsigned}) = UInt
_default_type(::Union{Type{Integer},Type{Signed}}) = Int
## traits ##
"""
typemin(T)
The lowest value representable by the given (real) numeric DataType `T`.
# Examples
```jldoctest
julia> typemin(Float16)
-Inf16
julia> typemin(Float32)
-Inf32
```
"""
function typemin end
"""
typemax(T)
The highest value representable by the given (real) numeric `DataType`.
# Examples
```jldoctest
julia> typemax(Int8)
127
julia> typemax(UInt32)
0xffffffff
```
"""
function typemax end
typemin(::Type{Int8 }) = Int8(-128)
typemax(::Type{Int8 }) = Int8(127)
typemin(::Type{UInt8 }) = UInt8(0)
typemax(::Type{UInt8 }) = UInt8(255)
typemin(::Type{Int16 }) = Int16(-32768)
typemax(::Type{Int16 }) = Int16(32767)
typemin(::Type{UInt16}) = UInt16(0)
typemax(::Type{UInt16}) = UInt16(65535)
typemin(::Type{Int32 }) = Int32(-2147483648)
typemax(::Type{Int32 }) = Int32(2147483647)
typemin(::Type{UInt32}) = UInt32(0)
typemax(::Type{UInt32}) = UInt32(4294967295)
typemin(::Type{Int64 }) = -9223372036854775808
typemax(::Type{Int64 }) = 9223372036854775807
typemin(::Type{UInt64}) = UInt64(0)
typemax(::Type{UInt64}) = 0xffffffffffffffff
@eval typemin(::Type{UInt128}) = $(convert(UInt128, 0))
@eval typemax(::Type{UInt128}) = $(bitcast(UInt128, convert(Int128, -1)))
@eval typemin(::Type{Int128} ) = $(convert(Int128, 1) << 127)
@eval typemax(::Type{Int128} ) = $(bitcast(Int128, typemax(UInt128) >> 1))
widen(::Type{Int8}) = Int16
widen(::Type{Int16}) = Int32
widen(::Type{Int32}) = Int64
widen(::Type{Int64}) = Int128
widen(::Type{UInt8}) = UInt16
widen(::Type{UInt16}) = UInt32
widen(::Type{UInt32}) = UInt64
widen(::Type{UInt64}) = UInt128
# a few special cases,
# Int64*UInt64 => Int128
# |x|<=2^(k-1), |y|<=2^k-1 => |x*y|<=2^(2k-1)-1
widemul(x::Signed,y::Unsigned) = widen(x) * signed(widen(y))
widemul(x::Unsigned,y::Signed) = signed(widen(x)) * widen(y)
# multplication by Bool doesn't require widening
widemul(x::Bool,y::Bool) = x * y
widemul(x::Bool,y::Number) = x * y
widemul(x::Number,y::Bool) = x * y
## wide multiplication, Int128 multiply and divide ##
if Core.sizeof(Int) == 4
function widemul(u::Int64, v::Int64)
local u0::UInt64, v0::UInt64, w0::UInt64
local u1::Int64, v1::Int64, w1::UInt64, w2::Int64, t::UInt64
u0 = u & 0xffffffff; u1 = u >> 32
v0 = v & 0xffffffff; v1 = v >> 32
w0 = u0 * v0
t = reinterpret(UInt64, u1) * v0 + (w0 >>> 32)
w2 = reinterpret(Int64, t) >> 32
w1 = u0 * reinterpret(UInt64, v1) + (t & 0xffffffff)
hi = u1 * v1 + w2 + (reinterpret(Int64, w1) >> 32)
lo = w0 & 0xffffffff + (w1 << 32)
return Int128(hi) << 64 + Int128(lo)
end
function widemul(u::UInt64, v::UInt64)
local u0::UInt64, v0::UInt64, w0::UInt64
local u1::UInt64, v1::UInt64, w1::UInt64, w2::UInt64, t::UInt64
u0 = u & 0xffffffff; u1 = u >>> 32
v0 = v & 0xffffffff; v1 = v >>> 32
w0 = u0 * v0
t = u1 * v0 + (w0 >>> 32)
w2 = t >>> 32
w1 = u0 * v1 + (t & 0xffffffff)
hi = u1 * v1 + w2 + (w1 >>> 32)
lo = w0 & 0xffffffff + (w1 << 32)
return UInt128(hi) << 64 + UInt128(lo)
end
function *(u::Int128, v::Int128)
u0 = u % UInt64; u1 = Int64(u >> 64)
v0 = v % UInt64; v1 = Int64(v >> 64)
lolo = widemul(u0, v0)
lohi = widemul(reinterpret(Int64, u0), v1)
hilo = widemul(u1, reinterpret(Int64, v0))
t = reinterpret(UInt128, hilo) + (lolo >>> 64)
w1 = reinterpret(UInt128, lohi) + (t & 0xffffffffffffffff)
return Int128(lolo & 0xffffffffffffffff) + reinterpret(Int128, w1) << 64
end
function *(u::UInt128, v::UInt128)
u0 = u % UInt64; u1 = UInt64(u>>>64)
v0 = v % UInt64; v1 = UInt64(v>>>64)
lolo = widemul(u0, v0)
lohi = widemul(u0, v1)
hilo = widemul(u1, v0)
t = hilo + (lolo >>> 64)
w1 = lohi + (t & 0xffffffffffffffff)
return (lolo & 0xffffffffffffffff) + UInt128(w1) << 64
end
function div(x::Int128, y::Int128)
(x == typemin(Int128)) & (y == -1) && throw(DivideError())
return Int128(div(BigInt(x), BigInt(y)))
end
function div(x::UInt128, y::UInt128)
return UInt128(div(BigInt(x), BigInt(y)))::UInt128
end
function rem(x::Int128, y::Int128)
return Int128(rem(BigInt(x), BigInt(y)))
end
function rem(x::UInt128, y::UInt128)
return UInt128(rem(BigInt(x), BigInt(y)))
end
function mod(x::Int128, y::Int128)
return Int128(mod(BigInt(x), BigInt(y)))
end
else
*(x::T, y::T) where {T<:Union{Int128,UInt128}} = mul_int(x, y)
div(x::Int128, y::Int128) = checked_sdiv_int(x, y)
div(x::UInt128, y::UInt128) = checked_udiv_int(x, y)
rem(x::Int128, y::Int128) = checked_srem_int(x, y)
rem(x::UInt128, y::UInt128) = checked_urem_int(x, y)
end
# issue #15489: since integer ops are unchecked, they shouldn't check promotion
for op in (:+, :-, :*, :&, :|, :xor)
@eval function $op(a::Integer, b::Integer)
T = promote_typeof(a, b)
aT, bT = a % T, b % T
not_sametype((a, b), (aT, bT))
return $op(aT, bT)
end
end
|