1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## number-theoretic functions ##
"""
gcd(x,y)
Greatest common (positive) divisor (or zero if `x` and `y` are both zero).
# Examples
```jldoctest
julia> gcd(6,9)
3
julia> gcd(6,-9)
3
```
"""
function gcd(a::T, b::T) where T<:Integer
while b != 0
t = b
b = rem(a, b)
a = t
end
checked_abs(a)
end
# binary GCD (aka Stein's) algorithm
# about 1.7x (2.1x) faster for random Int64s (Int128s)
function gcd(a::T, b::T) where T<:Union{Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64,Int128,UInt128}
a == 0 && return abs(b)
b == 0 && return abs(a)
za = trailing_zeros(a)
zb = trailing_zeros(b)
k = min(za, zb)
u = unsigned(abs(a >> za))
v = unsigned(abs(b >> zb))
while u != v
if u > v
u, v = v, u
end
v -= u
v >>= trailing_zeros(v)
end
r = u << k
# T(r) would throw InexactError; we want OverflowError instead
r > typemax(T) && __throw_gcd_overflow(a, b)
r % T
end
@noinline __throw_gcd_overflow(a, b) = throw(OverflowError("gcd($a, $b) overflows"))
"""
lcm(x,y)
Least common (non-negative) multiple.
# Examples
```jldoctest
julia> lcm(2,3)
6
julia> lcm(-2,3)
6
```
"""
function lcm(a::T, b::T) where T<:Integer
# explicit a==0 test is to handle case of lcm(0,0) correctly
if a == 0
return a
else
return checked_abs(a * div(b, gcd(b,a)))
end
end
gcd(a::Integer) = a
lcm(a::Integer) = a
gcd(a::Integer, b::Integer) = gcd(promote(a,b)...)
lcm(a::Integer, b::Integer) = lcm(promote(a,b)...)
gcd(a::Integer, b::Integer...) = gcd(a, gcd(b...))
lcm(a::Integer, b::Integer...) = lcm(a, lcm(b...))
lcm(abc::AbstractArray{<:Integer}) = reduce(lcm, abc; init=one(eltype(abc)))
function gcd(abc::AbstractArray{<:Integer})
a = zero(eltype(abc))
for b in abc
a = gcd(a,b)
if a == 1
return a
end
end
return a
end
# return (gcd(a,b),x,y) such that ax+by == gcd(a,b)
"""
gcdx(x,y)
Computes the greatest common (positive) divisor of `x` and `y` and their Bézout
coefficients, i.e. the integer coefficients `u` and `v` that satisfy
``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``.
# Examples
```jldoctest
julia> gcdx(12, 42)
(6, -3, 1)
julia> gcdx(240, 46)
(2, -9, 47)
```
!!! note
Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal
Bézout coefficients that are computed by the extended Euclidean algorithm.
(Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)
For signed integers, these coefficients `u` and `v` are minimal in
the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore,
the signs of `u` and `v` are chosen so that `d` is positive.
For unsigned integers, the coefficients `u` and `v` might be near
their `typemax`, and the identity then holds only via the unsigned
integers' modulo arithmetic.
"""
function gcdx(a::T, b::T) where T<:Integer
# a0, b0 = a, b
s0, s1 = oneunit(T), zero(T)
t0, t1 = s1, s0
# The loop invariant is: s0*a0 + t0*b0 == a
while b != 0
q = div(a, b)
a, b = b, rem(a, b)
s0, s1 = s1, s0 - q*s1
t0, t1 = t1, t0 - q*t1
end
a < 0 ? (-a, -s0, -t0) : (a, s0, t0)
end
gcdx(a::Integer, b::Integer) = gcdx(promote(a,b)...)
# multiplicative inverse of n mod m, error if none
"""
invmod(x,m)
Take the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``,
with ``div(x,y) = 0``. This is undefined for ``m = 0``, or if
``gcd(x,m) \\neq 1``.
# Examples
```jldoctest
julia> invmod(2,5)
3
julia> invmod(2,3)
2
julia> invmod(5,6)
5
```
"""
function invmod(n::T, m::T) where T<:Integer
g, x, y = gcdx(n, m)
g != 1 && throw(DomainError((n, m), "Greatest common divisor is $g."))
m == 0 && throw(DomainError(m, "`m` must not be 0."))
# Note that m might be negative here.
# For unsigned T, x might be close to typemax; add m to force a wrap-around.
r = mod(x + m, m)
# The postcondition is: mod(r * n, m) == mod(T(1), m) && div(r, m) == 0
r
end
invmod(n::Integer, m::Integer) = invmod(promote(n,m)...)
# ^ for any x supporting *
to_power_type(x) = convert(promote_op(*, typeof(x), typeof(x)), x)
@noinline throw_domerr_powbysq(::Any, p) = throw(DomainError(p,
string("Cannot raise an integer x to a negative power ", p, '.',
"\nConvert input to float.")))
@noinline throw_domerr_powbysq(::Integer, p) = throw(DomainError(p,
string("Cannot raise an integer x to a negative power ", p, '.',
"\nMake x a float by adding a zero decimal (e.g., 2.0^$p instead ",
"of 2^$p), or write 1/x^$(-p), float(x)^$p, or (x//1)^$p")))
@noinline throw_domerr_powbysq(::AbstractMatrix, p) = throw(DomainError(p,
string("Cannot raise an integer matrix x to a negative power ", p, '.',
"\nMake x a float matrix by adding a zero decimal ",
"(e.g., [2.0 1.0;1.0 0.0]^$p instead ",
"of [2 1;1 0]^$p), or write float(x)^$p or Rational.(x)^$p")))
function power_by_squaring(x_, p::Integer)
x = to_power_type(x_)
if p == 1
return copy(x)
elseif p == 0
return one(x)
elseif p == 2
return x*x
elseif p < 0
isone(x) && return copy(x)
isone(-x) && return iseven(p) ? one(x) : copy(x)
throw_domerr_powbysq(x, p)
end
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x *= x
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
x *= x
end
y *= x
end
return y
end
power_by_squaring(x::Bool, p::Unsigned) = ((p==0) | x)
function power_by_squaring(x::Bool, p::Integer)
p < 0 && !x && throw_domerr_powbysq(x, p)
return (p==0) | x
end
^(x::T, p::T) where {T<:Integer} = power_by_squaring(x,p)
^(x::Number, p::Integer) = power_by_squaring(x,p)
# x^p for any literal integer p is lowered to Base.literal_pow(^, x, Val(p))
# to enable compile-time optimizations specialized to p.
# However, we still need a fallback that calls the function ^ which may either
# mean Base.^ or something else, depending on context.
# We mark these @inline since if the target is marked @inline,
# we want to make sure that gets propagated,
# even if it is over the inlining threshold.
@inline literal_pow(f, x, ::Val{p}) where {p} = f(x,p)
# Restrict inlining to hardware-supported arithmetic types, which
# are fast enough to benefit from inlining.
const HWReal = Union{Int8,Int16,Int32,Int64,UInt8,UInt16,UInt32,UInt64,Float32,Float64}
const HWNumber = Union{HWReal, Complex{<:HWReal}, Rational{<:HWReal}}
# Core.Compiler has complicated logic to inline x^2 and x^3 for
# numeric types. In terms of Val we can do it much more simply.
# (The first argument prevents unexpected behavior if a function ^
# is defined that is not equal to Base.^)
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{0}) = one(x)
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{1}) = x
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{2}) = x*x
@inline literal_pow(::typeof(^), x::HWNumber, ::Val{3}) = x*x*x
# don't use the inv(x) transformation here since float^p is slightly more accurate
@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{p}) where {p} = x^p
@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{-1}) = inv(x)
# for other types, define x^-n as inv(x)^n so that negative literal powers can
# be computed in a type-stable way even for e.g. integers.
@inline @generated function literal_pow(f::typeof(^), x, ::Val{p}) where {p}
if p < 0
:(literal_pow(^, inv(x), $(Val{-p}())))
else
:(f(x,$p))
end
end
# note: it is tempting to add optimized literal_pow(::typeof(^), x, ::Val{n})
# methods here for various n, but this easily leads to method ambiguities
# if anyone has defined literal_pow(::typeof(^), x::T, ::Val).
# b^p mod m
"""
powermod(x::Integer, p::Integer, m)
Compute ``x^p \\pmod m``.
# Examples
```jldoctest
julia> powermod(2, 6, 5)
4
julia> mod(2^6, 5)
4
julia> powermod(5, 2, 20)
5
julia> powermod(5, 2, 19)
6
julia> powermod(5, 3, 19)
11
```
"""
function powermod(x::Integer, p::Integer, m::T) where T<:Integer
p < 0 && return powermod(invmod(x, m), -p, m)
p == 0 && return mod(one(m),m)
(m == 1 || m == -1) && return zero(m)
b = oftype(m,mod(x,m)) # this also checks for divide by zero
t = prevpow(2, p)
r::T = 1
while true
if p >= t
r = mod(widemul(r,b),m)
p -= t
end
t >>>= 1
t <= 0 && break
r = mod(widemul(r,r),m)
end
return r
end
# optimization: promote the modulus m to BigInt only once (cf. widemul in generic powermod above)
powermod(x::Integer, p::Integer, m::Union{Int128,UInt128}) = oftype(m, powermod(x, p, big(m)))
_nextpow2(x::Unsigned) = oneunit(x)<<((sizeof(x)<<3)-leading_zeros(x-oneunit(x)))
_nextpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_nextpow2(unsigned(-x)) : _nextpow2(unsigned(x)))
_prevpow2(x::Unsigned) = one(x) << unsigned((sizeof(x)<<3)-leading_zeros(x)-1)
_prevpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_prevpow2(unsigned(-x)) : _prevpow2(unsigned(x)))
"""
ispow2(n::Integer) -> Bool
Test whether `n` is a power of two.
# Examples
```jldoctest
julia> ispow2(4)
true
julia> ispow2(5)
false
```
"""
ispow2(x::Integer) = x > 0 && count_ones(x) == 1
"""
nextpow(a, x)
The smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be
greater than 1, and `x` must be greater than 0.
# Examples
```jldoctest
julia> nextpow(2, 7)
8
julia> nextpow(2, 9)
16
julia> nextpow(5, 20)
25
julia> nextpow(4, 16)
16
```
See also [`prevpow`](@ref).
"""
function nextpow(a::Real, x::Real)
x <= 0 && throw(DomainError(x, "`x` must be positive."))
# Special case fast path for x::Integer, a == 2.
# This is a very common case. Constant prop will make sure that a call site
# specified as `nextpow(2, x)` will get this special case inlined.
a == 2 && isa(x, Integer) && return _nextpow2(x)
a <= 1 && throw(DomainError(a, "`a` must be greater than 1."))
x <= 1 && return one(a)
n = ceil(Integer,log(a, x))
p = a^(n-1)
# guard against roundoff error, e.g., with a=5 and x=125
p >= x ? p : a^n
end
"""
prevpow(a, x)
The largest `a^n` not greater than `x`, where `n` is a non-negative integer.
`a` must be greater than 1, and `x` must not be less than 1.
# Examples
```jldoctest
julia> prevpow(2, 7)
4
julia> prevpow(2, 9)
8
julia> prevpow(5, 20)
5
julia> prevpow(4, 16)
16
```
See also [`nextpow`](@ref).
"""
function prevpow(a::Real, x::Real)
x < 1 && throw(DomainError(x, "`x` must be ≥ 1."))
# See comment in nextpos() for a == special case.
a == 2 && isa(x, Integer) && return _prevpow2(x)
a <= 1 && throw(DomainError(a, "`a` must be greater than 1."))
n = floor(Integer,log(a, x))
p = a^(n+1)
p <= x ? p : a^n
end
## ndigits (number of digits) in base 10 ##
# decimal digits in an unsigned integer
const powers_of_ten = [
0x0000000000000001, 0x000000000000000a, 0x0000000000000064, 0x00000000000003e8,
0x0000000000002710, 0x00000000000186a0, 0x00000000000f4240, 0x0000000000989680,
0x0000000005f5e100, 0x000000003b9aca00, 0x00000002540be400, 0x000000174876e800,
0x000000e8d4a51000, 0x000009184e72a000, 0x00005af3107a4000, 0x00038d7ea4c68000,
0x002386f26fc10000, 0x016345785d8a0000, 0x0de0b6b3a7640000, 0x8ac7230489e80000,
]
function ndigits0z(x::Base.BitUnsigned64)
lz = (sizeof(x)<<3)-leading_zeros(x)
nd = (1233*lz)>>12+1
nd -= x < powers_of_ten[nd]
end
function ndigits0z(x::UInt128)
n = 0
while x > 0x8ac7230489e80000
x = div(x,0x8ac7230489e80000)
n += 19
end
return n + ndigits0z(UInt64(x))
end
ndigits0z(x::BitSigned) = ndigits0z(unsigned(abs(x)))
ndigits0z(x::Integer) = ndigits0zpb(x, 10)
## ndigits with specified base ##
# The suffix "nb" stands for "negative base"
function ndigits0znb(x::Integer, b::Integer)
# precondition: b < -1 && !(typeof(x) <: Unsigned)
d = 0
while x != 0
x = cld(x,b)
d += 1
end
return d
end
# do first division before conversion with signed here, which can otherwise overflow
ndigits0znb(x::Unsigned, b::Integer) = ndigits0znb(-signed(fld(x, -b)), b) + (x != 0)
ndigits0znb(x::Bool, b::Integer) = x % Int
# The suffix "pb" stands for "positive base"
# TODO: allow b::Integer
function ndigits0zpb(x::Base.BitUnsigned, b::Int)
# precondition: b > 1
x == 0 && return 0
b < 0 && return ndigits0znb(signed(x), b)
b == 2 && return sizeof(x)<<3 - leading_zeros(x)
b == 8 && return (sizeof(x)<<3 - leading_zeros(x) + 2) ÷ 3
b == 16 && return sizeof(x)<<1 - leading_zeros(x)>>2
b == 10 && return ndigits0z(x)
d = 0
while x > typemax(Int)
x = div(x,b)
d += 1
end
x = div(x,b)
d += 1
m = 1
while m <= x
m *= b
d += 1
end
return d
end
ndigits0zpb(x::Base.BitSigned, b::Integer) = ndigits0zpb(unsigned(abs(x)), Int(b))
ndigits0zpb(x::Base.BitUnsigned, b::Integer) = ndigits0zpb(x, Int(b))
ndigits0zpb(x::Bool, b::Integer) = x % Int
# The suffix "0z" means that the output is 0 on input zero (cf. #16841)
"""
ndigits0z(n::Integer, b::Integer=10)
Return 0 if `n == 0`, otherwise compute the number of digits in
integer `n` written in base `b` (i.e. equal to `ndigits(n, base=b)`
in this case).
The base `b` must not be in `[-1, 0, 1]`.
# Examples
```jldoctest
julia> Base.ndigits0z(0, 16)
0
julia> Base.ndigits(0, base=16)
1
julia> Base.ndigits0z(0)
0
julia> Base.ndigits0z(10, 2)
4
julia> Base.ndigits0z(10)
2
```
See also [`ndigits`](@ref).
"""
function ndigits0z(x::Integer, b::Integer)
if b < -1
ndigits0znb(x, b)
elseif b > 1
ndigits0zpb(x, b)
else
throw(DomainError(b, "The base must not be in `[-1, 0, 1]`."))
end
end
"""
ndigits(n::Integer; base::Integer=10, pad::Integer=1)
Compute the number of digits in integer `n` written in base `base`
(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros
to a specified size (the result will never be less than `pad`).
# Examples
```jldoctest
julia> ndigits(12345)
5
julia> ndigits(1022, base=16)
3
julia> string(1022, base=16)
"3fe"
julia> ndigits(123, pad=5)
5
```
"""
ndigits(x::Integer; base::Integer=10, pad::Int=1) = max(pad, ndigits0z(x, base))
## integer to string functions ##
function bin(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,sizeof(x)<<3-leading_zeros(x))
a = StringVector(i)
while i > neg
@inbounds a[i] = 48+(x&0x1)
x >>= 1
i -= 1
end
if neg; @inbounds a[1]=0x2d; end
String(a)
end
function oct(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,div((sizeof(x)<<3)-leading_zeros(x)+2,3))
a = StringVector(i)
while i > neg
@inbounds a[i] = 48+(x&0x7)
x >>= 3
i -= 1
end
if neg; @inbounds a[1]=0x2d; end
String(a)
end
function dec(x::Unsigned, pad::Int, neg::Bool)
i = neg + ndigits(x, base=10, pad=pad)
a = StringVector(i)
while i > neg
@inbounds a[i] = 48+rem(x,10)
x = oftype(x,div(x,10))
i -= 1
end
if neg; @inbounds a[1]=0x2d; end
String(a)
end
function hex(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,(sizeof(x)<<1)-(leading_zeros(x)>>2))
a = StringVector(i)
while i > neg
d = x & 0xf
@inbounds a[i] = 48+d+39*(d>9)
x >>= 4
i -= 1
end
if neg; @inbounds a[1]=0x2d; end
String(a)
end
const base36digits = ['0':'9';'a':'z']
const base62digits = ['0':'9';'A':'Z';'a':'z']
function _base(b::Int, x::Integer, pad::Int, neg::Bool)
(x >= 0) | (b < 0) || throw(DomainError(x, "For negative `x`, `b` must be negative."))
2 <= abs(b) <= 62 || throw(ArgumentError("base must satisfy 2 ≤ abs(base) ≤ 62, got $b"))
digits = abs(b) <= 36 ? base36digits : base62digits
i = neg + ndigits(x, base=b, pad=pad)
a = StringVector(i)
@inbounds while i > neg
if b > 0
a[i] = digits[1+rem(x,b)]
x = div(x,b)
else
a[i] = digits[1+mod(x,-b)]
x = cld(x,b)
end
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
split_sign(n::Integer) = unsigned(abs(n)), n < 0
split_sign(n::Unsigned) = n, false
"""
string(n::Integer; base::Integer = 10, pad::Integer = 1)
Convert an integer `n` to a string in the given `base`,
optionally specifying a number of digits to pad to.
```jldoctest
julia> string(5, base = 13, pad = 4)
"0005"
julia> string(13, base = 5, pad = 4)
"0023"
```
"""
function string(n::Integer; base::Integer = 10, pad::Integer = 1)
if base == 2
(n_positive, neg) = split_sign(n)
bin(n_positive, pad, neg)
elseif base == 8
(n_positive, neg) = split_sign(n)
oct(n_positive, pad, neg)
elseif base == 10
(n_positive, neg) = split_sign(n)
dec(n_positive, pad, neg)
elseif base == 16
(n_positive, neg) = split_sign(n)
hex(n_positive, pad, neg)
else
_base(Int(base), base > 0 ? unsigned(abs(n)) : convert(Signed, n), Int(pad), (base>0) & (n<0))
end
end
string(b::Bool) = b ? "true" : "false"
"""
bitstring(n)
A string giving the literal bit representation of a number.
# Examples
```jldoctest
julia> bitstring(4)
"0000000000000000000000000000000000000000000000000000000000000100"
julia> bitstring(2.2)
"0100000000000001100110011001100110011001100110011001100110011010"
```
"""
function bitstring end
bitstring(x::Union{Bool,Int8,UInt8}) = string(reinterpret(UInt8,x), pad = 8, base = 2)
bitstring(x::Union{Int16,UInt16,Float16}) = string(reinterpret(UInt16,x), pad = 16, base = 2)
bitstring(x::Union{Char,Int32,UInt32,Float32}) = string(reinterpret(UInt32,x), pad = 32, base = 2)
bitstring(x::Union{Int64,UInt64,Float64}) = string(reinterpret(UInt64,x), pad = 64, base = 2)
bitstring(x::Union{Int128,UInt128}) = string(reinterpret(UInt128,x), pad = 128, base = 2)
"""
digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)
Return an array with element type `T` (default `Int`) of the digits of `n` in the given
base, optionally padded with zeros to a specified size. More significant digits are at
higher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`.
# Examples
```jldoctest
julia> digits(10, base = 10)
2-element Array{Int64,1}:
0
1
julia> digits(10, base = 2)
4-element Array{Int64,1}:
0
1
0
1
julia> digits(10, base = 2, pad = 6)
6-element Array{Int64,1}:
0
1
0
1
0
0
```
"""
digits(n::Integer; base::Integer = 10, pad::Integer = 1) =
digits(typeof(base), n, base = base, pad = pad)
function digits(T::Type{<:Integer}, n::Integer; base::Integer = 10, pad::Integer = 1)
digits!(zeros(T, ndigits(n, base=base, pad=pad)), n, base=base)
end
"""
hastypemax(T::Type) -> Bool
Return `true` if and only if `typemax(T)` is defined.
"""
hastypemax(::Base.BitIntegerType) = true
hastypemax(::Type{T}) where {T} = applicable(typemax, T)
"""
digits!(array, n::Integer; base::Integer = 10)
Fills an array of the digits of `n` in the given base. More significant digits are at higher
indices. If the array length is insufficient, the least significant digits are filled up to
the array length. If the array length is excessive, the excess portion is filled with zeros.
# Examples
```jldoctest
julia> digits!([2,2,2,2], 10, base = 2)
4-element Array{Int64,1}:
0
1
0
1
julia> digits!([2,2,2,2,2,2], 10, base = 2)
6-element Array{Int64,1}:
0
1
0
1
0
0
```
"""
function digits!(a::AbstractVector{T}, n::Integer; base::Integer = 10) where T<:Integer
2 <= abs(base) || throw(ArgumentError("base must be ≥ 2 or ≤ -2, got $base"))
hastypemax(T) && abs(base) - 1 > typemax(T) &&
throw(ArgumentError("type $T too small for base $base"))
isempty(a) && return a
if base > 0
for i in eachindex(a)
n, d = divrem(n, base)
a[i] = d
end
else
# manually peel one loop iteration for type stability
n, d = fldmod(n, -base)
a[firstindex(a)] = d
n = -signed(n)
for i in firstindex(a)+1:lastindex(a)
n, d = fldmod(n, -base)
a[i] = d
n = -n
end
end
return a
end
"""
isqrt(n::Integer)
Integer square root: the largest integer `m` such that `m*m <= n`.
```jldoctest
julia> isqrt(5)
2
```
"""
isqrt(x::Integer) = oftype(x, trunc(sqrt(x)))
function isqrt(x::Union{Int64,UInt64,Int128,UInt128})
x==0 && return x
s = oftype(x, trunc(sqrt(x)))
# fix with a Newton iteration, since conversion to float discards
# too many bits.
s = (s + div(x,s)) >> 1
s*s > x ? s-1 : s
end
"""
factorial(n::Integer)
Factorial of `n`. If `n` is an [`Integer`](@ref), the factorial is computed as an
integer (promoted to at least 64 bits). Note that this may overflow if `n` is not small,
but you can use `factorial(big(n))` to compute the result exactly in arbitrary precision.
# Examples
```jldoctest
julia> factorial(6)
720
julia> factorial(21)
ERROR: OverflowError: 21 is too large to look up in the table
Stacktrace:
[...]
julia> factorial(big(21))
51090942171709440000
```
# See also
* [`binomial`](@ref)
# External links
* [Factorial](https://en.wikipedia.org/wiki/Factorial) on Wikipedia.
"""
function factorial(n::Integer)
n < 0 && throw(DomainError(n, "`n` must be nonnegative."))
f::typeof(n*n) = 1
for i::typeof(n*n) = 2:n
f *= i
end
return f
end
"""
binomial(n::Integer, k::Integer)
The _binomial coefficient_ ``\\binom{n}{k}``, being the coefficient of the ``k``th term in
the polynomial expansion of ``(1+x)^n``.
If ``n`` is non-negative, then it is the number of ways to choose `k` out of `n` items:
```math
\\binom{n}{k} = \\frac{n!}{k! (n-k)!}
```
where ``n!`` is the [`factorial`](@ref) function.
If ``n`` is negative, then it is defined in terms of the identity
```math
\\binom{n}{k} = (-1)^k \\binom{k-n-1}{k}
```
# Examples
```jldoctest
julia> binomial(5, 3)
10
julia> factorial(5) ÷ (factorial(5-3) * factorial(3))
10
julia> binomial(-5, 3)
-35
```
# See also
* [`factorial`](@ref)
# External links
* [Binomial coeffient](https://en.wikipedia.org/wiki/Binomial_coefficient) on Wikipedia.
"""
function binomial(n::T, k::T) where T<:Integer
n0, k0 = n, k
k < 0 && return zero(T)
sgn = one(T)
if n < 0
n = -n + k -1
if isodd(k)
sgn = -sgn
end
end
k > n && return zero(T)
(k == 0 || k == n) && return sgn
k == 1 && return sgn*n
if k > (n>>1)
k = (n - k)
end
x::T = nn = n - k + 1
nn += 1
rr = 2
while rr <= k
xt = div(widemul(x, nn), rr)
x = xt % T
x == xt || throw(OverflowError("binomial($n0, $k0) overflows"))
rr += 1
nn += 1
end
convert(T, copysign(x, sgn))
end
|