1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module Math
export sin, cos, sincos, tan, sinh, cosh, tanh, asin, acos, atan,
asinh, acosh, atanh, sec, csc, cot, asec, acsc, acot,
sech, csch, coth, asech, acsch, acoth,
sinpi, cospi, sinc, cosc,
cosd, cotd, cscd, secd, sind, tand,
acosd, acotd, acscd, asecd, asind, atand,
rad2deg, deg2rad,
log, log2, log10, log1p, exponent, exp, exp2, exp10, expm1,
cbrt, sqrt, significand,
hypot, max, min, minmax, ldexp, frexp,
clamp, clamp!, modf, ^, mod2pi, rem2pi,
@evalpoly
import .Base: log, exp, sin, cos, tan, sinh, cosh, tanh, asin,
acos, atan, asinh, acosh, atanh, sqrt, log2, log10,
max, min, minmax, ^, exp2, muladd, rem,
exp10, expm1, log1p
using .Base: sign_mask, exponent_mask, exponent_one,
exponent_half, uinttype, significand_mask
using Core.Intrinsics: sqrt_llvm
using .Base: IEEEFloat
@noinline function throw_complex_domainerror(f::Symbol, x)
throw(DomainError(x, string("$f will only return a complex result if called with a ",
"complex argument. Try $f(Complex(x)).")))
end
@noinline function throw_exp_domainerror(x)
throw(DomainError(x, string("Exponentiation yielding a complex result requires a ",
"complex argument.\nReplace x^y with (x+0im)^y, ",
"Complex(x)^y, or similar.")))
end
for T in (Float16, Float32, Float64)
@eval significand_bits(::Type{$T}) = $(trailing_ones(significand_mask(T)))
@eval exponent_bits(::Type{$T}) = $(sizeof(T)*8 - significand_bits(T) - 1)
@eval exponent_bias(::Type{$T}) = $(Int(exponent_one(T) >> significand_bits(T)))
# maximum float exponent
@eval exponent_max(::Type{$T}) = $(Int(exponent_mask(T) >> significand_bits(T)) - exponent_bias(T))
# maximum float exponent without bias
@eval exponent_raw_max(::Type{$T}) = $(Int(exponent_mask(T) >> significand_bits(T)))
end
# non-type specific math functions
"""
clamp(x, lo, hi)
Return `x` if `lo <= x <= hi`. If `x > hi`, return `hi`. If `x < lo`, return `lo`. Arguments
are promoted to a common type.
# Examples
```jldoctest
julia> clamp.([pi, 1.0, big(10.)], 2., 9.)
3-element Array{BigFloat,1}:
3.141592653589793238462643383279502884197169399375105820974944592307816406286198
2.0
9.0
julia> clamp.([11,8,5],10,6) # an example where lo > hi
3-element Array{Int64,1}:
6
6
10
```
"""
clamp(x::X, lo::L, hi::H) where {X,L,H} =
ifelse(x > hi, convert(promote_type(X,L,H), hi),
ifelse(x < lo,
convert(promote_type(X,L,H), lo),
convert(promote_type(X,L,H), x)))
"""
clamp!(array::AbstractArray, lo, hi)
Restrict values in `array` to the specified range, in-place.
See also [`clamp`](@ref).
"""
function clamp!(x::AbstractArray, lo, hi)
@inbounds for i in eachindex(x)
x[i] = clamp(x[i], lo, hi)
end
x
end
"""
@horner(x, p...)
Evaluate p[1] + x * (p[2] + x * (....)), i.e. a polynomial via Horner's rule
"""
macro horner(x, p...)
ex = esc(p[end])
for i = length(p)-1:-1:1
ex = :(muladd(t, $ex, $(esc(p[i]))))
end
Expr(:block, :(t = $(esc(x))), ex)
end
# Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n]. This uses
# Horner's method if z is real, but for complex z it uses a more
# efficient algorithm described in Knuth, TAOCP vol. 2, section 4.6.4,
# equation (3).
"""
@evalpoly(z, c...)
Evaluate the polynomial ``\\sum_k c[k] z^{k-1}`` for the coefficients `c[1]`, `c[2]`, ...;
that is, the coefficients are given in ascending order by power of `z`. This macro expands
to efficient inline code that uses either Horner's method or, for complex `z`, a more
efficient Goertzel-like algorithm.
# Examples
```jldoctest
julia> @evalpoly(3, 1, 0, 1)
10
julia> @evalpoly(2, 1, 0, 1)
5
julia> @evalpoly(2, 1, 1, 1)
7
```
"""
macro evalpoly(z, p...)
a = :($(esc(p[end])))
b = :($(esc(p[end-1])))
as = []
for i = length(p)-2:-1:1
ai = Symbol("a", i)
push!(as, :($ai = $a))
a = :(muladd(r, $ai, $b))
b = :($(esc(p[i])) - s * $ai) # see issue #15985 on fused mul-subtract
end
ai = :a0
push!(as, :($ai = $a))
C = Expr(:block,
:(x = real(tt)),
:(y = imag(tt)),
:(r = x + x),
:(s = muladd(x, x, y*y)),
as...,
:(muladd($ai, tt, $b)))
R = Expr(:macrocall, Symbol("@horner"), (), :tt, map(esc, p)...)
:(let tt = $(esc(z))
isa(tt, Complex) ? $C : $R
end)
end
"""
rad2deg(x)
Convert `x` from radians to degrees.
# Examples
```jldoctest
julia> rad2deg(pi)
180.0
```
"""
rad2deg(z::AbstractFloat) = z * (180 / oftype(z, pi))
"""
deg2rad(x)
Convert `x` from degrees to radians.
# Examples
```jldoctest
julia> deg2rad(90)
1.5707963267948966
```
"""
deg2rad(z::AbstractFloat) = z * (oftype(z, pi) / 180)
rad2deg(z::Real) = rad2deg(float(z))
deg2rad(z::Real) = deg2rad(float(z))
rad2deg(z::Number) = (z/pi)*180
deg2rad(z::Number) = (z*pi)/180
log(b::T, x::T) where {T<:Number} = log(x)/log(b)
"""
log(b,x)
Compute the base `b` logarithm of `x`. Throws [`DomainError`](@ref) for negative
[`Real`](@ref) arguments.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> log(4,8)
1.5
julia> log(4,2)
0.5
julia> log(-2, 3)
ERROR: DomainError with -2.0:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
julia> log(2, -3)
ERROR: DomainError with -3.0:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
```
!!! note
If `b` is a power of 2 or 10, [`log2`](@ref) or [`log10`](@ref) should be used, as these will
typically be faster and more accurate. For example,
```jldoctest
julia> log(100,1000000)
2.9999999999999996
julia> log10(1000000)/2
3.0
```
"""
log(b::Number, x::Number) = log(promote(b,x)...)
# type specific math functions
const libm = Base.libm_name
# functions with no domain error
"""
sinh(x)
Compute hyperbolic sine of `x`.
"""
sinh(x::Number)
"""
cosh(x)
Compute hyperbolic cosine of `x`.
"""
cosh(x::Number)
"""
tanh(x)
Compute hyperbolic tangent of `x`.
"""
tanh(x::Number)
"""
atan(y)
atan(y, x)
Compute the inverse tangent of `y` or `y/x`, respectively.
For one argument, this is the angle in radians between the positive *x*-axis and the point
(1, *y*), returning a value in the interval ``[-\\pi/2, \\pi/2]``.
For two arguments, this is the angle in radians between the positive *x*-axis and the
point (*x*, *y*), returning a value in the interval ``[-\\pi, \\pi]``. This corresponds to a
standard [`atan2`](https://en.wikipedia.org/wiki/Atan2) function.
"""
atan(x::Number)
"""
asinh(x)
Compute the inverse hyperbolic sine of `x`.
"""
asinh(x::Number)
"""
expm1(x)
Accurately compute ``e^x-1``.
"""
expm1(x)
for f in (:exp2, :expm1)
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
($f)(x::Real) = ($f)(float(x))
end
end
"""
exp2(x)
Compute the base 2 exponential of `x`, in other words ``2^x``.
# Examples
```jldoctest
julia> exp2(5)
32.0
```
"""
exp2(x::AbstractFloat) = 2^x
"""
exp10(x)
Compute the base 10 exponential of `x`, in other words ``10^x``.
# Examples
```jldoctest
julia> exp10(2)
100.0
```
"""
exp10(x::AbstractFloat) = 10^x
for f in (:sinh, :cosh, :tanh, :atan, :asinh, :exp, :expm1)
@eval ($f)(x::AbstractFloat) = error("not implemented for ", typeof(x))
end
# functions with special cases for integer arguments
@inline function exp2(x::Base.BitInteger)
if x > 1023
Inf64
elseif x <= -1023
# if -1073 < x <= -1023 then Result will be a subnormal number
# Hex literal with padding must be used to work on 32bit machine
reinterpret(Float64, 0x0000_0000_0000_0001 << ((x + 1074) % UInt))
else
# We will cast everything to Int64 to avoid errors in case of Int128
# If x is a Int128, and is outside the range of Int64, then it is not -1023<x<=1023
reinterpret(Float64, (exponent_bias(Float64) + (x % Int64)) << (significand_bits(Float64) % UInt))
end
end
# utility for converting NaN return to DomainError
# the branch in nan_dom_err prevents its callers from inlining, so be sure to force it
# until the heuristics can be improved
@inline nan_dom_err(out, x) = isnan(out) & !isnan(x) ? throw(DomainError(x, "NaN result for non-NaN input.")) : out
# functions that return NaN on non-NaN argument for domain error
"""
sin(x)
Compute sine of `x`, where `x` is in radians.
"""
sin(x::Number)
"""
cos(x)
Compute cosine of `x`, where `x` is in radians.
"""
cos(x::Number)
"""
tan(x)
Compute tangent of `x`, where `x` is in radians.
"""
tan(x::Number)
"""
asin(x)
Compute the inverse sine of `x`, where the output is in radians.
"""
asin(x::Number)
"""
acos(x)
Compute the inverse cosine of `x`, where the output is in radians
"""
acos(x::Number)
"""
acosh(x)
Compute the inverse hyperbolic cosine of `x`.
"""
acosh(x::Number)
"""
atanh(x)
Compute the inverse hyperbolic tangent of `x`.
"""
atanh(x::Number)
"""
log(x)
Compute the natural logarithm of `x`. Throws [`DomainError`](@ref) for negative
[`Real`](@ref) arguments. Use complex negative arguments to obtain complex results.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> log(2)
0.6931471805599453
julia> log(-3)
ERROR: DomainError with -3.0:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
```
"""
log(x::Number)
"""
log2(x)
Compute the logarithm of `x` to base 2. Throws [`DomainError`](@ref) for negative
[`Real`](@ref) arguments.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> log2(4)
2.0
julia> log2(10)
3.321928094887362
julia> log2(-2)
ERROR: DomainError with -2.0:
NaN result for non-NaN input.
Stacktrace:
[1] nan_dom_err at ./math.jl:325 [inlined]
[...]
```
"""
log2(x)
"""
log10(x)
Compute the logarithm of `x` to base 10.
Throws [`DomainError`](@ref) for negative [`Real`](@ref) arguments.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> log10(100)
2.0
julia> log10(2)
0.3010299956639812
julia> log10(-2)
ERROR: DomainError with -2.0:
NaN result for non-NaN input.
Stacktrace:
[1] nan_dom_err at ./math.jl:325 [inlined]
[...]
```
"""
log10(x)
"""
log1p(x)
Accurate natural logarithm of `1+x`. Throws [`DomainError`](@ref) for [`Real`](@ref)
arguments less than -1.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> log1p(-0.5)
-0.6931471805599453
julia> log1p(0)
0.0
julia> log1p(-2)
ERROR: DomainError with -2.0:
log1p will only return a complex result if called with a complex argument. Try log1p(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
```
"""
log1p(x)
for f in (:log2, :log10)
@eval begin
@inline ($f)(x::Float64) = nan_dom_err(ccall(($(string(f)), libm), Float64, (Float64,), x), x)
@inline ($f)(x::Float32) = nan_dom_err(ccall(($(string(f, "f")), libm), Float32, (Float32,), x), x)
@inline ($f)(x::Real) = ($f)(float(x))
end
end
@inline function sqrt(x::Union{Float32,Float64})
x < zero(x) && throw_complex_domainerror(:sqrt, x)
sqrt_llvm(x)
end
"""
sqrt(x)
Return ``\\sqrt{x}``. Throws [`DomainError`](@ref) for negative [`Real`](@ref) arguments.
Use complex negative arguments instead. The prefix operator `√` is equivalent to `sqrt`.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> sqrt(big(81))
9.0
julia> sqrt(big(-81))
ERROR: DomainError with -8.1e+01:
NaN result for non-NaN input.
Stacktrace:
[1] sqrt(::BigFloat) at ./mpfr.jl:501
[...]
julia> sqrt(big(complex(-81)))
0.0 + 9.0im
```
"""
sqrt(x::Real) = sqrt(float(x))
"""
hypot(x, y)
Compute the hypotenuse ``\\sqrt{x^2+y^2}`` avoiding overflow and underflow.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> a = 10^10;
julia> hypot(a, a)
1.4142135623730951e10
julia> √(a^2 + a^2) # a^2 overflows
ERROR: DomainError with -2.914184810805068e18:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
```
"""
hypot(x::Number, y::Number) = hypot(promote(x, y)...)
function hypot(x::T, y::T) where T<:Number
ax = abs(x)
ay = abs(y)
if ax < ay
ax, ay = ay, ax
end
if iszero(ax)
r = ay / oneunit(ax)
else
r = ay / ax
end
rr = ax * sqrt(1 + r * r)
# Use type of rr to make sure that return type is the same for
# all branches
if isnan(r)
isinf(ax) && return oftype(rr, Inf)
isinf(ay) && return oftype(rr, Inf)
return oftype(rr, r)
else
return rr
end
end
"""
hypot(x...)
Compute the hypotenuse ``\\sqrt{\\sum x_i^2}`` avoiding overflow and underflow.
"""
hypot(x::Number...) = sqrt(sum(abs2(y) for y in x))
atan(y::Real, x::Real) = atan(promote(float(y),float(x))...)
atan(y::T, x::T) where {T<:AbstractFloat} = Base.no_op_err("atan", T)
max(x::T, y::T) where {T<:AbstractFloat} = ifelse((y > x) | (signbit(y) < signbit(x)),
ifelse(isnan(x), x, y), ifelse(isnan(y), y, x))
min(x::T, y::T) where {T<:AbstractFloat} = ifelse((y < x) | (signbit(y) > signbit(x)),
ifelse(isnan(x), x, y), ifelse(isnan(y), y, x))
minmax(x::T, y::T) where {T<:AbstractFloat} =
ifelse(isnan(x) | isnan(y), ifelse(isnan(x), (x,x), (y,y)),
ifelse((y > x) | (signbit(x) > signbit(y)), (x,y), (y,x)))
"""
ldexp(x, n)
Compute ``x \\times 2^n``.
# Examples
```jldoctest
julia> ldexp(5., 2)
20.0
```
"""
function ldexp(x::T, e::Integer) where T<:IEEEFloat
xu = reinterpret(Unsigned, x)
xs = xu & ~sign_mask(T)
xs >= exponent_mask(T) && return x # NaN or Inf
k = Int(xs >> significand_bits(T))
if k == 0 # x is subnormal
xs == 0 && return x # +-0
m = leading_zeros(xs) - exponent_bits(T)
ys = xs << unsigned(m)
xu = ys | (xu & sign_mask(T))
k = 1 - m
# underflow, otherwise may have integer underflow in the following n + k
e < -50000 && return flipsign(T(0.0), x)
end
# For cases where e of an Integer larger than Int make sure we properly
# overflow/underflow; this is optimized away otherwise.
if e > typemax(Int)
return flipsign(T(Inf), x)
elseif e < typemin(Int)
return flipsign(T(0.0), x)
end
n = e % Int
k += n
# overflow, if k is larger than maximum possible exponent
if k >= exponent_raw_max(T)
return flipsign(T(Inf), x)
end
if k > 0 # normal case
xu = (xu & ~exponent_mask(T)) | (rem(k, uinttype(T)) << significand_bits(T))
return reinterpret(T, xu)
else # subnormal case
if k <= -significand_bits(T) # underflow
# overflow, for the case of integer overflow in n + k
e > 50000 && return flipsign(T(Inf), x)
return flipsign(T(0.0), x)
end
k += significand_bits(T)
z = T(2.0)^-significand_bits(T)
xu = (xu & ~exponent_mask(T)) | (rem(k, uinttype(T)) << significand_bits(T))
return z*reinterpret(T, xu)
end
end
ldexp(x::Float16, q::Integer) = Float16(ldexp(Float32(x), q))
"""
exponent(x) -> Int
Get the exponent of a normalized floating-point number.
"""
function exponent(x::T) where T<:IEEEFloat
@noinline throw1(x) = throw(DomainError(x, "Cannot be NaN or Inf."))
@noinline throw2(x) = throw(DomainError(x, "Cannot be subnormal converted to 0."))
xs = reinterpret(Unsigned, x) & ~sign_mask(T)
xs >= exponent_mask(T) && throw1(x)
k = Int(xs >> significand_bits(T))
if k == 0 # x is subnormal
xs == 0 && throw2(x)
m = leading_zeros(xs) - exponent_bits(T)
k = 1 - m
end
return k - exponent_bias(T)
end
"""
significand(x)
Extract the `significand(s)` (a.k.a. mantissa), in binary representation, of a
floating-point number. If `x` is a non-zero finite number, then the result will be
a number of the same type on the interval ``[1,2)``. Otherwise `x` is returned.
# Examples
```jldoctest
julia> significand(15.2)/15.2
0.125
julia> significand(15.2)*8
15.2
```
"""
function significand(x::T) where T<:IEEEFloat
xu = reinterpret(Unsigned, x)
xs = xu & ~sign_mask(T)
xs >= exponent_mask(T) && return x # NaN or Inf
if xs <= (~exponent_mask(T) & ~sign_mask(T)) # x is subnormal
xs == 0 && return x # +-0
m = unsigned(leading_zeros(xs) - exponent_bits(T))
xs <<= m
xu = xs | (xu & sign_mask(T))
end
xu = (xu & ~exponent_mask(T)) | exponent_one(T)
return reinterpret(T, xu)
end
"""
frexp(val)
Return `(x,exp)` such that `x` has a magnitude in the interval ``[1/2, 1)`` or 0,
and `val` is equal to ``x \\times 2^{exp}``.
"""
function frexp(x::T) where T<:IEEEFloat
xu = reinterpret(Unsigned, x)
xs = xu & ~sign_mask(T)
xs >= exponent_mask(T) && return x, 0 # NaN or Inf
k = Int(xs >> significand_bits(T))
if k == 0 # x is subnormal
xs == 0 && return x, 0 # +-0
m = leading_zeros(xs) - exponent_bits(T)
xs <<= unsigned(m)
xu = xs | (xu & sign_mask(T))
k = 1 - m
end
k -= (exponent_bias(T) - 1)
xu = (xu & ~exponent_mask(T)) | exponent_half(T)
return reinterpret(T, xu), k
end
"""
rem(x, y, r::RoundingMode)
Compute the remainder of `x` after integer division by `y`, with the quotient rounded
according to the rounding mode `r`. In other words, the quantity
x - y*round(x/y,r)
without any intermediate rounding.
- if `r == RoundNearest`, then the result is exact, and in the interval
``[-|y|/2, |y|/2]``. See also [`RoundNearest`](@ref).
- if `r == RoundToZero` (default), then the result is exact, and in the interval
``[0, |y|)`` if `x` is positive, or ``(-|y|, 0]`` otherwise. See also [`RoundToZero`](@ref).
- if `r == RoundDown`, then the result is in the interval ``[0, y)`` if `y` is positive, or
``(y, 0]`` otherwise. The result may not be exact if `x` and `y` have different signs, and
`abs(x) < abs(y)`. See also[`RoundDown`](@ref).
- if `r == RoundUp`, then the result is in the interval `(-y,0]` if `y` is positive, or
`[0,-y)` otherwise. The result may not be exact if `x` and `y` have the same sign, and
`abs(x) < abs(y)`. See also [`RoundUp`](@ref).
"""
rem(x, y, ::RoundingMode{:ToZero}) = rem(x,y)
rem(x, y, ::RoundingMode{:Down}) = mod(x,y)
rem(x, y, ::RoundingMode{:Up}) = mod(x,-y)
rem(x::Float64, y::Float64, ::RoundingMode{:Nearest}) =
ccall((:remainder, libm),Float64,(Float64,Float64),x,y)
rem(x::Float32, y::Float32, ::RoundingMode{:Nearest}) =
ccall((:remainderf, libm),Float32,(Float32,Float32),x,y)
rem(x::Float16, y::Float16, r::RoundingMode{:Nearest}) = Float16(rem(Float32(x), Float32(y), r))
"""
modf(x)
Return a tuple `(fpart, ipart)` of the fractional and integral parts of a number. Both parts
have the same sign as the argument.
# Examples
```jldoctest
julia> modf(3.5)
(0.5, 3.0)
julia> modf(-3.5)
(-0.5, -3.0)
```
"""
modf(x) = rem(x,one(x)), trunc(x)
function modf(x::Float32)
temp = Ref{Float32}()
f = ccall((:modff, libm), Float32, (Float32, Ptr{Float32}), x, temp)
f, temp[]
end
function modf(x::Float64)
temp = Ref{Float64}()
f = ccall((:modf, libm), Float64, (Float64, Ptr{Float64}), x, temp)
f, temp[]
end
@inline function ^(x::Float64, y::Float64)
z = ccall("llvm.pow.f64", llvmcall, Float64, (Float64, Float64), x, y)
if isnan(z) & !isnan(x+y)
throw_exp_domainerror(x)
end
z
end
@inline function ^(x::Float32, y::Float32)
z = ccall("llvm.pow.f32", llvmcall, Float32, (Float32, Float32), x, y)
if isnan(z) & !isnan(x+y)
throw_exp_domainerror(x)
end
z
end
@inline ^(x::Float64, y::Integer) = ccall("llvm.pow.f64", llvmcall, Float64, (Float64, Float64), x, Float64(y))
@inline ^(x::Float32, y::Integer) = ccall("llvm.pow.f32", llvmcall, Float32, (Float32, Float32), x, Float32(y))
@inline ^(x::Float16, y::Integer) = Float16(Float32(x) ^ y)
@inline literal_pow(::typeof(^), x::Float16, ::Val{p}) where {p} = Float16(literal_pow(^,Float32(x),Val(p)))
## rem2pi-related calculations ##
function add22condh(xh::Float64, xl::Float64, yh::Float64, yl::Float64)
# This algorithm, due to Dekker, computes the sum of two
# double-double numbers and returns the high double. References:
# [1] http://www.digizeitschriften.de/en/dms/img/?PID=GDZPPN001170007
# [2] https://doi.org/10.1007/BF01397083
r = xh+yh
s = (abs(xh) > abs(yh)) ? (xh-r+yh+yl+xl) : (yh-r+xh+xl+yl)
zh = r+s
return zh
end
# multiples of pi/2, as double-double (ie with "tail")
const pi1o2_h = 1.5707963267948966 # convert(Float64, pi * BigFloat(1/2))
const pi1o2_l = 6.123233995736766e-17 # convert(Float64, pi * BigFloat(1/2) - pi1o2_h)
const pi2o2_h = 3.141592653589793 # convert(Float64, pi * BigFloat(1))
const pi2o2_l = 1.2246467991473532e-16 # convert(Float64, pi * BigFloat(1) - pi2o2_h)
const pi3o2_h = 4.71238898038469 # convert(Float64, pi * BigFloat(3/2))
const pi3o2_l = 1.8369701987210297e-16 # convert(Float64, pi * BigFloat(3/2) - pi3o2_h)
const pi4o2_h = 6.283185307179586 # convert(Float64, pi * BigFloat(2))
const pi4o2_l = 2.4492935982947064e-16 # convert(Float64, pi * BigFloat(2) - pi4o2_h)
"""
rem2pi(x, r::RoundingMode)
Compute the remainder of `x` after integer division by `2π`, with the quotient rounded
according to the rounding mode `r`. In other words, the quantity
x - 2π*round(x/(2π),r)
without any intermediate rounding. This internally uses a high precision approximation of
2π, and so will give a more accurate result than `rem(x,2π,r)`
- if `r == RoundNearest`, then the result is in the interval ``[-π, π]``. This will generally
be the most accurate result. See also [`RoundNearest`](@ref).
- if `r == RoundToZero`, then the result is in the interval ``[0, 2π]`` if `x` is positive,.
or ``[-2π, 0]`` otherwise. See also [`RoundToZero`](@ref).
- if `r == RoundDown`, then the result is in the interval ``[0, 2π]``.
See also [`RoundDown`](@ref).
- if `r == RoundUp`, then the result is in the interval ``[-2π, 0]``.
See also [`RoundUp`](@ref).
# Examples
```jldoctest
julia> rem2pi(7pi/4, RoundNearest)
-0.7853981633974485
julia> rem2pi(7pi/4, RoundDown)
5.497787143782138
```
"""
function rem2pi end
function rem2pi(x::Float64, ::RoundingMode{:Nearest})
abs(x) < pi && return x
n,y = rem_pio2_kernel(x)
if iseven(n)
if n & 2 == 2 # n % 4 == 2: add/subtract pi
if y.hi <= 0
return add22condh(y.hi,y.lo,pi2o2_h,pi2o2_l)
else
return add22condh(y.hi,y.lo,-pi2o2_h,-pi2o2_l)
end
else # n % 4 == 0: add 0
return y.hi+y.lo
end
else
if n & 2 == 2 # n % 4 == 3: subtract pi/2
return add22condh(y.hi,y.lo,-pi1o2_h,-pi1o2_l)
else # n % 4 == 1: add pi/2
return add22condh(y.hi,y.lo,pi1o2_h,pi1o2_l)
end
end
end
function rem2pi(x::Float64, ::RoundingMode{:ToZero})
ax = abs(x)
ax <= 2*Float64(pi,RoundDown) && return x
n,y = rem_pio2_kernel(x)
if iseven(n)
if n & 2 == 2 # n % 4 == 2: add pi
z = add22condh(y.hi,y.lo,pi2o2_h,pi2o2_l)
else # n % 4 == 0: add 0 or 2pi
if y.hi > 0
z = y.hi+y.lo
else # negative: add 2pi
z = add22condh(y.hi,y.lo,pi4o2_h,pi4o2_l)
end
end
else
if n & 2 == 2 # n % 4 == 3: add 3pi/2
z = add22condh(y.hi,y.lo,pi3o2_h,pi3o2_l)
else # n % 4 == 1: add pi/2
z = add22condh(y.hi,y.lo,pi1o2_h,pi1o2_l)
end
end
copysign(z,x)
end
function rem2pi(x::Float64, ::RoundingMode{:Down})
if x < pi4o2_h
if x >= 0
return x
elseif x > -pi4o2_h
return add22condh(x,0.0,pi4o2_h,pi4o2_l)
end
end
n,y = rem_pio2_kernel(x)
if iseven(n)
if n & 2 == 2 # n % 4 == 2: add pi
return add22condh(y.hi,y.lo,pi2o2_h,pi2o2_l)
else # n % 4 == 0: add 0 or 2pi
if y.hi > 0
return y.hi+y.lo
else # negative: add 2pi
return add22condh(y.hi,y.lo,pi4o2_h,pi4o2_l)
end
end
else
if n & 2 == 2 # n % 4 == 3: add 3pi/2
return add22condh(y.hi,y.lo,pi3o2_h,pi3o2_l)
else # n % 4 == 1: add pi/2
return add22condh(y.hi,y.lo,pi1o2_h,pi1o2_l)
end
end
end
function rem2pi(x::Float64, ::RoundingMode{:Up})
if x > -pi4o2_h
if x <= 0
return x
elseif x < pi4o2_h
return add22condh(x,0.0,-pi4o2_h,-pi4o2_l)
end
end
n,y = rem_pio2_kernel(x)
if iseven(n)
if n & 2 == 2 # n % 4 == 2: sub pi
return add22condh(y.hi,y.lo,-pi2o2_h,-pi2o2_l)
else # n % 4 == 0: sub 0 or 2pi
if y.hi < 0
return y.hi+y.lo
else # positive: sub 2pi
return add22condh(y.hi,y.lo,-pi4o2_h,-pi4o2_l)
end
end
else
if n & 2 == 2 # n % 4 == 3: sub pi/2
return add22condh(y.hi,y.lo,-pi1o2_h,-pi1o2_l)
else # n % 4 == 1: sub 3pi/2
return add22condh(y.hi,y.lo,-pi3o2_h,-pi3o2_l)
end
end
end
rem2pi(x::Float32, r::RoundingMode) = Float32(rem2pi(Float64(x), r))
rem2pi(x::Float16, r::RoundingMode) = Float16(rem2pi(Float64(x), r))
rem2pi(x::Int32, r::RoundingMode) = rem2pi(Float64(x), r)
function rem2pi(x::Int64, r::RoundingMode)
fx = Float64(x)
fx == x || throw(ArgumentError("Int64 argument to rem2pi is too large: $x"))
rem2pi(fx, r)
end
"""
mod2pi(x)
Modulus after division by `2π`, returning in the range ``[0,2π)``.
This function computes a floating point representation of the modulus after division by
numerically exact `2π`, and is therefore not exactly the same as `mod(x,2π)`, which would
compute the modulus of `x` relative to division by the floating-point number `2π`.
# Examples
```jldoctest
julia> mod2pi(9*pi/4)
0.7853981633974481
```
"""
mod2pi(x) = rem2pi(x,RoundDown)
# generic fallback; for number types, promotion.jl does promotion
"""
muladd(x, y, z)
Combined multiply-add: computes `x*y+z`, but allowing the add and multiply to be merged
with each other or with surrounding operations for performance.
For example, this may be implemented as an [`fma`](@ref) if the hardware supports it
efficiently.
The result can be different on different machines and can also be different on the same machine
due to constant propagation or other optimizations.
See [`fma`](@ref).
# Examples
```jldoctest
julia> muladd(3, 2, 1)
7
julia> 3 * 2 + 1
7
```
"""
muladd(x,y,z) = x*y+z
# Float16 definitions
for func in (:sin,:cos,:tan,:asin,:acos,:atan,:sinh,:cosh,:tanh,:asinh,:acosh,
:atanh,:exp,:exp2,:exp10,:log,:log2,:log10,:sqrt,:lgamma,:log1p)
@eval begin
$func(a::Float16) = Float16($func(Float32(a)))
$func(a::ComplexF16) = ComplexF16($func(ComplexF32(a)))
end
end
for func in (:atan,:hypot)
@eval begin
$func(a::Float16,b::Float16) = Float16($func(Float32(a),Float32(b)))
end
end
cbrt(a::Float16) = Float16(cbrt(Float32(a)))
sincos(a::Float16) = Float16.(sincos(Float32(a)))
# helper functions for Libm functionality
"""
highword(x)
Return the high word of `x` as a `UInt32`.
"""
@inline highword(x::Float64) = highword(reinterpret(UInt64, x))
@inline highword(x::UInt64) = (x >>> 32) % UInt32
@inline highword(x::Float32) = reinterpret(UInt32, x)
@inline fromhighword(::Type{Float64}, u::UInt32) = reinterpret(Float64, UInt64(u) << 32)
@inline fromhighword(::Type{Float32}, u::UInt32) = reinterpret(Float32, u)
"""
poshighword(x)
Return positive part of the high word of `x` as a `UInt32`.
"""
@inline poshighword(x::Float64) = poshighword(reinterpret(UInt64, x))
@inline poshighword(x::UInt64) = highword(x) & 0x7fffffff
@inline poshighword(x::Float32) = highword(x) & 0x7fffffff
# More special functions
include("special/cbrt.jl")
include("special/exp.jl")
include("special/exp10.jl")
include("special/hyperbolic.jl")
include("special/trig.jl")
include("special/rem_pio2.jl")
include("special/log.jl")
# `missing` definitions for functions in this module
for f in (:(acos), :(acosh), :(asin), :(asinh), :(atan), :(atanh),
:(sin), :(sinh), :(cos), :(cosh), :(tan), :(tanh),
:(exp), :(exp2), :(expm1), :(log), :(log10), :(log1p),
:(log2), :(exponent), :(sqrt))
@eval $(f)(::Missing) = missing
end
end # module
|