1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Missing, missing and ismissing are defined in essentials.jl
show(io::IO, x::Missing) = print(io, "missing")
"""
MissingException(msg)
Exception thrown when a [`missing`](@ref) value is encountered in a situation
where it is not supported. The error message, in the `msg` field
may provide more specific details.
"""
struct MissingException <: Exception
msg::AbstractString
end
showerror(io::IO, ex::MissingException) =
print(io, "MissingException: ", ex.msg)
nonmissingtype(::Type{Union{T, Missing}}) where {T} = T
nonmissingtype(::Type{Missing}) = Union{}
nonmissingtype(::Type{T}) where {T} = T
nonmissingtype(::Type{Any}) = Any
for U in (:Nothing, :Missing)
@eval begin
promote_rule(::Type{$U}, ::Type{T}) where {T} = Union{T, $U}
promote_rule(::Type{Union{S,$U}}, ::Type{T}) where {T,S} = Union{promote_type(T, S), $U}
promote_rule(::Type{Any}, ::Type{$U}) = Any
promote_rule(::Type{$U}, ::Type{Any}) = Any
# This definition is never actually used, but disambiguates the above definitions
promote_rule(::Type{$U}, ::Type{$U}) = $U
end
end
promote_rule(::Type{Union{Nothing, Missing}}, ::Type{Any}) = Any
promote_rule(::Type{Union{Nothing, Missing}}, ::Type{T}) where {T} =
Union{Nothing, Missing, T}
promote_rule(::Type{Union{Nothing, Missing, S}}, ::Type{T}) where {T,S} =
Union{Nothing, Missing, promote_type(T, S)}
convert(::Type{Union{T, Missing}}, x) where {T} = convert(T, x)
# To fix ambiguities
convert(::Type{Missing}, ::Missing) = missing
convert(::Type{Union{Nothing, Missing}}, x::Union{Nothing, Missing}) = x
convert(::Type{Union{Nothing, Missing}}, x) =
throw(MethodError(convert, (Union{Nothing, Missing}, x)))
# To print more appropriate message than "T not defined"
convert(::Type{Missing}, x) = throw(MethodError(convert, (Missing, x)))
# Comparison operators
==(::Missing, ::Missing) = missing
==(::Missing, ::Any) = missing
==(::Any, ::Missing) = missing
# To fix ambiguity
==(::Missing, ::WeakRef) = missing
==(::WeakRef, ::Missing) = missing
isequal(::Missing, ::Missing) = true
isequal(::Missing, ::Any) = false
isequal(::Any, ::Missing) = false
<(::Missing, ::Missing) = missing
<(::Missing, ::Any) = missing
<(::Any, ::Missing) = missing
isless(::Missing, ::Missing) = false
isless(::Missing, ::Any) = false
isless(::Any, ::Missing) = true
isapprox(::Missing, ::Missing; kwargs...) = missing
isapprox(::Missing, ::Any; kwargs...) = missing
isapprox(::Any, ::Missing; kwargs...) = missing
# Unary operators/functions
for f in (:(!), :(~), :(+), :(-), :(identity), :(zero), :(one), :(oneunit),
:(isfinite), :(isinf), :(isodd),
:(isinteger), :(isreal), :(isnan),
:(iszero), :(transpose), :(adjoint), :(float), :(conj),
:(abs), :(abs2), :(iseven), :(ispow2),
:(real), :(imag), :(sign))
@eval ($f)(::Missing) = missing
end
for f in (:(Base.zero), :(Base.one), :(Base.oneunit))
@eval function $(f)(::Type{Union{T, Missing}}) where T
T === Any && throw(MethodError($f, (Any,))) # To prevent StackOverflowError
$f(T)
end
end
# Binary operators/functions
for f in (:(+), :(-), :(*), :(/), :(^), :(div), :(mod), :(fld), :(rem))
@eval begin
# Scalar with missing
($f)(::Missing, ::Missing) = missing
($f)(::Missing, ::Number) = missing
($f)(::Number, ::Missing) = missing
end
end
min(::Missing, ::Missing) = missing
min(::Missing, ::Any) = missing
min(::Any, ::Missing) = missing
max(::Missing, ::Missing) = missing
max(::Missing, ::Any) = missing
max(::Any, ::Missing) = missing
# Rounding and related functions
for f in (:(ceil), :(floor), :(round), :(trunc))
@eval begin
($f)(::Missing, digits::Integer=0, base::Integer=0) = missing
($f)(::Type{>:Missing}, ::Missing) = missing
($f)(::Type{T}, ::Missing) where {T} =
throw(MissingException("cannot convert a missing value to type $T: use Union{$T, Missing} instead"))
($f)(::Type{T}, x::Any) where {T>:Missing} = $f(nonmissingtype(T), x)
# to fix ambiguities
($f)(::Type{T}, x::Rational) where {T>:Missing} = $f(nonmissingtype(T), x)
($f)(::Type{T}, x::Rational{Bool}) where {T>:Missing} = $f(nonmissingtype(T), x)
end
end
# to avoid ambiguity warnings
(^)(::Missing, ::Integer) = missing
# Bit operators
(&)(::Missing, ::Missing) = missing
(&)(a::Missing, b::Bool) = ifelse(b, missing, false)
(&)(b::Bool, a::Missing) = ifelse(b, missing, false)
(&)(::Missing, ::Integer) = missing
(&)(::Integer, ::Missing) = missing
(|)(::Missing, ::Missing) = missing
(|)(a::Missing, b::Bool) = ifelse(b, true, missing)
(|)(b::Bool, a::Missing) = ifelse(b, true, missing)
(|)(::Missing, ::Integer) = missing
(|)(::Integer, ::Missing) = missing
xor(::Missing, ::Missing) = missing
xor(a::Missing, b::Bool) = missing
xor(b::Bool, a::Missing) = missing
xor(::Missing, ::Integer) = missing
xor(::Integer, ::Missing) = missing
*(d::Missing, x::AbstractString) = missing
*(d::AbstractString, x::Missing) = missing
function float(A::AbstractArray{Union{T, Missing}}) where {T}
U = typeof(float(zero(T)))
convert(AbstractArray{Union{U, Missing}}, A)
end
float(A::AbstractArray{Missing}) = A
"""
skipmissing(itr)
Return an iterator over the elements in `itr` skipping [`missing`](@ref) values.
Use [`collect`](@ref) to obtain an `Array` containing the non-`missing` values in
`itr`. Note that even if `itr` is a multidimensional array, the result will always
be a `Vector` since it is not possible to remove missings while preserving dimensions
of the input.
# Examples
```jldoctest
julia> sum(skipmissing([1, missing, 2]))
3
julia> collect(skipmissing([1, missing, 2]))
2-element Array{Int64,1}:
1
2
julia> collect(skipmissing([1 missing; 2 missing]))
2-element Array{Int64,1}:
1
2
```
"""
skipmissing(itr) = SkipMissing(itr)
struct SkipMissing{T}
x::T
end
IteratorSize(::Type{<:SkipMissing}) = SizeUnknown()
IteratorEltype(::Type{SkipMissing{T}}) where {T} = IteratorEltype(T)
eltype(::Type{SkipMissing{T}}) where {T} = nonmissingtype(eltype(T))
function iterate(itr::SkipMissing, state...)
y = iterate(itr.x, state...)
y === nothing && return nothing
item, state = y
while item === missing
y = iterate(itr.x, state)
y === nothing && return nothing
item, state = y
end
item, state
end
# Optimized mapreduce implementation
# The generic method is faster when !(eltype(A) >: Missing) since it does not need
# additional loops to identify the two first non-missing values of each block
mapreduce(f, op, itr::SkipMissing{<:AbstractArray}) =
_mapreduce(f, op, IndexStyle(itr.x), eltype(itr.x) >: Missing ? itr : itr.x)
function _mapreduce(f, op, ::IndexLinear, itr::SkipMissing{<:AbstractArray})
A = itr.x
local ai
inds = LinearIndices(A)
i = first(inds)
ilast = last(inds)
while i <= ilast
@inbounds ai = A[i]
ai === missing || break
i += 1
end
i > ilast && return mapreduce_empty(f, op, eltype(itr))
a1 = ai
i += 1
while i <= ilast
@inbounds ai = A[i]
ai === missing || break
i += 1
end
i > ilast && return mapreduce_first(f, op, a1)
# We know A contains at least two non-missing entries: the result cannot be nothing
something(mapreduce_impl(f, op, itr, first(inds), last(inds)))
end
_mapreduce(f, op, ::IndexCartesian, itr::SkipMissing) = mapfoldl(f, op, itr)
mapreduce_impl(f, op, A::SkipMissing, ifirst::Integer, ilast::Integer) =
mapreduce_impl(f, op, A, ifirst, ilast, pairwise_blocksize(f, op))
# Returns nothing when the input contains only missing values, and Some(x) otherwise
@noinline function mapreduce_impl(f, op, itr::SkipMissing{<:AbstractArray},
ifirst::Integer, ilast::Integer, blksize::Int)
A = itr.x
if ifirst == ilast
@inbounds a1 = A[ifirst]
if a1 === missing
return nothing
else
return Some(mapreduce_first(f, op, a1))
end
elseif ifirst + blksize > ilast
# sequential portion
local ai
i = ifirst
while i <= ilast
@inbounds ai = A[i]
ai === missing || break
i += 1
end
i > ilast && return nothing
a1 = ai::eltype(itr)
i += 1
while i <= ilast
@inbounds ai = A[i]
ai === missing || break
i += 1
end
i > ilast && return Some(mapreduce_first(f, op, a1))
a2 = ai::eltype(itr)
i += 1
v = op(f(a1), f(a2))
@simd for i = i:ilast
@inbounds ai = A[i]
if ai !== missing
v = op(v, f(ai))
end
end
return Some(v)
else
# pairwise portion
imid = (ifirst + ilast) >> 1
v1 = mapreduce_impl(f, op, itr, ifirst, imid, blksize)
v2 = mapreduce_impl(f, op, itr, imid+1, ilast, blksize)
if v1 === nothing && v2 === nothing
return nothing
elseif v1 === nothing
return v2
elseif v2 === nothing
return v1
else
return Some(op(something(v1), something(v2)))
end
end
end
"""
coalesce(x, y...)
Return the first value in the arguments which is not equal to [`missing`](@ref),
if any. Otherwise return `missing`.
# Examples
```jldoctest
julia> coalesce(missing, 1)
1
julia> coalesce(1, missing)
1
julia> coalesce(nothing, 1) # returns `nothing`
julia> coalesce(missing, missing)
missing
```
"""
function coalesce end
coalesce() = missing
coalesce(x::Missing, y...) = coalesce(y...)
coalesce(x::Any, y...) = x
|