1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module MPFR
export
BigFloat,
setprecision
import
.Base: *, +, -, /, <, <=, ==, >, >=, ^, ceil, cmp, convert, copysign, div,
inv, exp, exp2, exponent, factorial, floor, fma, hypot, isinteger,
isfinite, isinf, isnan, ldexp, log, log2, log10, max, min, mod, modf,
nextfloat, prevfloat, promote_rule, rem, rem2pi, round, show, float,
sum, sqrt, string, print, trunc, precision, exp10, expm1,
log1p,
eps, signbit, sin, cos, sincos, tan, sec, csc, cot, acos, asin, atan,
cosh, sinh, tanh, sech, csch, coth, acosh, asinh, atanh,
cbrt, typemax, typemin, unsafe_trunc, floatmin, floatmax, rounding,
setrounding, maxintfloat, widen, significand, frexp, tryparse, iszero,
isone, big, _string_n
import .Base.Rounding: rounding_raw, setrounding_raw
import .Base.GMP: ClongMax, CulongMax, CdoubleMax, Limb
import .Base.FastMath.sincos_fast
version() = VersionNumber(unsafe_string(ccall((:mpfr_get_version,:libmpfr), Ptr{Cchar}, ())))
patches() = split(unsafe_string(ccall((:mpfr_get_patches,:libmpfr), Ptr{Cchar}, ())),' ')
function __init__()
try
# set exponent to full range by default
set_emin!(get_emin_min())
set_emax!(get_emax_max())
catch ex
Base.showerror_nostdio(ex, "WARNING: Error during initialization of module MPFR")
end
nothing
end
const ROUNDING_MODE = Ref{Cint}(0) # actually an Enum, defined by `to_mpfr`
const DEFAULT_PRECISION = Ref{Int}(256)
# Basic type and initialization definitions
"""
BigFloat <: AbstractFloat
Arbitrary precision floating point number type.
"""
mutable struct BigFloat <: AbstractFloat
prec::Clong
sign::Cint
exp::Clong
d::Ptr{Limb}
# _d::Buffer{Limb} # Julia gc handle for memory @ d
_d::String # Julia gc handle for memory @ d (optimized)
# Not recommended for general use:
# used internally by, e.g. deepcopy
global function _BigFloat(prec::Clong, sign::Cint, exp::Clong, d::String)
# ccall-based version, inlined below
#z = new(zero(Clong), zero(Cint), zero(Clong), C_NULL, d)
#ccall((:mpfr_custom_init,:libmpfr), Cvoid, (Ptr{Limb}, Clong), d, prec) # currently seems to be a no-op in mpfr
#NAN_KIND = Cint(0)
#ccall((:mpfr_custom_init_set,:libmpfr), Cvoid, (Ref{BigFloat}, Cint, Clong, Ptr{Limb}), z, NAN_KIND, prec, d)
#return z
return new(prec, sign, exp, pointer(d), d)
end
function BigFloat()
prec::Clong = precision(BigFloat)
nb = ccall((:mpfr_custom_get_size,:libmpfr), Csize_t, (Clong,), prec)
nb = (nb + Core.sizeof(Limb) - 1) ÷ Core.sizeof(Limb) # align to number of Limb allocations required for this
#d = Vector{Limb}(undef, nb)
d = _string_n(nb * Core.sizeof(Limb))
EXP_NAN = Clong(1) - Clong(typemax(Culong) >> 1)
return _BigFloat(prec, one(Cint), EXP_NAN, d) # +NAN
end
end
# overload the definition of unsafe_convert to ensure that `x.d` is assigned
# it may have been dropped in the event that the BigFloat was serialized
Base.unsafe_convert(::Type{Ref{BigFloat}}, x::Ptr{BigFloat}) = x
@inline function Base.unsafe_convert(::Type{Ref{BigFloat}}, x::Ref{BigFloat})
x = x[]
if x.d == C_NULL
x.d = pointer(x._d)
end
return convert(Ptr{BigFloat}, Base.pointer_from_objref(x))
end
"""
BigFloat(x)
Create an arbitrary precision floating point number. `x` may be an [`Integer`](@ref), a
[`Float64`](@ref) or a [`BigInt`](@ref). The usual mathematical operators are defined for
this type, and results are promoted to a [`BigFloat`](@ref).
Note that because decimal literals are converted to floating point numbers when parsed,
`BigFloat(2.1)` may not yield what you expect. You may instead prefer to initialize
constants from strings via [`parse`](@ref), or using the `big` string literal.
```jldoctest
julia> BigFloat(2.1)
2.100000000000000088817841970012523233890533447265625
julia> big"2.1"
2.099999999999999999999999999999999999999999999999999999999999999999999999999986
```
"""
BigFloat(x)
widen(::Type{Float64}) = BigFloat
widen(::Type{BigFloat}) = BigFloat
BigFloat(x::BigFloat) = x
# convert to BigFloat
for (fJ, fC) in ((:si,:Clong), (:ui,:Culong))
@eval begin
function BigFloat(x::($fC))
z = BigFloat()
ccall(($(string(:mpfr_set_,fJ)), :libmpfr), Int32, (Ref{BigFloat}, $fC, Int32), z, x, ROUNDING_MODE[])
return z
end
end
end
function BigFloat(x::Float64)
z = BigFloat()
ccall((:mpfr_set_d, :libmpfr), Int32, (Ref{BigFloat}, Float64, Int32), z, x, ROUNDING_MODE[])
if isnan(x) && signbit(x) != signbit(z)
# for some reason doing mpfr_neg in-place doesn't work here
return -z
end
return z
end
function BigFloat(x::BigInt)
z = BigFloat()
ccall((:mpfr_set_z, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigInt}, Int32), z, x, ROUNDING_MODE[])
return z
end
BigFloat(x::Integer) = BigFloat(BigInt(x))
BigFloat(x::Union{Bool,Int8,Int16,Int32}) = BigFloat(convert(Clong, x))
BigFloat(x::Union{UInt8,UInt16,UInt32}) = BigFloat(convert(Culong, x))
BigFloat(x::Union{Float16,Float32}) = BigFloat(Float64(x))
BigFloat(x::Rational) = BigFloat(numerator(x)) / BigFloat(denominator(x))
function tryparse(::Type{BigFloat}, s::AbstractString; base::Integer = 0)
!isempty(s) && isspace(s[end]) && return tryparse(BigFloat, rstrip(s), base = base)
z = BigFloat()
err = ccall((:mpfr_set_str, :libmpfr), Int32, (Ref{BigFloat}, Cstring, Int32, Int32), z, s, base, ROUNDING_MODE[])
err == 0 ? z : nothing
end
Rational(x::BigFloat) = convert(Rational{BigInt}, x)
AbstractFloat(x::BigInt) = BigFloat(x)
float(::Type{BigInt}) = BigFloat
# generic constructor with arbitrary precision:
"""
BigFloat(x, prec::Int)
Create a representation of `x` as a [`BigFloat`](@ref) with precision `prec`.
"""
function BigFloat(x, prec::Int)
setprecision(BigFloat, prec) do
BigFloat(x)
end
end
"""
BigFloat(x, prec::Int, rounding::RoundingMode)
Create a representation of `x` as a [`BigFloat`](@ref) with precision `prec` and
[`Rounding Mode`](@ref Base.Rounding.RoundingMode) `rounding`.
"""
function BigFloat(x, prec::Int, rounding::RoundingMode)
setrounding(BigFloat, rounding) do
BigFloat(x, prec)
end
end
"""
BigFloat(x, rounding::RoundingMode)
Create a representation of `x` as a [`BigFloat`](@ref) with the current global precision
and [`Rounding Mode`](@ref Base.Rounding.RoundingMode) `rounding`.
"""
function BigFloat(x::Union{Integer, AbstractFloat, String}, rounding::RoundingMode)
BigFloat(x, precision(BigFloat), rounding)
end
"""
BigFloat(x::String)
Create a representation of the string `x` as a [`BigFloat`](@ref).
"""
BigFloat(x::AbstractString) = parse(BigFloat, x)
## BigFloat -> Integer
function unsafe_cast(::Type{Int64}, x::BigFloat, ri::Cint)
ccall((:__gmpfr_mpfr_get_sj,:libmpfr), Cintmax_t, (Ref{BigFloat}, Cint), x, ri)
end
function unsafe_cast(::Type{UInt64}, x::BigFloat, ri::Cint)
ccall((:__gmpfr_mpfr_get_uj,:libmpfr), Cuintmax_t, (Ref{BigFloat}, Cint), x, ri)
end
function unsafe_cast(::Type{T}, x::BigFloat, ri::Cint) where T<:Signed
unsafe_cast(Int64, x, ri) % T
end
function unsafe_cast(::Type{T}, x::BigFloat, ri::Cint) where T<:Unsigned
unsafe_cast(UInt64, x, ri) % T
end
function unsafe_cast(::Type{BigInt}, x::BigFloat, ri::Cint)
# actually safe, just keep naming consistent
z = BigInt()
ccall((:mpfr_get_z, :libmpfr), Int32, (Ref{BigInt}, Ref{BigFloat}, Int32), z, x, ri)
return z
end
unsafe_cast(::Type{Int128}, x::BigFloat, ri::Cint) = Int128(unsafe_cast(BigInt, x, ri))
unsafe_cast(::Type{UInt128}, x::BigFloat, ri::Cint) = UInt128(unsafe_cast(BigInt, x, ri))
unsafe_cast(::Type{T}, x::BigFloat, r::RoundingMode) where {T<:Integer} = unsafe_cast(T, x, to_mpfr(r))
unsafe_trunc(::Type{T}, x::BigFloat) where {T<:Integer} = unsafe_cast(T, x, RoundToZero)
function trunc(::Type{T}, x::BigFloat) where T<:Union{Signed,Unsigned}
(typemin(T) <= x <= typemax(T)) || throw(InexactError(:trunc, T, x))
unsafe_cast(T, x, RoundToZero)
end
function floor(::Type{T}, x::BigFloat) where T<:Union{Signed,Unsigned}
(typemin(T) <= x <= typemax(T)) || throw(InexactError(:floor, T, x))
unsafe_cast(T, x, RoundDown)
end
function ceil(::Type{T}, x::BigFloat) where T<:Union{Signed,Unsigned}
(typemin(T) <= x <= typemax(T)) || throw(InexactError(:ceil, T, x))
unsafe_cast(T, x, RoundUp)
end
function round(::Type{T}, x::BigFloat) where T<:Union{Signed,Unsigned}
(typemin(T) <= x <= typemax(T)) || throw(InexactError(:round, T, x))
unsafe_cast(T, x, ROUNDING_MODE[])
end
trunc(::Type{BigInt}, x::BigFloat) = unsafe_cast(BigInt, x, RoundToZero)
floor(::Type{BigInt}, x::BigFloat) = unsafe_cast(BigInt, x, RoundDown)
ceil(::Type{BigInt}, x::BigFloat) = unsafe_cast(BigInt, x, RoundUp)
round(::Type{BigInt}, x::BigFloat) = unsafe_cast(BigInt, x, ROUNDING_MODE[])
# convert/round/trunc/floor/ceil(Integer, x) should return a BigInt
trunc(::Type{Integer}, x::BigFloat) = trunc(BigInt, x)
floor(::Type{Integer}, x::BigFloat) = floor(BigInt, x)
ceil(::Type{Integer}, x::BigFloat) = ceil(BigInt, x)
round(::Type{Integer}, x::BigFloat) = round(BigInt, x)
function Bool(x::BigFloat)
iszero(x) && return false
isone(x) && return true
throw(InexactError(:Bool, Bool, x))
end
function BigInt(x::BigFloat)
isinteger(x) || throw(InexactError(:BigInt, BigInt, x))
trunc(BigInt, x)
end
function (::Type{T})(x::BigFloat) where T<:Integer
isinteger(x) || throw(InexactError(Symbol(string(T)), T, x))
trunc(T,x)
end
## BigFloat -> AbstractFloat
_cpynansgn(x::AbstractFloat, y::BigFloat) = isnan(x) && signbit(x) != signbit(y) ? -x : x
Float64(x::BigFloat) =
_cpynansgn(ccall((:mpfr_get_d,:libmpfr), Float64, (Ref{BigFloat}, Int32), x, ROUNDING_MODE[]), x)
Float32(x::BigFloat) =
_cpynansgn(ccall((:mpfr_get_flt,:libmpfr), Float32, (Ref{BigFloat}, Int32), x, ROUNDING_MODE[]), x)
# TODO: avoid double rounding
Float16(x::BigFloat) = Float16(Float32(x))
Float64(x::BigFloat, r::RoundingMode) =
_cpynansgn(ccall((:mpfr_get_d,:libmpfr), Float64, (Ref{BigFloat}, Int32), x, to_mpfr(r)), x)
Float32(x::BigFloat, r::RoundingMode) =
_cpynansgn(ccall((:mpfr_get_flt,:libmpfr), Float32, (Ref{BigFloat}, Int32), x, to_mpfr(r)), x)
# TODO: avoid double rounding
Float16(x::BigFloat, r::RoundingMode) = Float16(Float32(x, r))
promote_rule(::Type{BigFloat}, ::Type{<:Real}) = BigFloat
promote_rule(::Type{BigInt}, ::Type{<:AbstractFloat}) = BigFloat
promote_rule(::Type{BigFloat}, ::Type{<:AbstractFloat}) = BigFloat
big(::Type{<:AbstractFloat}) = BigFloat
function (::Type{Rational{BigInt}})(x::AbstractFloat)
isnan(x) && return zero(BigInt) // zero(BigInt)
isinf(x) && return copysign(one(BigInt),x) // zero(BigInt)
iszero(x) && return zero(BigInt) // one(BigInt)
s = max(precision(x) - exponent(x), 0)
BigInt(ldexp(x,s)) // (BigInt(1) << s)
end
# Basic arithmetic without promotion
for (fJ, fC) in ((:+,:add), (:*,:mul))
@eval begin
# BigFloat
function ($fJ)(x::BigFloat, y::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,fC)),:libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
# Unsigned Integer
function ($fJ)(x::BigFloat, c::CulongMax)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_ui)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Culong, Int32), z, x, c, ROUNDING_MODE[])
return z
end
($fJ)(c::CulongMax, x::BigFloat) = ($fJ)(x,c)
# Signed Integer
function ($fJ)(x::BigFloat, c::ClongMax)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_si)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), z, x, c, ROUNDING_MODE[])
return z
end
($fJ)(c::ClongMax, x::BigFloat) = ($fJ)(x,c)
# Float32/Float64
function ($fJ)(x::BigFloat, c::CdoubleMax)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_d)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Cdouble, Int32), z, x, c, ROUNDING_MODE[])
return z
end
($fJ)(c::CdoubleMax, x::BigFloat) = ($fJ)(x,c)
# BigInt
function ($fJ)(x::BigFloat, c::BigInt)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_z)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigInt}, Int32), z, x, c, ROUNDING_MODE[])
return z
end
($fJ)(c::BigInt, x::BigFloat) = ($fJ)(x,c)
end
end
for (fJ, fC) in ((:-,:sub), (:/,:div))
@eval begin
# BigFloat
function ($fJ)(x::BigFloat, y::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,fC)),:libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
# Unsigned Int
function ($fJ)(x::BigFloat, c::CulongMax)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_ui)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Culong, Int32), z, x, c, ROUNDING_MODE[])
return z
end
function ($fJ)(c::CulongMax, x::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,:ui_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Culong, Ref{BigFloat}, Int32), z, c, x, ROUNDING_MODE[])
return z
end
# Signed Integer
function ($fJ)(x::BigFloat, c::ClongMax)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_si)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), z, x, c, ROUNDING_MODE[])
return z
end
function ($fJ)(c::ClongMax, x::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,:si_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Clong, Ref{BigFloat}, Int32), z, c, x, ROUNDING_MODE[])
return z
end
# Float32/Float64
function ($fJ)(x::BigFloat, c::CdoubleMax)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_d)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Cdouble, Int32), z, x, c, ROUNDING_MODE[])
return z
end
function ($fJ)(c::CdoubleMax, x::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,:d_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Cdouble, Ref{BigFloat}, Int32), z, c, x, ROUNDING_MODE[])
return z
end
# BigInt
function ($fJ)(x::BigFloat, c::BigInt)
z = BigFloat()
ccall(($(string(:mpfr_,fC,:_z)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigInt}, Int32), z, x, c, ROUNDING_MODE[])
return z
end
# no :mpfr_z_div function
end
end
function -(c::BigInt, x::BigFloat)
z = BigFloat()
ccall((:mpfr_z_sub, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigInt}, Ref{BigFloat}, Int32), z, c, x, ROUNDING_MODE[])
return z
end
inv(x::BigFloat) = one(Clong) / x # faster than fallback one(x)/x
function fma(x::BigFloat, y::BigFloat, z::BigFloat)
r = BigFloat()
ccall(("mpfr_fma",:libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), r, x, y, z, ROUNDING_MODE[])
return r
end
# div
# BigFloat
function div(x::BigFloat, y::BigFloat)
z = BigFloat()
ccall((:mpfr_div,:libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
# Unsigned Int
function div(x::BigFloat, c::CulongMax)
z = BigFloat()
ccall((:mpfr_div_ui, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Culong, Int32), z, x, c, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
function div(c::CulongMax, x::BigFloat)
z = BigFloat()
ccall((:mpfr_ui_div, :libmpfr), Int32, (Ref{BigFloat}, Culong, Ref{BigFloat}, Int32), z, c, x, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
# Signed Integer
function div(x::BigFloat, c::ClongMax)
z = BigFloat()
ccall((:mpfr_div_si, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), z, x, c, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
function div(c::ClongMax, x::BigFloat)
z = BigFloat()
ccall((:mpfr_si_div, :libmpfr), Int32, (Ref{BigFloat}, Clong, Ref{BigFloat}, Int32), z, c, x, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
# Float32/Float64
function div(x::BigFloat, c::CdoubleMax)
z = BigFloat()
ccall((:mpfr_div_d, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Cdouble, Int32), z, x, c, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
function div(c::CdoubleMax, x::BigFloat)
z = BigFloat()
ccall((:mpfr_d_div, :libmpfr), Int32, (Ref{BigFloat}, Cdouble, Ref{BigFloat}, Int32), z, c, x, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
# BigInt
function div(x::BigFloat, c::BigInt)
z = BigFloat()
ccall((:mpfr_div_z, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigInt}, Int32), z, x, c, to_mpfr(RoundToZero))
ccall((:mpfr_trunc, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, z)
return z
end
# More efficient commutative operations
for (fJ, fC, fI) in ((:+, :add, 0), (:*, :mul, 1))
@eval begin
function ($fJ)(a::BigFloat, b::BigFloat, c::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, a, b, ROUNDING_MODE[])
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, z, c, ROUNDING_MODE[])
return z
end
function ($fJ)(a::BigFloat, b::BigFloat, c::BigFloat, d::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, a, b, ROUNDING_MODE[])
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, z, c, ROUNDING_MODE[])
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, z, d, ROUNDING_MODE[])
return z
end
function ($fJ)(a::BigFloat, b::BigFloat, c::BigFloat, d::BigFloat, e::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, a, b, ROUNDING_MODE[])
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, z, c, ROUNDING_MODE[])
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, z, d, ROUNDING_MODE[])
ccall(($(string(:mpfr_,fC)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, z, e, ROUNDING_MODE[])
return z
end
end
end
function -(x::BigFloat)
z = BigFloat()
ccall((:mpfr_neg, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, ROUNDING_MODE[])
return z
end
function sqrt(x::BigFloat)
isnan(x) && return x
z = BigFloat()
ccall((:mpfr_sqrt, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, ROUNDING_MODE[])
isnan(z) && throw(DomainError(x, "NaN result for non-NaN input."))
return z
end
sqrt(x::BigInt) = sqrt(BigFloat(x))
function ^(x::BigFloat, y::BigFloat)
z = BigFloat()
ccall((:mpfr_pow, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
function ^(x::BigFloat, y::CulongMax)
z = BigFloat()
ccall((:mpfr_pow_ui, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Culong, Int32), z, x, y, ROUNDING_MODE[])
return z
end
function ^(x::BigFloat, y::ClongMax)
z = BigFloat()
ccall((:mpfr_pow_si, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), z, x, y, ROUNDING_MODE[])
return z
end
function ^(x::BigFloat, y::BigInt)
z = BigFloat()
ccall((:mpfr_pow_z, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigInt}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
^(x::BigFloat, y::Integer) = typemin(Clong) <= y <= typemax(Clong) ? x^Clong(y) : x^BigInt(y)
^(x::BigFloat, y::Unsigned) = typemin(Culong) <= y <= typemax(Culong) ? x^Culong(y) : x^BigInt(y)
for f in (:exp, :exp2, :exp10, :expm1, :cosh, :sinh, :tanh, :sech, :csch, :coth, :cbrt)
@eval function $f(x::BigFloat)
z = BigFloat()
ccall(($(string(:mpfr_,f)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, ROUNDING_MODE[])
return z
end
end
function sincos_fast(v::BigFloat)
s = BigFloat()
c = BigFloat()
ccall((:mpfr_sin_cos, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), s, c, v, ROUNDING_MODE[])
return (s, c)
end
sincos(v::BigFloat) = sincos_fast(v)
# return log(2)
function big_ln2()
c = BigFloat()
ccall((:mpfr_const_log2, :libmpfr), Cint, (Ref{BigFloat}, Int32), c, MPFR.ROUNDING_MODE[])
return c
end
function ldexp(x::BigFloat, n::Clong)
z = BigFloat()
ccall((:mpfr_mul_2si, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), z, x, n, ROUNDING_MODE[])
return z
end
function ldexp(x::BigFloat, n::Culong)
z = BigFloat()
ccall((:mpfr_mul_2ui, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Culong, Int32), z, x, n, ROUNDING_MODE[])
return z
end
ldexp(x::BigFloat, n::ClongMax) = ldexp(x, convert(Clong, n))
ldexp(x::BigFloat, n::CulongMax) = ldexp(x, convert(Culong, n))
ldexp(x::BigFloat, n::Integer) = x * exp2(BigFloat(n))
function factorial(x::BigFloat)
if x < 0 || !isinteger(x)
throw(DomainError(x, "Must be a non-negative integer."))
end
ui = convert(Culong, x)
z = BigFloat()
ccall((:mpfr_fac_ui, :libmpfr), Int32, (Ref{BigFloat}, Culong, Int32), z, ui, ROUNDING_MODE[])
return z
end
function hypot(x::BigFloat, y::BigFloat)
z = BigFloat()
ccall((:mpfr_hypot, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
for f in (:log, :log2, :log10)
@eval function $f(x::BigFloat)
if x < 0
throw(DomainError(x, string($f, " will only return a complex result if called ",
"with a complex argument. Try ", $f, "(complex(x)).")))
end
z = BigFloat()
ccall(($(string(:mpfr_,f)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, ROUNDING_MODE[])
return z
end
end
function log1p(x::BigFloat)
if x < -1
throw(DomainError(x, string("log1p will only return a complex result if called ",
"with a complex argument. Try log1p(complex(x)).")))
end
z = BigFloat()
ccall((:mpfr_log1p, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, ROUNDING_MODE[])
return z
end
function max(x::BigFloat, y::BigFloat)
isnan(x) && return x
isnan(y) && return y
z = BigFloat()
ccall((:mpfr_max, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
function min(x::BigFloat, y::BigFloat)
isnan(x) && return x
isnan(y) && return y
z = BigFloat()
ccall((:mpfr_min, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
function modf(x::BigFloat)
isinf(x) && return (BigFloat(NaN), x)
zint = BigFloat()
zfloat = BigFloat()
ccall((:mpfr_modf, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), zint, zfloat, x, ROUNDING_MODE[])
return (zfloat, zint)
end
function rem(x::BigFloat, y::BigFloat)
z = BigFloat()
ccall((:mpfr_fmod, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
function rem(x::BigFloat, y::BigFloat, ::RoundingMode{:Nearest})
z = BigFloat()
ccall((:mpfr_remainder, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
# TODO: use a higher-precision BigFloat(pi) here?
rem2pi(x::BigFloat, r::RoundingMode) = rem(x, 2*BigFloat(pi), r)
function sum(arr::AbstractArray{BigFloat})
z = BigFloat(0)
for i in arr
ccall((:mpfr_add, :libmpfr), Int32,
(Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Cint), z, z, i, 0)
end
return z
end
# Functions for which NaN results are converted to DomainError, following Base
for f in (:sin, :cos, :tan, :sec, :csc, :acos, :asin, :atan, :acosh, :asinh, :atanh)
@eval begin
function ($f)(x::BigFloat)
isnan(x) && return x
z = BigFloat()
ccall(($(string(:mpfr_,f)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, ROUNDING_MODE[])
isnan(z) && throw(DomainError(x, "NaN result for non-NaN input."))
return z
end
end
end
function atan(y::BigFloat, x::BigFloat)
z = BigFloat()
ccall((:mpfr_atan2, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, y, x, ROUNDING_MODE[])
return z
end
# Utility functions
==(x::BigFloat, y::BigFloat) = ccall((:mpfr_equal_p, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), x, y) != 0
<=(x::BigFloat, y::BigFloat) = ccall((:mpfr_lessequal_p, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), x, y) != 0
>=(x::BigFloat, y::BigFloat) = ccall((:mpfr_greaterequal_p, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), x, y) != 0
<(x::BigFloat, y::BigFloat) = ccall((:mpfr_less_p, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), x, y) != 0
>(x::BigFloat, y::BigFloat) = ccall((:mpfr_greater_p, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), x, y) != 0
function cmp(x::BigFloat, y::BigInt)
isnan(x) && return 1
ccall((:mpfr_cmp_z, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigInt}), x, y)
end
function cmp(x::BigFloat, y::ClongMax)
isnan(x) && return 1
ccall((:mpfr_cmp_si, :libmpfr), Int32, (Ref{BigFloat}, Clong), x, y)
end
function cmp(x::BigFloat, y::CulongMax)
isnan(x) && return 1
ccall((:mpfr_cmp_ui, :libmpfr), Int32, (Ref{BigFloat}, Culong), x, y)
end
cmp(x::BigFloat, y::Integer) = cmp(x,big(y))
cmp(x::Integer, y::BigFloat) = -cmp(y,x)
function cmp(x::BigFloat, y::CdoubleMax)
isnan(x) && return isnan(y) ? 0 : 1
isnan(y) && return -1
ccall((:mpfr_cmp_d, :libmpfr), Int32, (Ref{BigFloat}, Cdouble), x, y)
end
cmp(x::CdoubleMax, y::BigFloat) = -cmp(y,x)
==(x::BigFloat, y::Integer) = !isnan(x) && cmp(x,y) == 0
==(x::Integer, y::BigFloat) = y == x
==(x::BigFloat, y::CdoubleMax) = !isnan(x) && !isnan(y) && cmp(x,y) == 0
==(x::CdoubleMax, y::BigFloat) = y == x
<(x::BigFloat, y::Integer) = !isnan(x) && cmp(x,y) < 0
<(x::Integer, y::BigFloat) = !isnan(y) && cmp(y,x) > 0
<(x::BigFloat, y::CdoubleMax) = !isnan(x) && !isnan(y) && cmp(x,y) < 0
<(x::CdoubleMax, y::BigFloat) = !isnan(x) && !isnan(y) && cmp(y,x) > 0
<=(x::BigFloat, y::Integer) = !isnan(x) && cmp(x,y) <= 0
<=(x::Integer, y::BigFloat) = !isnan(y) && cmp(y,x) >= 0
<=(x::BigFloat, y::CdoubleMax) = !isnan(x) && !isnan(y) && cmp(x,y) <= 0
<=(x::CdoubleMax, y::BigFloat) = !isnan(x) && !isnan(y) && cmp(y,x) >= 0
signbit(x::BigFloat) = ccall((:mpfr_signbit, :libmpfr), Int32, (Ref{BigFloat},), x) != 0
function precision(x::BigFloat) # precision of an object of type BigFloat
return ccall((:mpfr_get_prec, :libmpfr), Clong, (Ref{BigFloat},), x)
end
"""
precision(BigFloat)
Get the precision (in bits) currently used for [`BigFloat`](@ref) arithmetic.
"""
precision(::Type{BigFloat}) = DEFAULT_PRECISION[] # precision of the type BigFloat itself
"""
setprecision([T=BigFloat,] precision::Int)
Set the precision (in bits) to be used for `T` arithmetic.
"""
function setprecision(::Type{BigFloat}, precision::Int)
if precision < 2
throw(DomainError(precision, "`precision` cannot be less than 2."))
end
DEFAULT_PRECISION[] = precision
return precision
end
setprecision(precision::Int) = setprecision(BigFloat, precision)
maxintfloat(x::BigFloat) = BigFloat(2)^precision(x)
maxintfloat(::Type{BigFloat}) = BigFloat(2)^precision(BigFloat)
to_mpfr(::RoundingMode{:Nearest}) = Cint(0)
to_mpfr(::RoundingMode{:ToZero}) = Cint(1)
to_mpfr(::RoundingMode{:Up}) = Cint(2)
to_mpfr(::RoundingMode{:Down}) = Cint(3)
to_mpfr(::RoundingMode{:FromZero}) = Cint(4)
function from_mpfr(c::Integer)
if c == 0
return RoundNearest
elseif c == 1
return RoundToZero
elseif c == 2
return RoundUp
elseif c == 3
return RoundDown
elseif c == 4
return RoundFromZero
else
throw(ArgumentError("invalid MPFR rounding mode code: $c"))
end
RoundingMode(c)
end
rounding_raw(::Type{BigFloat}) = ROUNDING_MODE[]
setrounding_raw(::Type{BigFloat},i::Integer) = ROUNDING_MODE[] = i
rounding(::Type{BigFloat}) = from_mpfr(rounding_raw(BigFloat))
setrounding(::Type{BigFloat},r::RoundingMode) = setrounding_raw(BigFloat,to_mpfr(r))
function copysign(x::BigFloat, y::BigFloat)
z = BigFloat()
ccall((:mpfr_copysign, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, y, ROUNDING_MODE[])
return z
end
function exponent(x::BigFloat)
if iszero(x) || !isfinite(x)
throw(DomainError(x, "`x` must be non-zero and finite."))
end
# The '- 1' is to make it work as Base.exponent
return ccall((:mpfr_get_exp, :libmpfr), Clong, (Ref{BigFloat},), x) - 1
end
function frexp(x::BigFloat)
z = BigFloat()
c = Ref{Clong}()
ccall((:mpfr_frexp, :libmpfr), Int32, (Ptr{Clong}, Ref{BigFloat}, Ref{BigFloat}, Cint), c, z, x, ROUNDING_MODE[])
return (z, c[])
end
function significand(x::BigFloat)
z = BigFloat()
c = Ref{Clong}()
ccall((:mpfr_frexp, :libmpfr), Int32, (Ptr{Clong}, Ref{BigFloat}, Ref{BigFloat}, Cint), c, z, x, ROUNDING_MODE[])
# Double the significand to make it work as Base.significand
ccall((:mpfr_mul_si, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Clong, Int32), z, z, 2, ROUNDING_MODE[])
return z
end
function isinteger(x::BigFloat)
return ccall((:mpfr_integer_p, :libmpfr), Int32, (Ref{BigFloat},), x) != 0
end
for (f,R) in ((:roundeven, :Nearest),
(:ceil, :Up),
(:floor, :Down),
(:trunc, :ToZero),
(:round, :NearestTiesAway))
@eval begin
function round(x::BigFloat, ::RoundingMode{$(QuoteNode(R))})
z = BigFloat()
ccall(($(string(:mpfr_,f)), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}), z, x)
return z
end
end
end
function isinf(x::BigFloat)
return ccall((:mpfr_inf_p, :libmpfr), Int32, (Ref{BigFloat},), x) != 0
end
function isnan(x::BigFloat)
return ccall((:mpfr_nan_p, :libmpfr), Int32, (Ref{BigFloat},), x) != 0
end
isfinite(x::BigFloat) = !isinf(x) && !isnan(x)
iszero(x::BigFloat) = x == Clong(0)
isone(x::BigFloat) = x == Clong(1)
@eval typemax(::Type{BigFloat}) = $(BigFloat(Inf))
@eval typemin(::Type{BigFloat}) = $(BigFloat(-Inf))
function nextfloat(x::BigFloat)
z = BigFloat()
ccall((:mpfr_set, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32),
z, x, ROUNDING_MODE[])
ccall((:mpfr_nextabove, :libmpfr), Int32, (Ref{BigFloat},), z) != 0
return z
end
function prevfloat(x::BigFloat)
z = BigFloat()
ccall((:mpfr_set, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32),
z, x, ROUNDING_MODE[])
ccall((:mpfr_nextbelow, :libmpfr), Int32, (Ref{BigFloat},), z) != 0
return z
end
eps(::Type{BigFloat}) = nextfloat(BigFloat(1)) - BigFloat(1)
floatmin(::Type{BigFloat}) = nextfloat(zero(BigFloat))
floatmax(::Type{BigFloat}) = prevfloat(BigFloat(Inf))
"""
setprecision(f::Function, [T=BigFloat,] precision::Integer)
Change the `T` arithmetic precision (in bits) for the duration of `f`.
It is logically equivalent to:
old = precision(BigFloat)
setprecision(BigFloat, precision)
f()
setprecision(BigFloat, old)
Often used as `setprecision(T, precision) do ... end`
"""
function setprecision(f::Function, ::Type{T}, prec::Integer) where T
old_prec = precision(T)
setprecision(T, prec)
try
return f()
finally
setprecision(T, old_prec)
end
end
setprecision(f::Function, precision::Integer) = setprecision(f, BigFloat, precision)
function string_mpfr(x::BigFloat, fmt::String)
buf = Base.StringVector(0)
s = _calculate_buffer_size!(buf, fmt, x)
resize!(buf, s)
_fill_buffer!(buf, fmt, x)
String(buf)
end
function _calculate_buffer_size!(buf, fmt, x::BigFloat)
ccall((:mpfr_snprintf,:libmpfr),
Int32, (Ptr{UInt8}, Culong, Ptr{UInt8}, Ref{BigFloat}...),
buf, 0, fmt, x)
end
function _fill_buffer!(buf, fmt, x::BigFloat)
s = length(buf)
# we temporarily need one more item in buffer to capture null termination
resize!(buf, s + 1)
n = ccall((:mpfr_sprintf,:libmpfr), Int32, (Ptr{UInt8}, Ptr{UInt8}, Ref{BigFloat}...), buf, fmt, x)
@assert n + 1 == length(buf)
@assert last(buf) == 0x00
resize!(buf, s)
end
function _prettify_bigfloat(s::String)::String
mantissa, exponent = split(s, 'e')
if !occursin('.', mantissa)
mantissa = string(mantissa, '.')
end
mantissa = rstrip(mantissa, '0')
if endswith(mantissa, '.')
mantissa = string(mantissa, '0')
end
if exponent == "+00"
mantissa
else
string(mantissa, 'e', exponent)
end
end
function _string(x::BigFloat, fmt::String)::String
isfinite(x) || return string(Float64(x))
_prettify_bigfloat(string_mpfr(x, fmt))
end
_string(x::BigFloat) = _string(x, "%.Re")
_string(x::BigFloat, k::Integer) = _string(x, "%.$(k)Re")
string(b::BigFloat) = _string(b)
print(io::IO, b::BigFloat) = print(io, string(b))
function show(io::IO, b::BigFloat)
if get(io, :compact, false)
print(io, _string(b, 5))
else
print(io, _string(b))
end
end
# get/set exponent min/max
get_emax() = ccall((:mpfr_get_emax, :libmpfr), Clong, ())
get_emax_min() = ccall((:mpfr_get_emax_min, :libmpfr), Clong, ())
get_emax_max() = ccall((:mpfr_get_emax_max, :libmpfr), Clong, ())
get_emin() = ccall((:mpfr_get_emin, :libmpfr), Clong, ())
get_emin_min() = ccall((:mpfr_get_emin_min, :libmpfr), Clong, ())
get_emin_max() = ccall((:mpfr_get_emin_max, :libmpfr), Clong, ())
set_emax!(x) = ccall((:mpfr_set_emax, :libmpfr), Cvoid, (Clong,), x)
set_emin!(x) = ccall((:mpfr_set_emin, :libmpfr), Cvoid, (Clong,), x)
function Base.deepcopy_internal(x::BigFloat, stackdict::IdDict)
haskey(stackdict, x) && return stackdict[x]
# d = copy(x._d)
d = x._d
d′ = GC.@preserve d unsafe_string(pointer(d), sizeof(d)) # creates a definitely-new String
y = _BigFloat(x.prec, x.sign, x.exp, d′)
#ccall((:mpfr_custom_move,:libmpfr), Cvoid, (Ref{BigFloat}, Ptr{Limb}), y, d) # unnecessary
stackdict[x] = y
return y
end
function Base.lerpi(j::Integer, d::Integer, a::BigFloat, b::BigFloat)
t = BigFloat(j)/d
fma(t, b, fma(-t, a, a))
end
end #module
|