1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## generic operations on numbers ##
# Numbers are convertible
convert(::Type{T}, x::T) where {T<:Number} = x
convert(::Type{T}, x::Number) where {T<:Number} = T(x)
"""
isinteger(x) -> Bool
Test whether `x` is numerically equal to some integer.
# Examples
```jldoctest
julia> isinteger(4.0)
true
```
"""
isinteger(x::Integer) = true
"""
iszero(x)
Return `true` if `x == zero(x)`; if `x` is an array, this checks whether
all of the elements of `x` are zero.
# Examples
```jldoctest
julia> iszero(0.0)
true
julia> iszero([1, 9, 0])
false
julia> iszero([false, 0, 0])
true
```
"""
iszero(x) = x == zero(x) # fallback method
"""
isone(x)
Return `true` if `x == one(x)`; if `x` is an array, this checks whether
`x` is an identity matrix.
# Examples
```jldoctest
julia> isone(1.0)
true
julia> isone([1 0; 0 2])
false
julia> isone([1 0; 0 true])
true
```
"""
isone(x) = x == one(x) # fallback method
size(x::Number) = ()
size(x::Number,d) = convert(Int,d)<1 ? throw(BoundsError()) : 1
axes(x::Number) = ()
axes(x::Number,d) = convert(Int,d)<1 ? throw(BoundsError()) : OneTo(1)
eltype(::Type{T}) where {T<:Number} = T
ndims(x::Number) = 0
ndims(::Type{<:Number}) = 0
length(x::Number) = 1
firstindex(x::Number) = 1
lastindex(x::Number) = 1
IteratorSize(::Type{<:Number}) = HasShape{0}()
keys(::Number) = OneTo(1)
getindex(x::Number) = x
function getindex(x::Number, i::Integer)
@_inline_meta
@boundscheck i == 1 || throw(BoundsError())
x
end
function getindex(x::Number, I::Integer...)
@_inline_meta
@boundscheck all([i == 1 for i in I]) || throw(BoundsError())
x
end
first(x::Number) = x
last(x::Number) = x
copy(x::Number) = x # some code treats numbers as collection-like
"""
divrem(x, y)
The quotient and remainder from Euclidean division. Equivalent to `(div(x,y), rem(x,y))` or
`(x÷y, x%y)`.
# Examples
```jldoctest
julia> divrem(3,7)
(0, 3)
julia> divrem(7,3)
(2, 1)
```
"""
divrem(x,y) = (div(x,y),rem(x,y))
"""
fldmod(x, y)
The floored quotient and modulus after division. Equivalent to `(fld(x,y), mod(x,y))`.
"""
fldmod(x,y) = (fld(x,y),mod(x,y))
"""
signbit(x)
Returns `true` if the value of the sign of `x` is negative, otherwise `false`.
# Examples
```jldoctest
julia> signbit(-4)
true
julia> signbit(5)
false
julia> signbit(5.5)
false
julia> signbit(-4.1)
true
```
"""
signbit(x::Real) = x < 0
"""
sign(x)
Return zero if `x==0` and ``x/|x|`` otherwise (i.e., ±1 for real `x`).
"""
sign(x::Number) = x == 0 ? x/abs(oneunit(x)) : x/abs(x)
sign(x::Real) = ifelse(x < 0, oftype(one(x),-1), ifelse(x > 0, one(x), typeof(one(x))(x)))
sign(x::Unsigned) = ifelse(x > 0, one(x), oftype(one(x),0))
abs(x::Real) = ifelse(signbit(x), -x, x)
"""
abs2(x)
Squared absolute value of `x`.
# Examples
```jldoctest
julia> abs2(-3)
9
```
"""
abs2(x::Real) = x*x
"""
flipsign(x, y)
Return `x` with its sign flipped if `y` is negative. For example `abs(x) = flipsign(x,x)`.
# Examples
```jldoctest
julia> flipsign(5, 3)
5
julia> flipsign(5, -3)
-5
```
"""
flipsign(x::Real, y::Real) = ifelse(signbit(y), -x, +x) # the + is for type-stability on Bool
"""
copysign(x, y) -> z
Return `z` which has the magnitude of `x` and the same sign as `y`.
# Examples
```jldoctest
julia> copysign(1, -2)
-1
julia> copysign(-1, 2)
1
```
"""
copysign(x::Real, y::Real) = ifelse(signbit(x)!=signbit(y), -x, +x)
conj(x::Real) = x
transpose(x::Number) = x
adjoint(x::Number) = conj(x)
angle(z::Real) = atan(zero(z), z)
"""
inv(x)
Return the multiplicative inverse of `x`, such that `x*inv(x)` or `inv(x)*x`
yields [`one(x)`](@ref) (the multiplicative identity) up to roundoff errors.
If `x` is a number, this is essentially the same as `one(x)/x`, but for
some types `inv(x)` may be slightly more efficient.
# Examples
```jldoctest
julia> inv(2)
0.5
julia> inv(1 + 2im)
0.2 - 0.4im
julia> inv(1 + 2im) * (1 + 2im)
1.0 + 0.0im
julia> inv(2//3)
3//2
```
"""
inv(x::Number) = one(x)/x
"""
widemul(x, y)
Multiply `x` and `y`, giving the result as a larger type.
# Examples
```jldoctest
julia> widemul(Float32(3.), 4.)
1.2e+01
```
"""
widemul(x::Number, y::Number) = widen(x)*widen(y)
iterate(x::Number) = (x, nothing)
iterate(x::Number, ::Any) = nothing
isempty(x::Number) = false
in(x::Number, y::Number) = x == y
map(f, x::Number, ys::Number...) = f(x, ys...)
"""
zero(x)
Get the additive identity element for the type of `x` (`x` can also specify the type itself).
# Examples
```jldoctest
julia> zero(1)
0
julia> zero(big"2.0")
0.0
julia> zero(rand(2,2))
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0
```
"""
zero(x::Number) = oftype(x,0)
zero(::Type{T}) where {T<:Number} = convert(T,0)
"""
one(x)
one(T::type)
Return a multiplicative identity for `x`: a value such that
`one(x)*x == x*one(x) == x`. Alternatively `one(T)` can
take a type `T`, in which case `one` returns a multiplicative
identity for any `x` of type `T`.
If possible, `one(x)` returns a value of the same type as `x`,
and `one(T)` returns a value of type `T`. However, this may
not be the case for types representing dimensionful quantities
(e.g. time in days), since the multiplicative
identity must be dimensionless. In that case, `one(x)`
should return an identity value of the same precision
(and shape, for matrices) as `x`.
If you want a quantity that is of the same type as `x`, or of type `T`,
even if `x` is dimensionful, use [`oneunit`](@ref) instead.
# Examples
```jldoctest
julia> one(3.7)
1.0
julia> one(Int)
1
julia> import Dates; one(Dates.Day(1))
1
```
"""
one(::Type{T}) where {T<:Number} = convert(T,1)
one(x::T) where {T<:Number} = one(T)
# note that convert(T, 1) should throw an error if T is dimensionful,
# so this fallback definition should be okay.
"""
oneunit(x::T)
oneunit(T::Type)
Returns `T(one(x))`, where `T` is either the type of the argument or
(if a type is passed) the argument. This differs from [`one`](@ref) for
dimensionful quantities: `one` is dimensionless (a multiplicative identity)
while `oneunit` is dimensionful (of the same type as `x`, or of type `T`).
# Examples
```jldoctest
julia> oneunit(3.7)
1.0
julia> import Dates; oneunit(Dates.Day)
1 day
```
"""
oneunit(x::T) where {T} = T(one(x))
oneunit(::Type{T}) where {T} = T(one(T))
_default_type(::Type{Number}) = Int
"""
big(T::Type)
Compute the type that represents the numeric type `T` with arbitrary precision.
Equivalent to `typeof(big(zero(T)))`.
# Examples
```jldoctest
julia> big(Rational)
Rational{BigInt}
julia> big(Float64)
BigFloat
julia> big(Complex{Int})
Complex{BigInt}
```
"""
big(::Type{T}) where {T<:Number} = typeof(big(zero(T)))
|